
HAL Id: hal-00960805
https://hal.science/hal-00960805v1

Submitted on 18 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing the CATS framework by providing
Asynchronous deployment for mobile application

Mikael Desertot, Christophe Gransart, Sylvain Lecomte

To cite this version:
Mikael Desertot, Christophe Gransart, Sylvain Lecomte. Enhancing the CATS framework by providing
Asynchronous deployment for mobile application. 5th workshop on Communication Technologies for
Vehicles, Nets4cars, May 2013, France. 11p. �hal-00960805�

https://hal.science/hal-00960805v1
https://hal.archives-ouvertes.fr


Enhancing the CATS framework by providing

Asynchronous deployment for mobile application

M. Desertot1, C. Gransart2, and S. Lecomte12

mikael.desertot@univ-valenciennes.fr

christophe.gransart@ifsttar.fr slecomte@univ-valenciennes.fr

1 UVHC, LAMIH CNRS, UMR 8201, F-59313 Valenciennes
University Lille North of France, F-59000 Lille, France

2 IFSTTAR LEOST
20 rue Elisée Reclus BP 70317 F-59666 Villeneuve d’Ascq cedex, France

Abstract. The work presented in this paper focuses on the use of the
CATS framework (a framework dedicated to the adaptation and the
deployment of context aware services in the transportation context) on
applications designed to assist the user in transportation activities (e.g.,
driving assistant, visiting a city, finding a parking place etc.). We present
a solution to deploy and use these services when users do not have a
connection to WAN by using asynchronous solutions based on smart
cities infrastructures. A prototype has been developed and evaluated at
the end of this paper.

1 Introduction

Nowadays there are many applications that users can benefit from on their hand-
held devices. Such capabilities are reaching our vehicles, offering drivers help for
driving safely and more efficiently, thanks to the numerous services provided
by applications on their devices. In this article, we focus on the transportation
domain. Contrary to other application fields like finance or commerce, mobile
technologies did not have a big impact on transportation until lately. The only
successful application of these technologies that we can mention in the trans-
portation domain concerns navigation devices. Nevertheless, the situation has
now started to change. New applications like Waze (http://world.waze.com) have
appeared on the market. Such applications rely on a community of drivers who
share information about traffic congestions or accidents. For example, Waze cen-
tralizes data through the telephony network (3G), while other approaches require
direct interaction between mobile nodes.

To simplify application assembly and reactivity according to transportation
constraints (lack of communication infrastructure, high mobility...), several re-
searches propose frameworks that hosts multiple applications at once, offering at
the same time management functions for context-awareness and the deployment
of service when the user or the system need it.

When considering the possible applications that can be used on mobile de-
vices, we can see that many aspects have to be considered. For instance, some



applications must use the telephony network to transfer data and can not work
otherwise. Some of them, Locations Based Services, also need a GPS module,
which is now embedded in most smartphones. Other applications are meant to
be used in an ad-hoc mode, providing services to a small community of users
who are at the same place at the same time. For the highly mobile users, the
ad- hoc applications can bring many advantages, such as the ability to have a
fast access to relevant information (e.g., traffic accidents, intervention vehicles,
traffic jams). Another important aspect is the independence to the infrastruc-
ture, which suggests the interest of having services for ”local” ad-hoc networks.
The research for developing reliable ad-hoc networks for highly mobile users
is ongoing. We mention [1] who propose a Context Management System using
the NEMO (NEtworkMObility) protocol, which addresses the issue of a mobile
network also capable of attaching to the Internet.

Among the possible mobile applications for handheld devices, our work fo-
cuses on those designed for the transportation domain. By transportation we
mean the movement of people from one place to another. To get to her/his des-
tination, a person can either walk, drive or take public transportation modes
(or any combination of these). Common features are mostly related to the trip
- the environment and the neighboring devices change as the person advances.
Most of the transportation applications need positioning information at all time
(preferably GPS coordinates). Communication is also an important element, al-
lowing applications to contact either an infrastructure or surrounding devices
on the ad-hoc network. Moreover, the type of environment affects the behavior
of the applications (e.g., use in indoor/outdoor environments, in urban areas
or on highways). The differences between applications (or between the different
behaviors of the same application) are related to the considered mean of trans-
portation. A pedestrian travels at low speed and will be able to look often at
his/her device and make some adjustments if necessary. Passengers can handle
their devices, but move at a higher speed, which can sometimes lead to con-
nection failures. Drivers face the same connection problem but also need to be
notified with traffic information and important events, without being disturbed
since they are driving.

