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Abstract. In this paper we revisit the derivation of boundary conditions for
the Boltzmann Equation. The interaction between the wall atoms and the
gas molecules within a thin surface layer is described by a kinetic equation
introduced in [10] and used in [1]. This equation includes a Vlasov term and
a linear molecule-phonon collision term and is coupled with the Boltzmann
equation describing the evolution of the gas in the bulk flow. Boundary con-
ditions are formally derived from this model by using classical tools of kinetic
theory such as scaling and systematic asymptotic expansion. In a first step
this method is applied to the simplified case of a flat wall. Then it is extented
to walls with nanoscale roughness allowing to obtain more complex scattering
patterns related to the morphology of the wall. It is proved that the obtained
scattering kernels satisfy the classical imposed properties of non-negativeness,
normalization and reciprocity introduced by Cercignani [13].

1. Introduction. The Boltzmann equation is a powerful tool to describe phenom-
ena in a gas flow taking place at a the scale of the order of the mean free path, i.e.
the micrometric scale (for the air under stantard conditions). For many applications
the gas flow takes place in a region bounded by one or several solid bodies. Then
boundary conditions have to be prescribed in order to characterize the behavior of
the gas close to the wall [13, 35].

The first attempt to propose boundary conditions for the Boltzmann equation
goes backs to Maxwell in a paper of 1879 ([32]) where he discusses the way to
describe the interaction between a gas and a wall. The first condition he proposed
corresponds to a simple gas-solid interaction where we assume that the wall is
smooth, and perfectly elastic, so that the particles of gas are specularly reflected.
This condition reads

f(t, x, v) = f(t, x, v − 2ν〈ν, v〉) 〈v, ν〉 > 0, (1)

where ν is the unit vector to the surface at point x and f(t, x, v) is the distribution
function of particles that tt time t and position x have the velocity v. Maxwell
noticed that this assumption means that the gas can exert any stress on the surface
only in the direction of the normal. But this is not physically relevant because in
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practical situations it can also exert stress in oblique directions. This is why he
introduced another type of boundary conditions corresponding to a more complex
gas-solid interaction. Physically he supposed that the wall has a stratum in which
fixed elastic spheres are placed. Moreover the stratum is assumed to be deep enough
so that every molecule going from the gas to the wall must collide ones or more with
the spheres. In this case, the particle is reflected into the gas with a velocity taken
with a probability whose density corresponds to the equilibrium state of the gas. In
that case the boundary condition (known as the perfect accommodation or diffuse
reflexion condition) reads

f(t, x, v) =
1

2π(RT )

∫

〈v′,ν〉<0

|〈v′, ν〉| f(t, x, v′)dv′ exp(− v2

2RT
), 〈v, ν〉 > 0, (2)

where T is the temperature of the wall. Finally Maxwell considered a more compli-
cated intermediate situation which is devoted to be more physically realistic. This
model is intermediate between the two previous ones. Maxwell postulated that
there is a fraction of the gas which accomdates to the temperature of the solid and
another one which is reflected by the solid. In that case the boundary conditions
reads

f(t, x, v) = (1− α)f(t, x, v − 2ν〈ν, v〉)

+ α
1

2π(RT )

∫

〈v′,ν〉<0

|〈v′, ν〉| f(t, x, v′)dv′ exp(− v2

2RT
), 〈v, ν〉 > 0,(3)

where T is still the temperature of the wall and α ∈ [0, 1] is called the accomoda-
tion coefficient. It represents the tendency of a gas to accomodate to the wall. It
means that a fraction of (1−α) of molecules satisfies specular boundary conditions
whereas a fraction of α satisfies Maxwell diffuse boundary conditions. When α = 0,
we recover the specular boundary conditions and when α = 1, we recover the diffuse
boundary condition. The main drawback of this condition is that it gives the same
accommodation coefficient for energy and momentum though it is known that en-
ergy and momentum accommodate differently in physical molecule-wall interactions
(see for instance [17]). Nevertheless, this condition has been widely used, both for
theoretical studies and numerical simulations for practical applications.

More recently, in [16, 13, 14, 15, 18] Cercignani adressed in great details the ques-
tion of gas-surface interaction and boundary conditions for the Boltzmann equation
with a large bibliography. He introduced a general formulation of the boundary
conditions

f(t, x, v)|〈ν, v〉||〈ν,v〉>0 =

∫

〈ν,v′〉<0

R(v′ → v, x, t)f(t, x, v′)|〈ν, v′〉|dv′, (4)

where the scattering kernel R(v′ → v, x, t) characterizes the interaction between the
molecules of the gas and the molecules of the wall. More precisely R(v′ → v, x, t)
represents the probability density that a molecule stricking the wall with a velocity
v′ at point x and time t is reemitted at the same point with a velocity between v
and v + dv. To determine the scattering kernel, Cercignani proposed to use either
physical or mathematical considerations.

In the physical approach we have to compute as exactly as possible the path of
the molecules within the wall. This is anything but easy since such a molecule may
experience various events such as elastic scattering, inelastic scattering (including
multi-phonon scattering), temporary or permanent adsorption, mobile adsorption
(surface diffusion), condensation, reactive interactions. Therefore, in a first attempt,
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very simplified models have been used to describe the wall and the interactions
such as arrays of smooth hard sphere or hard cubes (see the work of Maxwell and
the references given in [15]). A more interesting way to approximate the path
of molecules within the wall has been proposed by Cercignani. He suggested to
use a transport equation for the molecules inside the solid which is regarded as
a half-space. This transport equation includes a Vlasov-type term describing the
van der Walls forces exerted on the gas molecules by the solid atoms and a linear
collision term (of Boltzmann or Fokker-Plank type) describing the scattering by
phonons. Nevertheless, the Maxwell condition (3) can be recovered in this way
(with a Boltzmann-like collision term) as well as the Cercignani-Lampis condition
[17] (with a Fokker-Plank collision term). This latter condition is free from the
physically inconsistence of the Maxwell condition indicated above and has been
widely used. More recent works come close to the same approach by determining
the molecule-wall interactions by means of molecular dynamics simulation [12, 4].
But an intrinsic difficulty in this physical approach is due to our lack of knowledge of
the surface layers of solid walls, which leads Cercignani to propose as an alternative
that he called the mathematical approach.

The idea of the mathematical approach is to construct a scattering kernel, as
simple as possible, satisfying the following basic (physical) requirements:

(i) Non-negativeness:

R(v′ → v, x, t) ≥ 0, (5)

(ii) Normalization:
∫

〈v,ν〉>0

R(v′ → v, x, t) dv = 1, (6)

this property means that the mass flux through the boundary vanishes. It is valid
when permanent adsorption is excluded.
(iii) Reciprocity:

|〈v′, ν〉|Mw(v
′)R(v′ → v, x, t) = |〈v, ν〉|Mw(v)R(−v → −v′, x, t), (7)

whereMw is a Maxwellian distribution having the temperature of the wall. This last
property means that the microscopic dynamics is time reversible, and that the wall
is in a local equilibrium state and is not influenced by the incoming molecule. An
example of a well-known scattering kernel derived in such a way is the Cercignani-
Lampis model. We point out that in a recent paper [36], Struchtrup also proposes
a new boundary condition that leads to velocity dependent coefficients (as well
to isotropic scattering). His approach is close to the mathematical approach as
discussed above: velocity dependent accommodation coefficients are introduced into
the Maxwell boundary condition, and sufficient conditions are derived so as to
ensure properties of normalization and reciprocity. Additional physical arguments
lead to coefficients that depend on free parameters that can be adjusted to fit some
experimental data.

In the present paper we use the so called physical approach but we start from
a somewhat more sophisticated model introduced in [10] and used in [11, 7, 8, 9,
30, 31, 1] for studying gas-surface interaction, nanoflows and surface diffusion. This
model, valid for smooth walls, is still a crude approximation of the complex gas
surface interaction, but it proved to be remarkably useful to give new insight on
these issues. It couples the Boltzmann equation in the bulk flow with a kinetic
model inside a very thin surface layer (with width typically less than a nanometer)
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where the van der Waals forces are taken into account. This model includes a Vlasov
term to take into account the part of the interaction potential that depends on the
frozen position of the atoms of the solid wall (the long range interactions), and a
Boltzmann like linear collision term between molecules and phonons to take into
account the thermal fluctuations of the atoms of the solid (short range interactions).

It contains several characteristic times: the characteristic time of the Boltzmann
equation in the bulk flow, the characteristic time of the kinetic model in the surface
layer, the characteristic time of flight of a molecule through the surface layer, the
characteristic molecule-phonon relaxation time. Then using classical tools of kinetic
theory such as scaling asymptotic analysis we can derive various models correspond-
ing to different regimes according to the relative value of the characteristic times.
Thus in [1] surface kinetic and surface diffusion models have been derived from this
three phase model: they describe mobile adsorption and can be interpreted as non
local boundary conditions. In the present paper, using different scalings, we derive
local boundary conditions from the same basic three phase model. First, a weak
molecule-phonon interaction regime is considered. In that case the particles of the
gas quickly cross the surface layer and the classical specular boundary condition is
obtained. Then a strong molecule-phonon interaction is investigated. In this situ-
ation the particles of the gas slowly cross the surface layer and are thermalized by
the wall leading to Maxwell-diffuse boundary conditions. Finally, an intermediate
interaction is assumed, and we get a Maxwell-like boundary condition (3), but with
a fraction of diffusely evaporated molecules that depends on the velocity. Moreover,
the relationship between this coefficient and the surface-molecule interaction poten-
tial is formulated. One of the interesting asset of this boundary condition is that it
gives different accommodation coefficients for energy and (normal and tangential)
momentum, contrary to the original Maxwell condition. Moreover it must be noted
that mobile adsorption (see [1]) as well as elastic or inelastic scattering are treated
within the same framework. Finally this analysis is extended to a non-smooth wall
with nanoscale roughness assumed to be periodic in the directions parallel to the
surface. This leads to a scattering kernel with more complex reflexion patterns that
depend on the wall morphology.

This paper is organized as follows. Section 2 deals with the presentation of
nanoscale kinetic models describing the interaction between a wall and particles
in a very simplifed configuration with a flat wall and simplified expression of the
potential. In section 3, the boundary conditions are derived under these assumptions
by using asymptotic analysis. In section 4, the same analysis is extended to the more
realistic case of a wall with nanoscale roughness and a general potential. Section 5
is devoted to some comments on these results and to concluding remarks.