In our previous work we have introduced CATS (Context Aware Transporta-
tion Services), our framework for context-aware applications for the transporta-
tion domain. The goal of this framework is to provide an execution environment
for service-based applications as well as management functionalities for the de-
ployment and the adaptation to context changes. Some preliminary evaluations
of CATS have been presented in [2], showing that the framework is light enough
for mobile devices such as smartphones. With CATS, using the ad-hoc network
we can detect services that offer a functionality specific to the area we are in, and
we can benefit from them by installing them on our device. In [3] we evaluated
the time necessary for service download in different situations and find results
coherent with our need: services can be downloaded fast enough from one-hop
neighbors.



In the same time, we are used to be connected to the network every time
we need it. However, using data services can be impossible in some ways : when
we travel in another country, or when we are passengers in a train (where using
data network is difficult, due to the number of passengers arriving at one time
in a cell). This paper proposes to enrich the CATS framework by allowing to
invoke services in an asynchronous way.

The first section shortly describes the CATS Framework. The second section
describes the need of asynchronous deployment in the particular nature of the
transportation context we are considering and the challenges it poses, a scenario
of use and the state of the art. The third section exposes a solution available in
distributed computing to take into account asynchronous invocation and deploy-
ment. Next, we present an evolution of our platform, detailing our approach for
the integration of asynchronous actions and the architecture. Before concluding,
we present a use case, experimentation, and evaluation for our framework.

2 The CATS Framework

In this section we describe shortly the CATS Framework, which has been pre-
sented in our previous work [2], and finally the need to extend this framework
to allow asynchronous invocation.

2.1 The Framework

To provide adaptation to the changes that occur during the execution of an appli-
cation, there are two things necessary: the services must specify which behavior
is specific to which context, and the context situations must be identified. This is
where our framework comes in, by providing framework-specific services to help
management of the applications by monitoring the context. We consider two
kinds of adaptation. First, services can determine relationships between some
parameters and values of certain context elements. The second way of adapting
an application to context is to change an entire service rather than having a
service with much code, trying to cover several situations. Context information
is used: during execution, when one or more context elements change enough
to justify a change in the behavior of an application; at the download of a new
service or application, to ensure compatibility with the device.

Applications are composed of multiple functionalities, which can be divided in
independent modules. First, we can identify the functionalities that are common
to most applications, like for example positioning. It is always more interesting
to have a single piece of code handling the localization, rather than having a lot
of applications implementing similar code. Second, each part of an application
providing a certain functionality can be implemented in more than one way. So,
for each computation we can choose the most appropriate way to get the result.

Our framework (Figure 1) provides an unified environment with non-functional
services that assure the continuous and context-adapted execution of the applica-
tions. On one hand, the CATS Framework allows the execution of three specific



services (Context Manager, Execution Manager and Trader) which function con-
tinuously as long as the framework is started. On the other hand, the framework
is the environment where the applications are executed.

CATS Framework 

EP 

VESPA 

Positioning 

Dissemination 

Application 

Service A 

Service B 

R
e

s
e

rv
a

ti
o

n
 

P
ro

to
c

o
l 

Execution 

manager 

Trader 

Context 

manager 

Fig. 1. The CATS Framework architecture

Each specific service has a role identified as follow :

– The trader. The application framework must be able to acquire new services
when these are necessary. The trader sends a message to the ad hoc net-
work to demand the needed service. Neighboring devices able to provide the
service answer to the requesting device, which then chooses from whom to
download. The service trader handles both outgoing and incoming requests.
If infrastructure access is available, it will be preferred, as a centralized reg-
istry is more likely to have a large number of services.

– The execution manager. The execution of the services in the framework must
be monitored in order to detect failure. When a service stops working, the
execution manager must react and take the necessary actions to correct the
situation. The simple solution is to search for an equivalent service that is
already on the device and start it. If there is no equivalent present locally, the
execution manager must call the trader to launch a search for the missing
service on the neighboring devices. Another type of problem occurs when
services do not function correctly because of an external cause. A simple
example is the loss of GPS signal; the service is still running, but unable
to provide correct information. The execution manager stops the service so
that another one can be bound.

– The context manager. Based on the classification we have for the context,
the CATS framework service called context manager takes “snapshots” of
the state of the environment and represents them in an XML file. An XML
Schema is used to validate the XML representation. The context manager
can evaluate the state of the context on demand, but also on a continuous
basis, when certain elements need to be monitored.

We use Java and OSGi (a Java dynamic service-oriented framework) for the
development, deployment and installation of services (and applications, which
are built out of services). For the three parts of our framework (Context Manager,



Trader and Execution Manager) we have built one or more OSGi bundles. The
user applications are also built out of services exposed by the components and
they are executed in the same environment as the management services. To
help managing service binding and automate as much as possible dynamic and
adaptive bindings, we use the iPOJO [4] service-component model (hosted by
Apache) that is deployed on top of OSGi.