2. Nanoscale kinetic models for gas-surface interaction. In this section we
recall the nanoscale models describing a gas flow near a wall introduced in [10] and
[1]. In these models the interaction between the wall and the gas molecules through
Van der Walls forces are taken into account in a thin surface layer (with thickness
L typically smaller than one nanometer). In all the following, for the sake of sim-
plicity, we assume that the molecules move in a 2D half-plane 1 and we consider
the following configuration: the solid is occupying the half-space z > L, the gas

1As indicated in [1] we can assume that the molecules move in the 3D half-space (x, y, z), z < 0,
provided that f is interpreted as the marginal distribution function obtained by integrating the
original distribution function with respect to vy .
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phase is constituted by the gas molecules in the half-space z < 0, outside of the
range of the surface forces, and we consider separately the surface layer 0 < z < L,
where the gas molecules move within the range of the surface potential. The gas
flow in this surface layer is modelled by the collisionless Boltzmann equation (the
size of this layer is much smaller than the mean free path of the molecules), with a
Vlasov term to take into account the part of the interaction potential that depends
on the frozen position of the atoms of the solid wall (the long range interactions),
and a collision term between molecules and phonons to take into account the ther-
mal fluctuations of the atoms of the solid (short range interactions) (see [10] for
a physical justification of this approach). Since in many applications the surface
potential is an attractive-repulsive potential, some of the molecules in the surface
layer have a total energy which is too small to escape from the potential well and
are trapped in the surface layer. On the other hand some molecules, called the free
molecules, have enough energy to escape from the potential well and can leave the
surface layer and go into the bulk flow.

Both type of molecules (trapped and free) are taken into account in this approach
and we give now more details on the model describing their motion in the surface
layer.

2.1. The surface potential. We assume that the wall is flat and we use a simpli-
fied interaction potential which reads

V(x, z) =W (z), (8)

where W is an attractive-repulsive potential, ie;

(H1) 0 ≤W (z) ,

(H2) limz→LW (z) = +∞,

(H3) the potential W is repulsive (i.e. W ′(z) > 0) for zm ≤ z < L and is attractive
(W ′(z) < 0) for 0 < z < zm, and we set W (zm) = 0

(H4) The range of the surface forces is finite and thus, the potential satisfiesW (z) =
Wm for z < 0.

This simplified potential allows to uncouple the parallel motion and the normal
motion of gas molecules near the solid wall, which makes the mathematical devel-
opments much easier. Moreover, though not physically realistic, this potential is
sufficient to obtain accurate information on the behavior of the gas near the walls
(see [1] for more details). Extension to a more realistic interaction potential is
considered in section 4.

It is useful to introduce in the surface layer the following velocity variable, called
equivalent velocity:

ez = sign(vz)
√

v2z + 2W (z)/m, (9)

which is the velocity of a particle whose total energy 1
2mv

2
z+W (z) would be a kinetic

energy 1
2me

2
z only. We denote by e = (vx, ez) the corresponding two dimensional

velocity.
It will be more convenient to describe the distribution function of gas molecules

in the surface layer as a function of e rather than a function of (vx, vz).
Now, we explain how particles can be divided into two different classes: the

free particles and the trapped particles. The trajectory of a particle along z is
defined (if there is no collision) by the two differential equations z′(t) = vz(t)
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and mv′z(t) = ∂zW (z(t)). Along this trajectory, the total energy 1
2mv

2
z +W (z) is

constant. According to the definition of the equivalent velocity ez (see (9)), we have
1
2me

2
z = 1

2mv
2
z +W (z) which is a constant too. A particle is free if it can leave the

surface layer and go into the gas. In this case, the potential reaches the value Wm,
and since its kinetic energy 1

2mv
2
z is non-negative, this means that 1

2me
2
z > Wm,

which is equivalent to |ez| >
√

2
mWm. The limit position of this particle when it is

inside the surface layer is such that it takes a zero velocity. At this point, denoted
by z−(ez), we have W (z−(e(z))) =

1
2me

2
z (see figure 1).

At the contrary, a particle is trapped if its total energy is lower that Wm, that

is to say |ez| <
√

2
mWm. In that case, the potential is bounded by 1

2me
2
z < Wm,

which means that z varies between two limit values z+(ez) and z−(ez) such that
W (z±(ez)) =

1
2me

2
z (see figure 2): the particle cannot escape from the surface layer.

In order to have the same notation for trapped and free particles, we set z+(ez) =

0 for free particles (that is to say, if |ez| >
√

2
mWm). Moreover, for particles with

zero total energy, we have ez = 0 and hence the velocity and the potential are zero
too, which means that the particle stay at position z = zm. The we set z±(0) = zm
in this case.

With this definition, note that z+ and z− are even functions of ez.
Now, we introduce some notations that are useful to switch between vz and ez

variables. The velocity of a particle with equivalent velocity ez located at position
z ∈ [z+(ez), z−(ez)] is given by

vz(z, ez) = sign(ez)

√

e2z −
2

m
W (z), (10)

and we have

vz(z−(ez), ez) = vz(z−(−ez),−ez) = 0. (11)

Moreover, for trapped molecules we also have

vz(z+(ez), ez) = vz(z+(−ez),−ez) = 0. (12)

Let us define

σ(z, ez) =
1

|vz(z, ez)|
= (e2z −

2

m
W (z))−1/2 for |ez| >

√

2W (z)/m,

so that

σ(z, ez) vz(z, ez) = sign(ez), (13)

and also

τz(ez) =

∫ z−(ez)

z+(ez)

σ(z, ez)dz =

∫ z−(ez)

z+(ez)

(e2z −
2

m
W (z))−1/2dz.

As in [24], τz(ez) can be interpreted as the time for a molecule to cross the surface
layer. Moreover, for every z ∈]0, L] the application vz → ez is a one-to-one applica-

tion from [0,+∞[ onto [
√

2
mW (z),+∞[ and from ]−∞, 0] onto ]−∞,−

√

2
mW (z)].

Therefore differentiating (10) leads to

dvz = |ez|σ(z, ez)dez. (14)
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Thus the integral of a given function ψ(z, vz) with respect to vz can be trans-
formed as follows:

∫

vz

ψ(z, vz) dvz =

∫

|ez |>
√

2
m

W (z)

ψ(z, vz(z, ez)) |ez|σ(z, ez)dez . (15)

Moreover, the order of integration in a z-ez integral can be changed as follows (see
figure 3):

∫ L

0

(

∫

|ez|>
√

2
m

W (z)

ψ(z, vz(z, ez))|ez|σz(z, ez) dez
)

dz

=

∫ +∞

−∞

(

∫ z−(ez)

z+(ez)

(ψ(z, vz(z, ez))|ez |σ(z, ez) dz
)

dez.

(16)

2.2. Molecule-phonon collision term. In this paper we consider the general
molecule-phonon collision term

Q[φ](v) =

∫

IR2

K(v, v′)
(

exp
(

−m|v|2
2kT

)

φ(v′)− exp
(

−m|v′|2
2kT

)

φ(v)
)

dv′.

With the new velocity variable e = (vx, ez) defined in (9), for a given value of z,
this operator reads:

Q[φ](z, e) = Q+[φ](z, e)−Q−[φ](z, e) =

∫

E(z)
K(z, e, e′) (G(e)φ(e′)

− G(e′)φ(e)) Je′ de
′,

(17)

where E(z) = {e′, |e′z| ≥
√

2W (z)/m}, Je′ = J(z, e′z) = |e′z|σ(z, e′z), and

G(e) = exp

(

−m(|vx|2 + |ez|2)
2kT

)

. (18)

The collision kernel K is such that k(z, e→ e′) = K(z, e, e′)G(e′) is the probability
of transition per unit time from the state e to the state e′ in a “collision” with a
phonon. The dimension of K is [time/length2] (or, if the molecules move in a 3D
plane, of [time2/length3]). We assume in the following that

K(z, e, e′) = K(z, e′, e),

0 < ν0 ≤ K(z, e, e′) ≤ ν1, (19)

K(z, vx,−ez, v′x,−e′z) = K(z, vx, ez, v
′
x, e

′
z), (20)

K(z,−vx, ez, v′x, e′z) = K(z, vx, ez, v
′
x, e

′
z).

The loss term of the molecule-phonon collision term can be written

Q−[φ](z, e) =
1

τms(z, e)
φ(z, e), (21)

where

τms(z, e) =

(

∫

E(z)
K(z, e, e′)G(e′)J(z, e′z)de

′
)−1

(22)

is a collision time (at point z). It is useful for the sequel to introduce the mean relax-
ation time τms(e) defined as the harmonic mean of τms(z, e) weighted by σ(z, ez):

1

τms(e)
=

∫ z−(ez)

0 σ(z, ez)/τms(z, e) dz
∫ z−(ez)

0
σ(z, ez) dz

=

∫ z−(ez)

0 σ(z, ez)/τms(z, e) dz

τz(ez)
. (23)
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Using (20), the even parity of σ, G, J and z± with respect to ez, and the symmetry
of E(z), we have :

τms(z, vx,−ez) = τms(z, vx, ez), and τms(vx,−ez) = τms(vx, ez).

Let us remark that if we assume K(z, e, e′) = 1, then τm does not depends on e
and we have:

Q[φ] =
1

τms(z)

(

n[φ]

γ(z)
G− φ

)

, (24)

where γ(z) = τms(z)
−1 =

∫

E(z)G(e
′)J(z, e′z)de

′ and n[φ] =
∫

E(z) φ(e
′)J(z, e′z)de

′,

which is quite similar to the BGK-like relaxation term used in [1]. Finally we recall
some of the main properties satisfied by the operator Q.

Proposition 1. The collision term satisfies the following properties
∫

E(z)
Q[φ](e)Je de = 0, (mass conservation), (25)

Q[φ] = 0 ⇔ φ = n G, (equilibrium), (26)
∫

E(z)
Q[φ](e)φ(e)

Je
G(e)

de ≤ −ν0γ(z)
∫

E(z)
w2 Je

G
de, (H theorem), (27)

∫

E(z)
Q[φ](e)ψ(e)

Je
G(e)

de =

∫

E(z)
Q[ψ](e)φ(e)

Je
G(e)

de, (symmetry) , (28)

where we used the macro-micro decomposition φ = q+w with q = n[φ]G and where
w = φ− q satisfies n[w] = 0.

2.3. Nanoscale models. The first model introduced in [10] and [1] is the following
system of coupled kinetic equations which describes the flow of molecules in the
surface layer (where the Van der Waals forces are acting) and outside:

∂tf + vx∂xf + vz∂zf = 0, z < 0 (29)

f(t, x, 0, vx, vz)|vz<0 = φ(t, x, 0, vx, ez(0, vz)), (30)

∂tφ+ vx∂xφ+ vz(z, ez)∂zφ = Q[φ], z+(ez) < z < z−(ez), (31)

φ(t, x, 0, vx, ez)ez>
√

2Wm/m
= f(t, x, 0, vx, vz(0, ez)), (32)

φ(t, x, z−(ez), vx, ez) = φ(t, z−(−ez), vx,−ez), (33)

φ(t, x, z+(ez), vx, ez) = φ(t, z+(−ez), vx,−ez), |ez| <
√

2Wm/m, (34)

where f = f(t, x, z, vx, vz) is the distribution function describing the bulk flow and
φ = φ(t, x, z, vx, ez) is the distribution function describing the gas flow inside the
surface layer. Let us remark that since we have chosen to define φ as a function of
(vx, ez) equation (31) does not contain a Vlasov term in the z-direction.

The above model describes the gas-solid interaction at the nanoscale, i.e on a
domain [0, x∗] × [−z∗, L] with x∗ and z∗ ≈ 1 nanometer. But on a larger scale in
the tangential direction, this model is too complicated and contains stiff terms that
would make its numerical solution too much expensive. Thus in [1] the authors
derived a limit model obtained by asymptotic analysis when the domain is much
larger than the surface layer (that is to say x⋆ ≈ z∗ ≫ L). In this model, the flow
of molecules in the surface layer is described by a one-dimensional kinetic equa-
tion which can be considered as a nonlocal boundary condition for the Boltzmann
equation in the bulk flow.
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But on a larger scale in x and z this last model is still too complicated to manage
and it would be interesting to investigate the relation between these nanoscale
models and the standard boundary conditions used with the Boltzmann equation
in gas kinetic theory.

In the following, we use the nanoscale model (29-34) to derive various boundary
conditions for the Boltzmann equation (29), according to convenient scalings.

3. Derivation of boundary conditions: Case of a flat wall. In this section,
we assume that the characteristic times of the flow in the surface layer (the time
for a molecule to cross the surface layer and the relaxation time of molecules by
phonons) are much smaller than the characteristic time of evolution of the bulk flow.
We derive boundary conditions for the Boltzmann equation in the bulk flow by an
asymptotic analysis of system (29-34). The main point in this derivation is to find
the solution of a linear kinetic problem which describes, in a first approximation,
the motion of the molecules in the surface layer. Unfortunately this problem cannot
be solved exactly but approximated solutions can be obtained (see Lemma 1 after
the proof of Proposition 2).

We consider system (29-34) and we introduce the following dimensionless quan-
tities:

ñ =
n

n∗ , ṽx =
vx
v∗
, ṽz =

vz
v∗
, ẽz =

ez
v∗
, f̃ =

f

f∗ , φ̃ =
φ

f∗ , x̃ =
x

l∗
,

W̃ =
W

W ∗ , W̃m =
Wm

W ∗ , t̃ =
t

t∗B
, τ̃z =

τz
τ∗z
, τ̃ms =

τms

τ∗ms

, K̃ =
K

K∗ ,

and z̃ = z
l∗ for the Boltzmann equation in the bulk flow, while z̃ = z

L in the
surface layer. The reference quantities are the followings: n∗ is the reference number
density, v∗ =

√

kT/m, f∗ = n∗/v∗2, t∗B is the reference time of evolution for the

Boltzmann equation (29), l∗ = v∗t∗B, τ
∗
ms = 1/(K∗v∗2) is a reference relaxation

time, τ∗z = L/v∗ is the characteristic time of flight of a molecule through the surface

layer, and W ∗ = mv∗2/2.
In order to study different regimes corresponding to different order of magni-

tude of the characteristic time scales τ∗z , τ
∗
ms and t∗B, we introduce the following

nondimensional parameters:

ε =
τ∗ms

t∗B
and η =

τ∗ms

τ∗z
.

Then system (29-34) reads in dimensionless form

∂t̃f̃ + ṽx∂x̃f̃ + ṽz∂z̃ f̃ = 0, z̃ < 0, (35)

f̃(t̃, x̃, 0, ṽx, ṽz)ṽz<0 = φ̃(t̃, x̃, 0, ṽx, ẽz(0, ṽz)), (36)

∂t̃φ̃+ ṽx∂x̃φ̃+
η

ε
ṽz(z̃, ẽz)∂z̃φ̃ =

1

ε
Q̃[φ̃], z̃+(ẽz) < z̃ < z̃−(ẽz), (37)

φ̃(t̃, x̃, 0, ṽx, ẽz)ṽz>0 = f̃(t̃, x̃, 0, ṽx, ṽz(0, ẽz)), (38)

φ̃(t̃, x̃, z̃−(ẽz), ṽx, ẽz) = φ̃(t̃, z̃−(ẽz), ṽx,−ẽz), (39)

φ̃(t̃, x̃, z̃+(ẽz), ṽx, ẽz) = φ̃(t̃, z̃+(ẽz), ṽx,−ẽz), for |ẽz| <
√

W̃m. (40)

We mention that with this dimensionless variables, a particle of velocity ez located
at z is:
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• either trapped if |ẽz̃| <
√

W̃m, and hence stays between z̃±(ẽz̃) defined by

W̃ (z̃±(ẽz)) = ẽ2z,

• or free if |ẽz| >
√

W̃m, and hence stays on the left-hand-side of z̃−(ẽz) defined
by W̃ (z̃−(ẽz)) = ẽ2z. We set z̃+(ẽz̃) = 0 in this case.

We can obtain boundary conditions for the Boltzmann equation through an as-
ymptotic analysis of the above system when ε → 0. This leads to the following
results.

Proposition 2. Under the hypothesis (8) and (H1-H4), in the limit ε → 0, the
gas-surface interaction depends on the order of magnitude of η and can be described
by the following boundary conditions at z = 0:

1. for η = O(1ε ), the boundary condition is the specular reflection

f(t, x, 0, vx, vz)|vz<0 = f(t, x, 0, vx,−vz).
2. for η = O(ε), the boundary condition is the reflection with perfect accommo-

dation

f(t, x, 0, vx, vz)|vz<0 = κ(t, x)M(vx, vz), (41)

where

κ(t, x) =

∫

vz>0

∫

vzf(t, x, 0, vx, vz)dvxdvz/

∫

vz>0

∫

vzM(vx, vz)dvxdvz

is such that the mass flux of f through the boundary z = 0 is zero, and where
M(v) = exp

(

−m(v2x + v2z)/2kT
)

.
3. for η = O(1), the boundary condition can be approximated by a Maxwell-like

boundary condition

f(t, x, 0, vx, vz)|vz<0 = a(v)β(t, x)M(v) + (1− a(v))f(t, x, 0, vx,−vz),
where

a(v) = 1− exp

(

−2τ̂z(vz)

τ̂ms(v)

)

, (42)

β(t, x) =

∫

vz>0

∫

vza(v)f(t, x, 0, vx, vz)dvxdvz/

∫

vz>0

∫

vza(v)M(vx, vz)dvxdvz ,

with the notations τ̂z(vz) = τz(ez(0, vz)) and τ̂ms(v) = τms(vx, ez(0, vz)). This
boundary condition ensures a zero mass flux of f at the boundary z = 0.
Moreover, it can be written under the general form (4) with a scattering kernel
R(v′ → v) that satisfies the properties of non-negativeness, normalization and
reciprocity.

Proof. In order to simplify the notations, the tilde˜over the dimensionless quantities
are dropped in the following. To avoid confusion, we will indicate explicitely when
we come back to dimensional quantities.

In order to perform an asymptotic analysis of system (35-40), we look for a
solution in the form

f = fε = f0 + εf1 + ..., φ = φε = φ0 + εφ1 + ....

This expansion is inserted into (35–40) and we identify the terms of same power of
magnitude w.r.t ε. The zeroth-order term f0 satisfies

∂tf
0 + vx∂xf

0 + vz∂zf
0 = 0, (43)

f0(t, x, 0, vx, vz)vz<0 = φ0(t, x, 0, vx, ez(0, vz)). (44)
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However, the zeroth-order term φ0 depends on the order of magnitude of η.

(1) We consider the case η = O(1ε ). This means that

τ∗z ≪ τ∗ms ≪ t∗B,

that is to say the free time of flight of a molecule to cross the surface layer is
much smaller than the relaxation time of molecules by phonons. Thus the flow of
molecules crosses the surface layer so quickly that the relaxation phenomena can
be neglected. Then φ0 satisfies the following linear kinetic surface layer (LKSL)
problem:

vz(z, ez)∂zφ
0 = 0, for z+(ez) < z < z−(ez), (45)

φ0(t, x, 0, vx, ez)ez>
√
Wm

= f0(t, x, 0, vx, vz(0, ez)), (46)

φ0(t, x, z−(ez), vx, ez) = φ0(t, x, z−(ez), vx,−ez), (47)

φ0(t, x, z+(ez), vx, ez) = φ0(t, x, z+(ez), vx,−ez), for |ez| <
√

Wm. (48)

Consider some vz < 0 and the boundary condition (44) where we write ēz =
ez(0, vz):

f0(t, x, 0, vx, vz)vz<0 = φ0(t, x, 0, vx, ēz). (49)

Since (45) implies that φ0 does not depend on z, we can replace z = 0 in the
right-hand side of (49) by z = z−(ez) to get

f0(t, x, 0, vx, vz)vz<0 = φ0(t, x, z−(ēz), vx, ēz).

Moreover (47) and the even parity of z− imply

f0(t, x, 0, vx, vz)vz<0 = φ0(t, x, z−(−ēz), vx,−ēz).
Again, we use the fact that φ0 does not depend on z to get

f0(t, x, 0, vx, vz)vz<0 = φ0(t, x, 0, vx,−ēz),
where, by definition, −ēz ≥

√
Wm. Now we can use (46) to replace the right-hand

side of the previous relation and to get the specular boundary condition

f0(t, x, 0, vx, vz)vz<0 = f0(t, x, 0, vx,−vz).
We mention that we used η = O(1ε ) for simplicity. In fact, we recover the same
boundary condition if η = O(ε−α), for every positive α.

(2) Now we assume η = O(ε), which implies that

τ∗ms ≪ τ∗z ≪ t∗B.

This means that the relaxation time of molecules by phonons is much smaller than
the free time of flight of a molecule to cross the surface layer. In this limit the
flow of incoming molecules into the surface layer immediately relaxes toward the
equilibrium. Now the LKSL problem satisfied by φ0 reads

Q[φ0] = 0, for z+(ez) < z < z−(ez), (50)

φ0(t, x, 0, vx, ez)ez>0 = f0(t, x, 0, vx, vz(0, ez)), (51)

φ0(t, x, z−(ez), vx, ez) = φ0(t, z−(ez), vx,−ez), (52)

φ0(t, x, z+(ez), vx, ez) = φ0(t, x, z+(ez), vx,−ez), for |ez| <
√

Wm (53)

which gives

φ0(t, x, z, vx, ez) = α(t, x)G(vx, ez), for z+(ez) < z < z−(ez). (54)
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However, the distribution function φ0 is Maxwellian and hence cannot satisfy the
inflow boundary condition (51). Thus we have to introduce in the expansion of φ a
Knudsen-layer corrector

φ(t, x, z, vx, ez) = φ0(t, x, z, vx, ez) + ψ0(t, x,
z

ε
, vx, ez) + εφ1(t, x, z, vx, ez) + ...,

where φ0 is still defined by (54) and satisfies (50, 52, 53), and ψ0(t, x, y, vx, ez) is
given by

vz(0, ez)∂yψ
0 = Q0[ψ

0], for |ez| ≥
√

Wm, 0 < y < +∞, (55)

ψ0(t, x, 0, vx, ez)|ez>0 = f0(t, x, 0, vx, vz(0, ez))− φ0(t, x, 0, vx, ez), (56)

and should rapidly decrease to 0 for large y. Note that Q0 is defined by

Q0[χ] =

∫

E(0)
K(0, e, e′) (G(e)χ(e′)−G(e′)χ(e))J(0, e′) de′.