2.2 Needs of asynchronous invocation

Our CATS framework is dedicated to transportation services, because we wish
to provide solutions that take into consideration the specific constraints of this
domain. Our solution is based on a framework for applications with similar char-
acteristics, designed to accompany users throughout their evolutions in different
environments. To respect the constraints of the transportation domain, our so-
lution must react sufficiently fast to the changes that occur. Moreover, services
must be light enough to be easily downloaded and installed ”on the fly”. A local
service is not subject to network connection loss.

However, in specific environments, services are still too heavy to be down-
loaded “on the fly” (services exchange between cars on a highway, or communi-
cation between train and car). More over, it could be impossible to use 3G con-
nection (when the user is using roaming). To overtake this drawback we propose
in this paper to enrich the CATS framework to allow asynchronous invocations
to services.

More over, in a near future, smart cities will propose, through a lot of equip-
ment, connections to services by using an ad-hoc link. Indeed, cities are increas-
ingly integrating communication capabilities, with higher availability an quality,
as well as social infrastructure. It is against this background that a modern way of
interacting with the city environment has emerged, highlighting the importance
of Information and Communication Technologies (ICTs). In this context, smart
cities will rely on wireless networks to manage the environment, and people in
the city. By multiplying communication node disseminated in the environment,
users will benefit from more regular access to the network. From this fact, a user
will be capable of connecting frequently and take advantage of this functional-
ity. These connections could act as a mailbox to get the results of asynchronous
invocations [5–7].

3 Using DDS in the CATS framework

We presented above the CATS architecture, showing its main components: the
context and the execution manager as well as the trader. This last has been first
designed to only deal with synchronous requests through a classical or ad-hoc
network towards an internet component farm or a user’s neighbor. But because
of the reasons listed in the previous sections the trader has evolved to a novel
architecture to tackle asynchronous issues.



3.1 The DDS framework

The DDS (Data Distribution Service) is a specification of a publish/subscribe
middleware taking into account QoS properties[8]. The first specification has
been defined by the OMG during 2004. DDS can be used independently from
CORBA. This new service is suitable for a new class of applications that require
real-time Quality of service. It provides an efficient publish/subscribe system. In-
formation consumers subscribe to information of interest. Information producers
publish information. DDS matches and routes relevant information to interested
subscribers. DDS furnishes QoS suitable for real-time systems: deadline, levels
of reliability, latency, re-source usage, time-based filter. Different programming
styles are allowed based on listener or wait-based data access.

3.2 A new architecture for asynchronous deployment

As in CATS framework, every pieces of software are modular and are build to-
gether thanks to a service architecture, introducing another messaging protocol
only requires the addition of a component wrapping the communication with
the DDS server. Thus, the trader can switch from one protocol to another ac-
cording to the context elements. For now, context information like destination,
network availability or battery level are used to decide the proper communication
mode. In order to bring context reactivity inside the trader, CATS capabilities
have permit to smoothly add the required notifications. Indeed, by just adding
an XML description of the context elements to monitor, CATS injects inside
the component the appropriate code. The following scenario illustrates CATS
behavior when facing asynchronous communications needs.

3.3 Scenario for context-dependent asynchronous requests

On a standard use, our mobile application adapts itself to the environment re-
questing components or data in a synchronous way. While a context notification
about a travel of the user is raised, requests related to its future location are
switched to an asynchronous mode (DDS mode) by the trader. In this way, we
first minimize the cost of the communication with our neighbors, unlikely to
be able to have what we want. Secondly we can make sure that the reception
of the response (a component service or some data) will be done at the right
time and/or the right place. For instance the most obvious situation is when the
trader is notified that the user is closed from its destination, this can trigger a
check of the messages posted for him (a service could have been personalized
in a specific way for this user). According to battery level, data or software
pieces can be downloaded but may be kept aside if the level is low. Finally if
the user go through an area with free and high rate network communication
capabilities, subscription to this event by the trader could initiate an antici-
pated download. CATS framework takes in charge those notifications as soon
as thresholds and context elements are described with XML meta-data. After-
wards the trader will manage components or data retrieving, and delegate their
instantiation/installation to CATS’ execution manager.



4 Prototype and evaluation

This section presents experiments and results carried out in the context of this
work. It relies, on the client side, on an application built thanks to the CATS
framework presented above and implemented in previous works. The goal is to
illustrate the feasibility of our proposition by using industrial standard frame-
works in a prototypal architecture close to a real environment.