Then, it is useful to introduce χ(t, x, y, vx, ez) defined by

χ(t, x, y, vx, ez) = ψ0(t, x, y, vx, ez) + φ0(t, x, 0, vx, ez), (57)

which implies that χ is the unique bounded solution of the following linear half-space
problem

vz(0, ez)∂yχ = Q0[χ] (58)

χ(t, x, 0, vx, ez)|ez>0 = f0(t, x, 0, vx, vz(0, ez)). (59)

A standard assumption gives the following outgoing distribution (it was for instance
used in [23] to compute extrapolation length, see also [26]), which is often sufficient
in many kinetic boundary layer computations:

χ(t, x, y, vx, ez)|ez<0 ≈ χ(1)(t, x, y, vx, ez)|ez<0 = κ(t, x)G (60)

for every y ≥ 0, where κ can be determined as follows. Another standard re-
sult on the linear half-space problem (58–59) shows that χ necessarily satisfies
∫

E(z) ezχ(t, x, y, vx, ez) de = 0 for every y (see, for instance [19, 21, 33]). Then,

writing this relation at y = 0 and using the boundary condition (59) and the ap-
proximation (60) give the definition

κ(t, x) = −
∫

ez>0 in E(0) ezf
0(t, x, 0, vx, vz(0, ez)) de

∫

ez<0 in E(0) ezG(e) de

=

∫

vz>0

∫

vzf
0(t, x, 0, vx, vz) dvxdvz

∫

vz>0

∫

vzM(vx, vz) dvxdvz
,

(61)

where M(vx, vz) = G(vx, ez(0, vz)) = exp(−(v2x + v2z)/2).
Now, note that (44) has to be modified according to the Knudsen layer correction

to get

f0(t, x, 0, vx, vz)vz<0 = φ0(t, x, 0, vx, ez(0, vz)) + ψ0(t, x, 0, vx, ez(0, vz))

= χ(t, x, 0, vx, ez(0, vz)).

Consequently, the definition (57) of χ and the approximation (60) give the following
approximation of the outgoing distribution

f0(t, x, 0, vx, vz)vz<0 ≈ κ(t, x)M(vx, vz), (62)



GAS-SURFACE INTERACTION AND BOUNDARY CONDITIONS 13

which gives in dimensional variables the classical perfect accommodation boundary
condition (41) (sometimes called the diffuse reflexion boundary condition), provided
that the coefficient κ is such that the corresponding approximation of the mass flux
of f0 at the boundary z = 0 is zero. Indeed, the definition (61) of κ implies that
this property holds.

(3) Finally, we assume η = O(1), which corresponds to τ∗ms ≈ τ∗z ≪ t∗B. The
LKSL problem satisfied by φ0 is

vz(z, ez)∂zφ
0 = Q[φ0], for z+(ez) < z < z−(ez), (63)

φ0(t, x, 0, vx, ez)ez>
√
Wm

= f0(t, x, 0, vx, vz(0, ez)), (64)

φ0(t, x, z−(ez), vx, ez) = φ0(t, x, z−(ez), vx,−ez), (65)

φ0(t, x, z+(ez), vx, ez) = φ0(t, x, z+(ez), vx,−ez), for |ez| <
√

Wm. (66)

We can claim that this linear kinetic surface layer (LKSL) problem has a unique
solution and that this solution has a zero mass flux through the surface z = 0 (see
Lemma 3.1 after this proof):

∫

|ez|>
√
Wm

∫

ezφ
0(t, x, 0, vx, ez) dvxdez = 0. (67)

Now if we solve the LKSL problem (63-66), then φ0(t, x, 0, vx, ez), which is the
value of the solution at z = 0 for ez < 0, gives a boundary value for (44). This
value linearily depends on the inflow data: φ0(t, x, 0, vx, ez(0, vz)) = A (f0(t, x, 0,
vx, .)|vz>0), where A is called the “albedo” operator A. Consequently, the boundary
condition (44) of (43) reads

f0(t, x, 0, vx, vz < 0) = A (f0(t, x, 0, vx, .)|vz>0). (68)

This relation can be interpreted as an exact boundary condition. However, the
operator A is implicitely defined: we must solve the LKSL problem (63-66) to get
φ0(t, x, 0, vx, ez)ez<0, which could be done approximately by a numerical computa-
tion. Nevertheless, it is possible to get an approximation of the operator A that
explicitely gives φ0(t, x, 0, vx, ez)ez<0 as a function of f0(t, x, 0, vx, vz(0, ez))|ez>0:
using again Lemma 3.1 (see after this proof), we can conclude that

φ0(t, x, 0, vx, ez)ez<0 = (1− a(ez))f
0(t, x, 0, vx,−vz(0, ez))

+a(ez)α(t, x)G(vx , ez).

From (44), we get

f0(t, x, 0, vx, vz)vz<0 = φ0(t, x, 0, vx, ez(0, vz))

= (1− a(vz))f
0(t, x, 0, vx,−vz) + a(vz)β(t, x)M(vx, vz).

Moreover, for the same reason as for the previous regime, the approximation of
the mass flux of f0 through the boundary z = 0, and hence the coefficient β can
be uniquely determined. Coming back in dimensional variables, we get (3). From
this relation we can easily check that the associated scattering kernel satisfies the
properties of non-negativeness, normalization and since a(v) = a(−v), the property
of reciprocity. �
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Lemma 3.1. Let us consider the linear kinetic surface layer problem (LKSL)

vz(z, ez)∂zφ
0 = Q[φ0], for z+(ez) < z < z−(ez), (69)

φ0(0, vx, ez)ez>
√
Wm

= f∗(vx, vz(0, ez)), (70)

φ0(z−(ez), vx, ez) = φ0(z−(ez), vx,−ez), (71)

φ0(z+(ez), vx, ez) = φ0(z+(ez), vx,−ez), for |ez| <
√

Wm. (72)

This problem has a unique solution and this solution has a zero mass flux through
the surface z = 0:

∫

|ez |>
√
Wm

∫

ezφ
0(0, vx, ez) dvxdez = 0, (73)

and we have

φ0(0, vx, ez)|ez<−
√
Wm

= (1− a(e))f∗(vx,−vz(0, ez)) + h∗[φ0](e) G(e), (74)

where the coefficient a is given by

a(e) = 1− exp

(

−2τz(ez)

τ̄ms(e)

)

. (75)

Moreover, if we assume that Q+(φ
0) = Q+(αG), where α depends on f∗ but does

not depend on z, vx, and ez, then we have

φ0(0, vx, ez)|ez<−
√
Wm

= (1 − a(e))f∗(vx,−vz(0, ez)) + a(e)α1G(vx, ez), (76)

and α is determined by (73) (see (84) in the proof).

Proof. (i) Existence and uniqueness. Existence and uniqueness of a solution
of the LKSL problem (69-72) can be proved by using standard techniques in linear
transport problems. The reader can refer, for instance, to [25].

(ii) Mass flux at z = 0. Multiplying (69) by |ez|σ(z, ez) and using (13), we get

ez∂zφ
0 = Q[φ0]|ez|σ(z, ez).

Now we integrate this relation with respect to z. It comes

∫ z−(ez)

z+(ez)

ez∂zφ
0 dz =

∫ z−(ez)

z+(ez)

Q[φ0]|ez|σ(z, ez) dz,

or,

ezφ
0(z−(ez), vx, ez)− ezφ

0(z+(ez), vx, ez) =

∫ z−(ez)

z+(ez)

Q[φ0]|ez|σ(z, ez) dz,

where z+(ez) = 0 for |ez| >
√
Wm. Now integrating with respect to vx and ez, we

find
∫ ∫

ezφ
0(z−(ez), vx, ez) dvxdez −

∫ ∫

ezφ
0(z+(ez), vx, ez) dvxdez

=

∫ ∫ ∫ z−(ez)

z+(ez)

Q[φ0]|ez|σ(z, ez) dzdvxdez.
(77)
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But since ezφ
0(z±(ez), vx, ez) dvxdez is an odd function of ez (see (71) and (72)),

the first term of the left-hand side of this relation vanishes and the second one gives

∫ ∫

ezφ
0(z+(ez), vx, ez) dvxdez =

∫ ∫

|ez|<
√
Wm

ezφ
0(z+(ez), vx, ez) dezdvx

+

∫ ∫

|ez|>
√
Wm

ezφ
0(0, vx, ez) dezdvx,

=

∫ ∫

|ez|>
√
Wm

ezφ
0(0, vx, ez) dezdvx.

Consequently, (77) now reads

−
∫ ∫

|ez|>
√
Wm

ezφ
0(0, vx, ez) dezdvx =

∫ ∫ ∫ z−(ez)

z+(ez)

Q[φ0]|ez|σ(z, ez) dzdvxdez.

Finally, inverting the integration with respect to z and the integration with respect
to vx and ez in the right-hand side (see (16)), we get

−
∫ ∫

|ez|>
√
Wm

ezφ
0(0, vx, ez) dvxdez =

∫ L

0

∫

E(z)
Q[φ0]|ez|σ(z, ez) dedz,

= 0,

due to the mass conservation (see (25)).

(iii) Approximate solution of the LKSL problem. As indicated in the proof
of proposition 2 (point 3), the LKSL problem (69–72) has a unique solution φ0, and
the relation

φ0|ez<−
√
Wm

= A[φ0|ez>
√
Wm

] (78)

leads to a boundary condition for the Boltzmann equation which is, unfortunately,
implicit. We are going to show how we can obtain an explicit relation between
φ0|ez<−

√
Wm

and φ0|ez>
√
Wm

which can be considered as an approximation of (78).

In a first step we give a more explicit expression of the albedo operator A. We
first note that

Q+[φ
0] =

(

∫

E(z)
K(z, e, e′)φ0(e′)Je′de

′
)

G(e)

= b[φ0](z, e) G(e). (79)

Moreover, we multiply (69) by σ(z, ez) and we use (79) to rewrite (69) as

sign(ez)∂zφ
0 = σ(z, ez)Q

+[φ0]− σ(z, ez)

τms(z, e)
φ0, for z+(ez) < z < z−(ez). (80)

Then, we integrate (80) along trajectories. Since (78) defines the distribution of
outgoing particles, that are all free particles, we shall make this integration for |ez| >√
Wm only (see at the end of this proof for a remark about trapped particles). First,

particles with positive ez go from z+(ez) = 0 to z−(ez), and we can integrate (80)
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between 0 and some z ∈ [0, z−(ez)] to get

φ0(z, vx, ez)|ez>
√
Wm

= exp

(

−
∫ z

0

σ(ζ, ez)

τms(ζ, e)
dζ

)

f∗(0, vx, vz(0, ez))

+ exp

(

−
∫ z

0

σ(ζ, ez)

τms(ζ, e)
dζ

)
∫ z

0

exp

(

∫ ζ

0

σ(η, ez)

τms(η, e)
dη

)

σ(ζ, ez)b[φ
0](ζ, e) dζ G(e)

We write this relation at z = z−(ez), we use the definition of τms (see (23)), and
then an exact computation of the integral of the exponential gives

φ0(z−(ez), vx, ez)|ez>
√
Wm

= exp

(

− τz(ez)

τms(e)

)

f∗(0, vx, vz(0, ez))

+ exp

(

− τz(ez)

τms(e)

)
∫ z−(ez)

0

exp

(

∫ ζ

0

σ(η, ez)

τms(η, e)
dη

)

σ(ζ, ez)b[φ
0](ζ, e) dζ G(e)

= exp

(

− τz(ez)

τms(e)

)

f∗(0, vx, vz(0, ez)) + h[φ0](e) G(e). (81)

Now, we use (71) and (81), the even parity of τ̄ms, τz and G, and the odd parity
of vz(0, ez) with respect to ez to obtain the distribution of outgoing particles at
z = z−(ez):

φ0(z−(ez), vx, ez)|ez<−
√
Wm

= exp

(

− τz(ez)

τms(e)

)

f∗(0, vx,−vz(0, ez))+h[φ0](e) G(e).

Then, for ez < −
√
Wm, since particles go from z−(ez) to z+(ez) = 0, we integrate

(80) from z−(ez) to some z in [0, z−(ez)] to get

φ0(z, vx, ez)|ez<−
√
Wm

= exp

(

−
∫ z−(ez)

z

σ(ζ, ez)

τms(ζ, e)
dζ

)(

exp

(

− τz(ez)

τms(e)

)

f∗(0, vx,−vz(0, ez))

+ h[φ0](e) G(e)

)

+ exp

(

−
∫ z−(ez)

z

σ(ζ, ez)

τms(ζ, e)
dζ

)

∫ z−(ez)

z

exp

(

∫ z−(ez)

ζ

σ(η, ez)

τms(η, e)
dη

)

σ(ζ, ez)

b[φ0](ζ, e) dζ G(e),

and hence the distribution of outgoing particles at z = 0:

φ0(0, vx, ez)|ez<−
√
Wm

= exp

(

− τz(ez)

τms(e)

)(

exp

(

− τz(ez)

τms(e)

)

f∗(0, vx,−vz(0, ez)) + h[φ0](e) G(e)

)

+

(

− τz(ez)

τms(e)

)
∫ z−(ez)

0

exp

(

∫ z−(ez)

ζ

σ(η, ez)

τms(η, e)
dη

)

σ(ζ, ez)b[φ
0](ζ, e) dζ G(e),

= exp

(

−2τz(ez)

τms(e)

)

f∗(0, vx,−vz(0, ez)) + exp

(

− τz(ez)

τms(e)

)

h̃[φ0](e) G(e)
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so that finally

φ0(0, vx, ez)|ez<−
√
Wm

= A[φ0] := exp

(

− 2τz(e)

τms(e)

)

f∗(0, vx,−vz(0, ez))

+ h∗[φ0](e) G(e), (82)

which is exactly (74) if a(e) is defined by (75).
This relation proves that the outgoing distribution (i.e. the boundary condition)

reads like a Maxwell condition but with coefficients depending on the velocity and
where the coefficient in front of G(e) is implicitly defined. The coefficient 1−a(e) =
exp

(

− 2τz(ez)
τms(e)

)

can be interpreted as the fraction of incident molecules (with velocity

vz(0, ez)) that have not been thermalized. Note that it is dependent on e. However,
in this form such a relation can hardly be used.

So, in a second step, we look for an explicit relation that has the same structure,
and in particular, with the same fraction of incident molecules. To do so we keep
in the model the long-range interaction between gas-molecules and the wall, but we
make some simplification in the short-range interaction, i.e. in the collision operator.
More precisely, the second term in (82), which is the implicit one, depends on the
gain term of the collision operator. In order to obtain an explicit relation we keep
the loss term but we assume that the gain term can be replaced by

Q+[φ
0] = Q+[αG], (83)

where α = α[f∗] is a constant to be defined later. In fact with such a choice, we relax
the (local) property of mass conservation of the collision term but we will choose
the constant α so that the mass flux through the boundary vanishes (which is a
global property of mass conservation). This approach leads to an explicit relation
that will be used instead of (82). Similar procedures have been previously used
by several authors, like, for instance, in the iterative algorithm to approximate the
solution of half space linear problems proposed in [27] and in[29] (see the assumption
before (25) in this reference). Our assumption leads to b[φ0](z, e) = α/τms(z, e),
and simple computations show that h∗[φ0] in (82) reduces to h∗[φ0] = a(e)αG(e),
which gives (76).

Finally, the coefficient α can be determined by using (70), (73), and (76) which
leads to

α =

(
∫ ∫

ez>
√
Wm

eza(e)f
∗(vx,−vz(0, ez))dezdvx

)

/

(
∫ ∫

ez>
√
Wm

eza(e)G(vx, ez)dezdvx

)

.

(84)

Note that the exact albedo operator A defined by (82) not only acts on the
free particles (|ez| >

√
Wm), but also on the trapped particles(|ez| <

√
Wm): in-

deed, h∗[φ0] depends on Q+(φ
0) which contains an integral of φ0 with respect to

e that can be greater and lower than
√
Wm. Even if our analysis does not re-

quire to determine the distribution of this trapped particles , the same kind of
integration along trajectories can be made, and it shows that this distribution is
φ0(z, vx, ez)||ez|<√

Wm
= αG for every z. This means that all the trapped particles

are in equilibrium. �

4. Derivation of boundary conditions: Wall with nanoscale roughness.
We assumed so far that the surface of the solid wall is flat and that the poten-
tial has the simplified form (8). Following the same approach, but with notations
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and algebra a bit more tricky, we could obtain similar results for a more general
attractive-repulsive surface potential V(x, z), corresponding to a smooth wall, i.e.
such that V(x, z) = +∞ at z = L . Moreover we can extend the approach to the
case of a wall with nanoscale roughness (a wall on which there are a great number
of minute asperities and which may induce multiple scattering as indicated in [32]).
A scattering kernel for rough surface with periodic structure has been studied in [5]
by a stochastic approach, assuming that the gas-surface interaction in the surface
layer is described by specular reflection at the small scale. In this section, we con-
sider that the gas-surface interaction is described by the (more physical) approach
introduced in the previous sections but assuming a periodic interaction potential.
More precisely, let us consider the following configuration for the wall : we assume
that the surface layer is included in [0, L] and that the potential V(x, z) is such that

V(x, z) = V#(
x

L∗
, z), (85)

where L∗ = β∗L and β∗ is a positive constant that characterizes the roughness
of the wall, and V#(y, z) is a periodic function of the nanoscopic variable y with
period 1. This nanoscopic variable y allows us to describe how a molecule impiging
the surface layer at microscopic coordinate x sees the nanoscopic roughness of the
wall. Moreover we assume that there exist z = ζ∞(y) a 1-periodic function with
0 ≤ ζ∞(y) < L and z = ζ0(y) a 1-periodic function with 0 ≤ ζ0(y) < ζ∞(y) such
that (see figure 4)

lim
z′<ζ∞(y),z′→ζ∞(y)

V#(y, z
′) = +∞, (86)

V#(y, ζ0(y)) = 0. (87)

Finally, we assume that the potential is attractive-repulsive, i.e.

for ζ0(y) < z < ζ∞(y), ∂zV#(y, z) > 0, for 0 < z < ζ0(y), ∂zV#(y, z) < 0, (88)

and that

V#(y, z) = Vm, for z ≤ 0. (89)

The total energy of a molecule is

E(x, z, vx, vz) =
m

2
|v|2 + V(x, z),

and this total energy remains constant as long as the molecule does not collide
with a phonon. Note that in this section, we do not use the change of velocity
variables v 7→ e(v, z). Indeed, since the potential is not assumed to be separable
into U(x) +W (z) here, there is no obvious change of variable that would simplify
the equations.

With these assumptions, the flow of molecules is described by the following sys-
tem of kinetic equations

∂tf + vx∂xf + vz∂zf = 0, z < 0,

∂tf + vx∂xf + vz∂zf − 1

m
∂xV(x, z)∂vxf − 1

m
∂zV(x, z)∂vzf = Q[f ], 0 < z < L,

(90)

where the molecule-phonon collision term reads

Q[f ] =

∫

K(v, v′)(M(v)f(v′)−M(v′)f(v))dv′, (91)
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and satisfies the properties recalled in proposition 1. Moreover the distribution
function f is continuous through the interface z = 0.

In the following, we compute the scattering kernel of asymptotic boundary con-
ditions corresponding to various regimes. However, we find it more convenient to
use the following form of the scattering kernel:

k(v′ → v) = R(v′ → v)
|v′z |
|vz |

,

where R is the standard form (as used in (4)). With this new kernel, properties of
normalization (6) and reciprocity (7) now read:

∫

vz<0

k(v′ → v)vz dv = −v′z, (92)

|vz |k(v′ → v)M(v′) = |v′z |k(−v → −v′)M(v). (93)

Proposition 3. Under the hypothesis (85–89), in the limit ε =
τ∗

ms

t∗
B

→ 0, the gas-

surface interaction depends on the order of magnitude of η =
τ∗

ms

τ∗

fl

(where τ∗fl is the

characteristic time of flight of a molecule through the surface layer), and can be
described by the following boundary conditions at z = 0:

1. for η = O(1ε ), the boundary condition is the “specular” boundary condition
which reads for a rough wall

f(t, x, 0, vx, vz)|vz<0 =

∫

v′

z>0

k(v′ → v)f(t, x, 0, v′) dv′, (94)

where the scattering kernel k, given by (110), is a probability density that is
non-negative and satisfies the normalization and reciprocity properties (92–
93).

2. for η = O(1), the boundary condition reads, in a first approximation, as

f(t, x, 0, v) =

∫

v′

z>0

k1(v
′ → v)f(t, x, 0, v′) dv′ + a#(v)σ(t, x)M(v), (95)

where k1(v
′ → v) can be viewed as a scattering kernel of non thermalized

molecules, and is defined by (120), a#(v) is the fraction of incident molecules
that are re-emitted with the velocity v after a collision with a phonon (see (121)),
and σ is such that the mass flux at z = 0 is zero (defined in (130)). This bound-
ary condition satisfies the properties of non negativeness, normalization, and
reciprocity.

Proof. We denote by φ = f|0<z<L, and we write f and φ as functions of (t, x, y =
x
L∗

, z, vx, vz), periodic in y, with period 1. We use the same reference quantities and
nondimensional variables as in the previous sections. With these new functions, the
dimensionless form of system (90) is

∂tf + vx∂xf +
η

β∗ε
vx∂yf + vz∂zf = 0, for z < 0, (96)

∂tφ+ vx∂xφ+
η

β∗ε
vx∂yφ+

η

ε
vz∂zφ− 1

2β∗

η

ε
∂yV#(y, z)∂vxφ (97)

− 1

2

η

ε
∂zV#(y, z)∂vzφ =

1

ε
Q[φ],
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for 0 < z < 1, with interface conditions

φ(t, x, y, 0, vx, vz)vz>0 = f(t, x, y, 0, vx, vz), (98)

f(t, x, y, 0, vx, vz)|vz<0 = φ(t, x, y, 0, vx, vz) (99)

for every y ∈ [0, 1].
We define the average of f over a period:

F (t, x, z, vx, vz) =

∫ 1

0

f(t, x, y, z, vx, vz) dy.

Integrating (96) with respect to y and taking into account the 1-periodicity , we
obtain

∂tF + vx∂xF + vz∂zF = 0, (100)

for z < 0, and the boundary condition (99) leads to

F (t, x, 0, vx, vz)|vz<0 =

∫ 1

0

φ(t, x, y, 0, vx, vz)dy. (101)

Now, we use an expansion of f , F , and φ in terms of powers of ε, and we identify
the terms of same order of magnitude.

(1) We consider the case η = O(1ε ), which implies that τ∗fl ≪ τ∗ms ≪ t∗B
(i.e. a weak molecule-phonon interaction). We find at zeroth order ∂yf

0 = 0 for
z < 0, which means that f0 does not depend on y, and hence F 0(t, x, z, vx, vz) =
f0(t, x, z, vx, vz). Consequently, equations (100) and (101) give

∂tF
0 + vx∂xF

0 + vz∂zF
0 = 0, z < 0, (102)

F 0(t, x, 0, vx, vz)vz<0 =

∫ 1

0

φ0(t, x, y, 0, vx, vz)dy. (103)

However, φ0 stil depends on y and we get

1

β∗
vx∂yφ

0 + vz∂zφ
0 − 1

2β∗
∂yV#(y, z)∂vxφ

0 − 1

2
∂zV#(y, z)∂vzφ

0 = 0, (104)

with a boundary condition coming from (98) which is

φ0(t, x, y, 0, vx, vz)vz>0 = F 0(t, x, 0, vx, vz), ∀y ∈ [0, 1]. (105)

Note that the zeroth-order system (102–105) in (F 0, φ0) is closed, contrary to the
original system (96), (98), (100), (99) in (F, φ).

Relation (105) means that the molecules impinging the surface layer with velocity
v = (vx, vz) see the roughness of the wall from any nanoscopic variable y with the
same probabiliy. Relation (103) means that the number of molecules going out
of the surface layer at microscopic point x with velocity v is the sum over y of
molecules going out with velocity v at the nanoscopic points y, y ∈ [0, 1].

The characteristic curves of the LKSL problem (104), defined by ẏ(t) = vx(t)/β∗,
ż(t) = vz(t), v̇x(t) = −∂yV#(y(t), z(t))/2β∗, and v̇z(t) = −∂zV#(y(t), z(t))/2, are
the trajectories of the molecules in the surface potential field. We denote by (y, v) =
(y(y′, v′), v(y′, v′)) = Λ(y′, v′) the mapping that gives the position and the velocity
(y, v) of a molecule leaving the surface layer (i.e. with vz < 0 at z = 0) as a function
of its position and velocity (y′, v′) when entering the surface layer (i.e. with v′z > 0
at z = 0), see figure 4. Note that due to the time reversibility of these trajectories,
we have the important property

(y, v) = Λ(y′, v′) ⇔ (y′,−v′) = Λ(y,−v), (106)
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and hence v′ = −Λ2(y,−v) for every (y, v, y′, v′) related by a characteristic curve.
Another important property is that the Jacobian of the transformation (y, v) =
Λ(y′, v′) can be computed so that we have:

|v′z |dy′dv′ = |vz|dydv, (107)

see a proof in appendix A. The last property is that the total energy is conserved
along the characteristic and the potential energy has the same value Vm at the head
(y, 0) and the foot (y′, 0) of this characteristic, which yields

|Λ2(y
′, v′)| = |Λ2(y,−v)| = |v| = |v′|. (108)

These relations are essential to derive a collision kernel for problem (102-103) and
to prove some of its properties.

Let y in [0, 1] and v such that vz < 0. Then using the fact that φ0 is constant along
the characteristics, we get φ0(t, x, y, 0, v) = φ0(t, x, y′, 0, v′), where (y′, v′) are such
that (y, v) = Λ(y′, v′). Then using (105) and the previous relation v′ = −Λ2(y,−v),
we get

φ0(t, x, y, 0, v) = F 0(t, x, 0,−Λ2(y,−v)).
Finally, we inject this relation into (103) to get

F 0(t, x, 0, vx, vz)vz<0 =

∫ 1

0

F 0(t, x, 0,−Λ2(y,−v)) dy,

which can be rewritten

F 0(t, x, 0, vx, vz)vz<0 =

∫

v′

z>0

k(v′ → v)F 0(t, x, 0, v′) dv′, (109)

where the collision kernel k is defined by

k(v′ → v) =

∫ 1

0

δ(v′ + Λ2(y,−v)) dy. (110)

This kernel is obviously non-negative, and it satisfies
∫

v′

z>0

k(v′ → v) dv′ = 1,

and hence is a probability density. Indeed, note that a direct integration of (110)
with respect to v′ and the use of variables v, y give this result.

The normalization property (92) is obtained as follows: first, we use (110) to get

∫

vz<0

k(v′ → v)vz dv = −
∫

vz<0

∫ 1

0

δ(v′ + Λ2(y,−v))|vz | dydv.

Then, we use the change variables (y, v) = Λ(y′, w′) and its properties (106) and (107)
to get

∫

vz<0

k(v′ → v)vz = −
∫

w′

z>0

∫ 1

0

δ(v′ − w′)|w′
z | dy′dw′

= −
∫ 1

0

|v′z| dy′ = −v′z.
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Finally, the reciprocity property (93) is obtained as follows. First, we consider a
given velocity v (with vz < 0) and a test function θ, and we use (92) to get
∫

v′

z>0

|vz |k(v′ → v)M(v′)θ(v′) dv′ =

∫

v′

z>0

∫ 1

0

|vz |δ(v′ + Λ2(y,−v))M(v′)θ(v′) dydv′

=

∫ 1

0

|vz |M(Λ2(y,−v))θ(−Λ2(y,−v)) dy

=

∫ 1

0

θ(−Λ2(y,−v)) dy |vz |M(v)

(111)

from (108). Moreover, (92) also gives
∫

v′

z>0

|v′z|k(−v → −v′)M(v)θ(v′) dv′

=

∫

v′

z>0

∫ 1

0

|v′z|δ(−v + Λ2(y, v
′))M(v)θ(v′) dydv′.

Then, we write y′ instead of y, and we use the change of variables (y, w) = Λ(y′, v′)
and its properties (106) and (107) to get
∫

v′

z>0

|v′z|k(−v → −v′)M(v)θ(v′) dv′

=

∫

wz<0

∫ 1

0

|wz |δ(−v + w)M(v)θ(−Λ2(y,−w)) dydw

=

∫ 1

0

θ(−Λ2(y,−v)) dy |vz |M(v).

(112)

Then, we compare (111) and (112) to find that the two left-hand sides are equal for
every test function θ. The reciprocity property

|vz|k(v′ → v)M(v′) = |v′z |k(−v → −v′)M(v)

follows.

(2) Now we consider the case η = O(1), which means that τ∗fl (the characteristic

time of flight of a molecule across the surface layer) is comparable with τ∗ms (the
characteristic time of molecule-phonon relaxation). The zeroth order terms of the
expansion are still denoted by F 0 and φ0, where F 0 satisfies the same equation:

∂tF
0 + vx∂xF

0 + vz∂zF
0 = 0, z < 0, (113)

F 0(t, x, 0, vx, vz)vz<0 =

∫ 1

0

φ0(t, x, y, 0, vx, vz)dy, (114)

and φ0 now is the periodic solution of

1

β∗
vx∂yφ

0 + vz∂zφ
0 − 1

2β∗
∂yV#(y, z)∂vxφ

0 − 1

2
∂zV#(y, z)∂vzφ

0 = Q[φ0], (115)

φ0(t, x, y, 0, vx, vz)vz>0 = F 0(t, x, 0, vx, vz), ∀y ∈ [0, 1]. (116)

As in section 3.1, the right-hand-side of this equation is approximated by Q+[α(t, x)

M] − φ0

τms
, where τms(v) = (

∫

K(v, v′)M(v′) dv′)−1 is the molecule-phonon relax-

ation time, and where M(y, z, vx, vz) = exp(−|v|2/2 − V#(y, z)) which is constant
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along the characteristics, and α is a free parameter that will be determined later.
To integrate (115), it is useful to define the mean molecule-phonon relaxation time
τ̄ms(y

′, v′) along the characteristic curve passing by (y′, 0, v′) by

τ̄ms(y
′, v′) = (

1

τfl(y′, v′)

∫ τfl(y
′,v′)

0

1

τms(v(s))
ds)−1.

Then the solutions of (115) with boundary condition (116) satisfy

φ0(t, x, y, 0, v) = exp(−r(y′, v′))F 0(t, x, 0, v′)

+ (1− exp(−r(y′, v′)))σ(t, x)M(v),
(117)

where r(y′, v′) = τfl(y
′, v′)/τ̄ms(y

′, v′), τfl(y′, v′) is the free time of flight of a mol-
ecule across the surface layer in which it enters at (y′, z = 0, v′)), and σ(t, x) =
α(t, x) exp(−Vm) is still to be determined. First, note that r(y′, v′) = r(y,−v):
indeed it is defined as the ratio of the free time of flight of a molecule along the
trajectory that starts at (y′, v′) and ends at (y, v) and the mean relaxation time
along this trajectory. Since this trajectory is the same as the one that starts at
(y,−v) and ends at (y′,−v′) (see (106)), these two times are the same at (y′, v′)
and (y,−v). Then (117) can be rewritten as

φ0(t, x, y, 0, v) = exp(−r(y,−v))F 0(t, x, 0,−Λ2(y,−v))
+ (1− exp(−r(y,−v)))σ(t, x)M(v),

(118)

where v′ has been replaced by −Λ2(y,−v) due to (106).
Now, we use (114), and the outgoing distribution F 0(t, x, 0, v) is found to be

F 0(t, x, 0, v) =

∫ 1

0

(

exp(−r(y,−v))F 0(t, x, 0,−Λ2(y,−v))

+ (1− exp(−r(y,−v)))σ(t, x)M(v)
)

dy

=

∫ 1

0

∫

v′

z>0

(exp(−r(y,−v))F 0(t, x, 0, v′)δ(v′ + Λ2(y,−v)) dv′dy

+

∫ 1

0

(1− exp(−r(y,−v)))σ(t, x)M(v)) dy

=

∫

v′

z>0

k1(v
′ → v)F 0(t, x, 0, v′) dv′

+

(

1−
∫ 1

0

exp(−r(y,−v)) dy
)

σ(t, x)M(v),

(119)

where k1(v
′ → v) can be viewed as a scattering kernel of non thermalized molecules,

and is defined by

k1(v
′ → v) =

∫ 1

0

exp(−r(y,−v))δ(v′ + Λ2(y,−v)) dy. (120)

Moreover, the coefficient a#(v) of (95) is found to be

a#(v) = 1−
∫ 1

0

exp(−r(y,−v)) dy. (121)

The computation of σ and the reciprocity of this boundary condition are proved in
appendix B. �
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5. Comments and concluding remarks. 1- In this approach, the boundary for
the Boltzmann equation is considered to be located at z = 0 which is the outer
limit of the surface layer. The surface layer is considered as belonging to the solid
phase. This is a two-phase description in opposition to the nanoscale models which
are three-phase models (gas, surface layer, solid).

2- The boundary condition (3) is a Maxwell-like condition but the “accommoda-
tion coefficient” a = a(v) depends on the velocity. More precisely the coefficient
a(v) must be interpreted as the fraction of diffusively evaporated molecules. A
Maxwell-like condition with a coefficient depending on the velocity has been pre-
viously given in [10]. Nevertheless the authors propose a different expression :
â(v) = 1

1+(τms/(2τz))
. Let us remark that â(v) can be interpreted as a Pade approx-

imant of a(v) given in (42), which can be explained since the boundary condition is
derived in [10] from a nanoscale kinetic model obtained by averaging (29-34) over
the surface layer.

3- It is classical in the litterature (see for instance [13]) to introduce the so-called
accommodation coefficients α(ϕ) to describe the the interaction of a gas with a
surface

α(ϕ) =

∫

vz>0

∫

|vz|ϕ(v)φ(v)dvxdvz −
∫

vz<0

∫

|vz |ϕ(v)φ(v)dvxdvz
∫

vz>0

∫

|vz |ϕ(v)φ(v)dvxdvz − J0
∫

vz<0

∫

|vz|ϕ(v)M(v)dvxdvz
,

where J0 =
∫

vz>0

∫

vza(vz)φ(0, vx, vz)dvxdvz/
∫

vz>0

∫

vza(vz)M(vx, vz)dvxdvz , and

ϕ(v) = vx or vz , or |v|2/2 (accommodation coefficient for tangential or normal mo-
mentum or for energy). A drawback of the Maxwell’s boundary condition noted in
[13] is that those various accommodation coefficients are equal, and equal to the
factor a ( which explains why this coefficient is often called the accommodation
coefficient), which is not realistic since it is well-known that momentum and energy
accommodate differently in physical interactions. In contrast, the boundary condi-
tion (3) derived in the present paper gives different accommodation coefficients for
energy and momentum.

4- We notice that the boundary conditions obtained by this approach do not contain
any free parameter to be adjusted. All the information comes from the smaller scale
(nanoscale). In particular the coefficient a in the Maxwell-like condition is given
provided the interaction potential is known (and thus, τz and τms). It is interesting
to look at the influence of the velocity on the fraction of diffusively evaporated
molecules a(v). Since we assumed that the scattering kernel of the molecule-phonon
collision term is bounded below and above (19), then so is τms. Thus the behavior
of a for large |v| depends essentially on τz . Since lim|vz|→+∞ τz(vz) = 0, it appears
that the fraction of diffusively evaporated molecules tends to decrease for high
velocities. Finally we remark also that a perfect accommodation boundary condition
can be obtained even if the interaction potential is purely repulsive. This is in
contradiction with the idea that a diffusive departure of molecules from a surface
is due to desorption of trapped molecules (see [10]).

5- We considered in section 4 rough walls with a periodicity assumption. This as-
sumption allows to take into account the roughness of a surface in a simple way.
Such a technique is commonly used for molecular dynamics simulations in gas-
surface interaction or in related applications such as porous media and has been
used in [5]. It can be relevant for instance when the solid is a crystal or a composite
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material. Of course, for a wall with nanoscale roughness, even the “specular” reflex-
ion condition depends on the description of the surface potential. The smooth wall
can be seen as a particular case of a rough wall by taking k(v′ → v) = δv−(v′

x,−v′

z)
.

Let us remark that the Boltzmann equation coupled with the “generalized specu-
lar condition” for periodic rough wall leads to a H-theorem, since the associated
scattering kernel satisfies (5-6-7) (see for instance [13]). Moreover the H-function
is strictly decreasing at boundary (as opposed to a smooth wall with usual specu-
lar reflection). Of course, taking advantage of such models for practical numerical
simulations requires accurate experiments to characterize the various parameters
for a given material. For computational purposes, an approximation of the scatter-
ing kernel k(vp → vq) (for (vp, vq) in a discrete velocity grid) can be obtained by
numerical solutions of the characteristic curves in a unit cell of the surface layer.

6- In any boundary condition, the population of trapped molecules is not taken into
account. This is justified when we consider a bulk flow in a domain whose size is
much greater than the thickness L of the boundary layer. But when the size of the
domain becomes smaller (for instance in a channel with diameter comparable with
L), then this might not be correct. In such a configuration the number of molecules
trapped in the surface layer cannot be neglected. Indeed if we assume that the flow
is stationary, then the distribution function reads

m n0

2kπT
e−V(x,z)/kT e−m(v2

x+v2
z)/2kT .

Thus, the ratio of the number density of gas molecules at the outer boundary of
the surface layer (and in the channel, i.e at z ≤ 0) over the number density of gas
molecules at the bottom of the well potential (i.e at z = z∗) is equal to

n(x, 0)

n(x, z∗)
= e−Vm/kT ,

so that the number density of gas molecules inside the surface layer is much larger
that the number density of gas molecules in the channel when kT ≪ Vm (see for
instance [28] for numerical results by means of molecular dynamics simulations).
Thus in the vicinity of the wall we have to take into account the molecules inside
the surface layer, for instance to estimate the mass flux parallel to the wall.

To conclude this paper and precise the relation between the results of the present
paper with previous works, we recall how the gas-surface interaction can be de-
scribed, at different scales and for various regimes, in the framework of the kinetic
approach introduced in [10] (for a smooth wall).

• At the smaller scale (the nanoscale, i.e. on a domain [0, x∗]×[0, z∗] with x∗ and
z∗ ≈ 1 nanometer), the gas interaction is described by the two-dimensionnal
kinetic model for the flow inside the surface layer (29–34), coupled with the
Boltzmann equation for the bulk flow. This model has been introduced in
[10]. Then the gas-solid interaction at larger scales is derived from this model
by formal systematic asymptotic analysis with various convenient scalings.

• If we consider a gas flow in a domain [0, x∗∗] × [0, z∗∗] with x∗∗ ≈ z∗∗ ≫ 1
nanometer, but where x∗∗ is the characteristic length of evolution of the flow in
the x-direction inside the surface layer, then the gas-surface interaction can be
described by the Boltzmann equation coupled with a one-dimensional kinetic
or diffusion model describing the flow inside the surface layer of adsorbed
molecules (mobile adsorption) which can be interpreted as non local boundary
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conditions for the Boltzmann equation in the bulk flow. This model has been
derived in [1].

• At a larger scale, we consider a gas flow on a domain [0, x∗∗∗] × [0, z∗∗∗]
where x∗∗∗ ≈ z∗∗∗ is the characteristic length of evolution of the Boltzmann
equation in the bulk flow. Then the gas-surface interaction can be described
by the Boltzmann equation coupled with a local boundary condition derived
in the present paper. This boundary condition depends on the ratio τ∗ms/τ

∗
z :

– If τ∗ms, the characteristic time of relaxation of the molecules by the phonons,
and τ∗z , the characteristic time for a molecule to cross the surface layer
are comparable, then this boundary condition is implicitly given through
the solution of a one-dimensional boundary value problem for a linear
transport equation in the surface layer (LKSL). This boundary condition
can be approximated by the numerical solution of this LKSL problem.
But we can also obtain, thanks to simplifications of the linear transport
equation in the surface layer, an explicit Maxwell-like condition with a
factor (the fraction of diffusively evaporated molecules) that depends on
the velocity of the molecules. This fraction also depends on the temper-
ature of the wall (through M , τ̄ms, and r̄) and of the morphology of the
surface (through Λ).

– If τ∗ms ≪ τ∗z , then the local boundary condition we obtain is the classical
perfect accommodation boundary condition.

– If τ∗z ≪ τ∗ms, then the local boundary condition obtained is the well-
known specular reflexion, for a flat wall, and has been extended to walls
with periodic nanoscale roughness.

Appendix A. Computation of the Jacobian of the transformation (y, v) =
Λ(y′, v′). Let ϕin(y

′, v′) be a function defined for y′ ∈ [0, 1] and v′ such that v′z > 0.
Let ϕout(y, v) be the outgoing value (at z = 0, for vz < 0) of the solution ϕ(y, z, v)
of (104), with ϕin(y

′, v′)|v′

z>0 as an inflow boundary data (at z = 0), that is to say,
ϕ is a y-periodic function solution of:

1

β∗
vx∂yϕ+ vz∂zϕ− 1

2β∗
∂yV#(y, z)∂vxϕ− 1

2
∂zV#(y, z)∂vzϕ = 0,

ϕ(y′, 0, v′)v′

z>0 = ϕin(y
′, v′), ∀y′ ∈ [0, 1].

(122)

Since this solution is constant along the characteristics, we have:

ϕout(y, v) = ϕin(y
′, v′), (123)

where (y, v) = Λ(y′, v′) has been introduced before (106).
Denote by J the Jacobian of the change of variables (y, v) = Λ(y′, v′), then,

using (123), we can write the average outgoing mass flux as:
∫ 1

0

∫

vz<0

ϕout(y, v)|vz | dydv =

∫ 1

0

∫

v′

z>0

ϕin(y
′, v′)|Λ2(y

′, v′)|J dy′dv′, (124)

Moreover, it can easily been obtained that the average mass flux is zero, which
reads

∫ 1

0

∫

vz<0

ϕout(y, v)|vz | dydv =

∫ 1

0

∫

v′

z>0

ϕin(y
′, v′)|v′z | dy′dv′. (125)

Indeed, integrating equation (122) with respect to (y, z) on the cell {y ∈ [0, 1], 0 <
z < ζ∞(y)}, using the y-periodicity of ϕ, and then taking into account that ϕ is
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−
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Figure 1. Free particles: |ez| >
√

2
mWm and z < z(ez).

zero at z = ζ∞(y), we get
∫ 1

0

ϕ(y, 0, v)vzdy = −1

2

∫
( 1

β∗

∂yV#

∂zV#

)

.∇v ϕ(y, 0, v) dydz.

Then, we can integrate the previous relation with respect to v: the right-hand side
vanishes, and we get:

∫ ∫ 1

0

ϕ(y, 0, v)vz dydv = 0,

which gives (125).
Now, we compare (124) and (125) to get
∫ 1

0

∫

v′

z>0

ϕin(y
′, v′)|Λ2(y

′, v′)|J dy′dv′ =
∫ 1

0

∫

v′

z>0

ϕin(y
′, v′)|v′z | dy′dv′, (126)

which is true for every function ϕin. Consequently, we deduce that the Jacobian J
satisfies

J =
|v′z|

|Λ2(y′, v′)|
=

|v′z |
|vz |

, (127)
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Figure 2. Trapped particles: |ez| <
√

2
mWm and z+(ez) < z < z−(ez)

which reads in the following more symmetric way

|v′z |dy′dv′ = |vz|dydv. (128)

Appendix B. Reciprocity property for the Maxwell like boundary con-
dition (95).
Computation of σ. This parameter can be determined with the constraint of zero
mass flux of F 0 through the boundary z = 0, that is to say

∫

vz<0

vzF
0(t, x, 0, v) dv +

∫

v′

z>0

v′zF
0(t, x, 0, v′) dv′ = 0.

Indeed, integrating equation (115) with respect to (y, z) on the cell {y ∈ [0, 1], 0 <
z < ζ∞(y)}, using the y-periodicity of φ0, and then taking into account that φ0 is
zero at z = ζ∞(y), we get

∫ 1

0

φ0vzdy = −1

2

∫
( 1

β∗

∂yV#

∂zV#

)

.∇vφ
0 dydz.
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Figure 4. surface layer for a wall with nanoscale roughness and
trajectory of a particle

But (116) and (114) imply
∫ 1

0 φ
0vzdy = vzF

0(t, x, 0, vx, vz), so that after integration
in v we obtain

∫

F 0vzdv = −
∫
( 1

β∗

∂yV#

∂zV#

)

.

(
∫

∇vφ
0 dv

)

dydz = 0, (129)

which means that the mass flux of F 0 through the boundary z = 0 vanishes.
Then using (119), we rapidly find

σ(t, x) = −
∫

v′

z>0

(

v′z +
∫

vz<0
vzk1(v

′ → v) dv
)

F 0(t, x, 0, v′) dv′

∫

vz<0
vz

(

1−
∫ 1

0
exp(−r(y,−v)) dy

)

M(v) dv
.

Note that the integral with k1 can be computed: by using (120), the change of
variables (y, v) = Λ(y′, w′) and the property of r(y′, v′) mentioned above, we find

∫

vz<0

vzk1(v
′ → v) dv = −

∫

vz<0

∫ 1

0

|vz| exp(−r(y,−v))δ(v′ + Λ2(y,−v)) dydv

= −
∫

w′

z>0

∫ 1

0

|w′
z| exp(−r(y′, w′))δ(v′ − w′) dy′dw′

= −v′z
∫ 1

0

exp(−r(y′, v′)) dy′.
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Consequently, the final form of σ is:

σ(t, x) =

∫

v′

z>0
v′z

(

1−
∫ 1

0
exp(−r(y′, v′)) dy′

)

F 0(t, x, 0, v′) dv′

−
∫

vz<0
vz

(

1−
∫ 1

0
exp(−r(y,−v)) dy

)

M(v) dv
, (130)

where the denominator is a constant denoted by C in the following.
Scattering kernel for the boundary condition (119). Using (130) in (119), we find

F 0(t, x, 0, v) =

∫

v′

z>0

k1(v
′ → v)F 0(t, x, 0, v′) dv′

+

(

1−
∫ 1

0

exp(−r(y,−v)) dy
)

1

C

∫

v′

z>0

v′z

(

1−
∫ 1

0

exp(−r(y′, v′)) dy′
)

F 0(t, x, 0, v′) dv′M(v)

=

∫

v′

z>0

k#(v′ → v)F 0(t, x, 0, v′) dv′,

with the scattering kernel k#(v′ → v) = k1(v
′ → v) + k2(v

′ → v), where

k2(v
′ → v) =

(

1−
∫ 1

0

exp(−r(y,−v)) dy
)

1

C
v′z

(

1−
∫ 1

0

exp(−r(y′, v′)) dy′
)

M(v).

This kernel can be written

k2(v
′ → v) =

1

C
ψ(−v)ψ(v′)|v′z |M(v), (131)

where ψ(w) = 1−
∫ 1

0
exp(−r(y, w)) dy.

Consequently, the reciprocity of k# can be deduced from the reciprocity of the
kernels k1 and k2.
Reciprocity of k1. Using the definition of k1 ((120)), we have

|vz|k1(v′ → v)M(v′) =

∫ 1

0

exp(−r(y,−v))δ(v′ + Λ2(y,−v))|vz |M(v′) dy. (132)

Then for a given v and some test function θ, we have
∫

v′

z>0

|vz |k1(v′ → v)M(v′)θ(v′) dv′ =

∫

v′

z>0

∫ 1

0

exp(−r(y,−v))δ(v′ + Λ2(y,−v))|vz|

M(v′)θ(v′) dydv′

=

∫ 1

0

exp(−r(y,−v))|vz |M(−Λ2(y,−v))θ

(−Λ2(y,−v)) dy

=

∫ 1

0

exp(−r(y,−v))θ(−Λ2(y,−v)) dy |vz|M(v),

(133)

where we used (108).
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Moreover, we can use (132) to write

|v′z|k1(−v → −v′)M(v) =

∫ 1

0

exp(−r(y′, v′))δ(−v + Λ2(y
′, v′))|v′z |M(v) dy′.

Then, with the same v and test function θ as above, we have
∫

v′

z>0

|v′z |k1(−v → −v′)M(v)θ(v′) dv′ =

∫

v′

z>0

∫ 1

0

exp(−r(y′, v′))δ(−v + Λ2(y
′, v′))

|v′z |M(v)θ(v′) dy′dv′

=

∫

wz<0

∫ 1

0

exp(−r(y,−w))δ(−v + w)|wz |

M(v)θ(−Λ2(y,−w)) dydw

=

∫ 1

0

exp(−r(y,−v))θ(−Λ2(y,−v)) dy

|vz |M(v).

(134)

Comparing (133) and (134), we find that the two left-hand sides are equal for
every v and every test function θ, and then we have

|vz|k1(v′ → v)M(v′) = |v′z |k1(−v → −v′)M(v),

which is the reciprocity relation for k1.
Reciprocity of k2. This property is straightforward: using (131), we have

|vz |k2(v′ → v)M(v′) =
1

C
ψ(−v)ψ(v′)|vz ||v′z |M(v)M(v′)

=
1

C
ψ(v′)ψ(−v)|v′z ||vz |M(−v′)M(−v)

= |v′z |k2(−v → −v′)M(−v),
since M depends only on the norm of v.

The reciprocity of k# follows, which completes the proof.

REFERENCES

[1] K. Aoki, P. Charrier and P. Degond, A hierarchy of models related to nanoflows and surface
diffusion, Kinetic and Related Models, 4 (2011), 53–85.

[2] K. Aoki and P. Degond, Homogenization of a flow in a periodic channel of small section,
Multiscale Model. Simul., 1 (2003), 304C-334, (electronic).

[3] K. Aoki, P. Degond, S. Takata and H. Yoshida, Diffusion models for Knudsen compressors,

Phys. Fluids, 19 (2007), 117103.
[4] G. Arya, H.-C. Chang and E. Magin, Knudsen Diffusivity of a Hard Sphere in a Rough Slit

Pore, Phys. Rev. Lett., 91 (2003), 026102.
[5] H. Babovsky, Derivation of stochastic reflection laws from specular reflection, Trans. Th. and

Stat. Phys., 16 (1987), 113–126.
[6] J. J. M. Beenakker, Reduced Dimensionality in Gases in Nanopores, Phys. Low-Dim. Struct.,

(1995), 115–124.
[7] J. J. M. Beenakker, V. D. Borman and S. Yu Krylov, Molecular Transport in the Nanometer

Regime, Phys. Rev. Lett., 72 (1994), 514.
[8] J. J. M. Beenakker, V. D. Borman and S. Yu. Krylov1, Molecular transport in subnanometer

pores: Zero-point energy, reduced dimensionality and quantum sieving, Chem. Phys. Letters,
232 (1995), 379–382.

[9] J. J. M. Beenakker and S. Yu. Krylov, One-dimensional surface diffusion: Density dependence
in a smooth potential, J. Chem. Phys., 107 (1997), 4015.

http://www.ams.org/mathscinet-getitem?mr=MR2765737&return=pdf
http://dx.doi.org/10.3934/krm.2011.4.53
http://www.ams.org/mathscinet-getitem?mr=MR1990199&return=pdf
http://dx.doi.org/10.1137/S1540345902409931
http://dx.doi.org/10.1063/1.2798748
http://dx.doi.org/10.1103/PhysRevLett.91.026102
http://www.ams.org/mathscinet-getitem?mr=MR883614&return=pdf
http://dx.doi.org/10.1080/00411458708204299
http://dx.doi.org/10.1103/PhysRevLett.72.514
http://dx.doi.org/10.1016/0009-2614(94)01372-3
http://dx.doi.org/10.1063/1.474757


GAS-SURFACE INTERACTION AND BOUNDARY CONDITIONS 33

[10] V. D. Borman, S. Yu. Krylov and A. V. Prosyanov, Theory of nonequilibrium phenomena at
a gas-solid interface, Sov. Phys. JETP, 67 (1988).

[11] V. D. Borman, S. Yu Krylov and A. V. Prosyanov, Fundamental role of unbound surface
particles in transport phenomena along a gas-solid interface, Sov. Phys. JETP, 70 (1990).

[12] F. Celestini and F. Mortessagne, The cosine law at the atomic scale: Toward realistic simu-
lations of Knudsen diffusion, Phys.Rev. E , 77 (2008).

[13] C. Cercignani, The Boltzman Equation and Its Applications, Springer, Berlin, 1988.
[14] C. Cercignani, Scattering kernels for gas-surface interactions, Transp. Th. and Stat. Phys., 2

(1972), 27–53.
[15] C. Cercignani, Scattering kernels for gas-surface interaction, Proceedings of the Workshop on

Hypersonic Flows for Reentry Problems, I (1990), 9–29, INRIA Antibes.
[16] C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases,

Springer: New York, 1994, 133–163.
[17] C. Cercignani and M. Lampis, Kinetic models for gas-surface interactions, Transp. Th. and

Stat. Phys., 1 (1971), 101–114.
[18] C. Cercignani, M. Lampis and A. Lentati, A new scattering kernel in kinetic theory of gases,

Trans. Theory Statist. Phys., 24 (1995), 1319–1336.
[19] S. Chandrasekhar, Radiative Transfer, Dover Publications, Inc., New York, 1960
[20] P. Charrier and B. Dubroca, Asymptotic transport models for heat and mass transfer in

reactive porous media, Multiscale Model. Simul., 2 (2003), 124C-157 (electronic).
[21] F. Coron, F. Golse and C. Sulem, A classification of well-posed kinetic layer problems, Com-

mun. Pure Appl. Math., 41 (1988), 409C-435.
[22] P. Degond, Transport of trapped particles in a surface potential, in Nonlinear Partial Dif-

ferential Equations and Their Applications, Collège de France Seminar, XIV (1997/1998),
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