4.1 Prototype description

Our environments is composed of three layers : The mobile client side (i.e. a
smartphone) which will send an asynchronous request for obtaining a software
service/component or any kind of data. It is capable to dynamically install the
software grain it will received. The server side, responsible for interfacing both
clients and external component repositories with the DDS environment. Com-
ponent repositories, offering the capability to potentially download any kind
of known component. We use OpenSplice, the PrismTech’s DDS implementa-
tion [9] as a keystone. It offers the reliable asynchronous framework we require
to achieve our goal. But if it could have been smoothly included inside any
smartphone application, the architecture would have been lighter as business
component managing asynchronism capabilities would have been embedded in-
side smartphones. But it is not currently available for any smartphone OS like
Android or iOS, mainly because its architecture is not designed for now for
such constraint environments. It is the reason why we introduce some servers
interfacing our mobile client with the DDS message bus. Those servers have in
charge collecting requests from clients and delivering messages when a client is
connected and is looking forward to unstack its messages.

Fig. 2. Overview of the architecture



Connection and communication between clients and servers are performed
using a Web Services architecture. Clients build and send a SOAP compliant
message (those devices always offers on-the-shelf API to easily generate such
messages) to the web services hosted by servers. In our prototype, two web
services interfaces are available : one offering the possibility for a client to request
a component, service or data and another one allowing to consult message box.

When a query is received by the server through a Web Service, four eventu-
alities can occur :

– The component/service/information is available locally (managing a cache
minimizes the access time to a component). The response is packaged and
posted to the client via DDS.

– Nothing is available locally. Query is sent to remote component or data
repositories. Response is cached and posted to the client via DDS.

– The component has to be adapted. Depending of the kind of customization,
such component can be cached or not. Afterward the message is posted to
DDS.

– If the request is not understandable or if there isn’t any component available
a post referencing the issue is made. The interest is twofold, ensuring a
response to the client and allowing him to eventually react to the problem.

To optimize the bandwidth, the client can specify a component name to
prioritize a particular message containing the information he needs as fast as
possible. Here the CATS framework on client side managing context elements
is very helpful to determine what is the preferred behavior. A client can then
dynamically install the downloaded component, or process the received data. If
an error is raised, the request can be re-sent, identicilly or modified if needed.
The behavior is in the smartphone application hands at this point.

In the architecture presented in figure 2, only one server is shown but ob-
viously we imagine a constellation of such servers, transparently exchanging
information and messages in a reliable way thanks to DDS.

4.2 Experimentation

Lets first describe devices used at server side. To implement this architecture,
we used a Mac Book Pro with a dual-core processor and 8 Gb of memory to host
the server. Server is run using Tomcat 3 coupled with AXIS 2. The community
edition of OpenSplice offers the DDS instance. Its runs on a Linux ubuntu oper-
ating system on the Mac Book Pro. On client side we use different kind of mobile
devices, running Android in different versions (2.3, 3.1 and 4.0.4). Multiplying
the number of devices shows that performances depends for a certain part on
the device used but also show that in most of the cases, any device is capable of
offering enough power to make the experiment possible for a user.

From this architecture, we evaluate different measures to illustrate request
and message un-stacking namely A : The time spent by client to send a request.

3 http://tomcat.apache.org/



It includes connecting the client to the web service and receiving an acquittal
from the server. B : The time, starting from the client request, for the server to
put down the message to the DDS queue if the response is cached locally. C :
Same as B but response downloaded from a remote component repository. D :
The time spent by a client to connect, authenticate and retrieve a component
posted for him

4.3 Results

Figures 3 and 4 show the results obtained with our prototype. They consist in
an average based on a hundred values, removing the higher and the lower one.

Figure 3 (A) shows the time a client spend connecting the web service and
obtaining an acquittal. This time varies from 4 to 5 seconds depending on the
device used. The difference is due to the power of the devices, their ease to ma-
nipulate XML and the version of Android used. Here the best result is obtained
by the HTC. Independently from the characteristics it is mostly because the
HTC overlay is light and the Android version used is also less powerful than
newer ones (less services running).

(A) (B)

Fig. 3. A : Sending a request and B : Package a local message via DDS

Figure 3 (B) gives the time spent from a request sent from a client to the
moment the response message is effectively posted to DDS. Each of the devices
spent the same time to achieve this experiment, showing that the difference
obtained in (A) with different devices is mostly due to processing the acquittal.
Results obtain in (B) are increased in (C) if the needed component has to be
downloaded from an external server. There, the time depends on the device used
but in each case, time spent to process a request is still acceptable, knowing that
the client is supposed to potentially look for a response later.

Finally, in figure 4 (D), the time spent by a client to authenticate and down-
load a component posted for him is described. The difference between devices
is mostly due to the Android environment. 3.1 version manages data in a spe-
cific way for os 3.XX. Whereas for Android version 2, the older version includes
less services which make XML processing and data downloading longer. This
time include the installation time of the component, i.e. the installation and



(C) (D)

Fig. 4. C : Package a distant message via DDS and D : Get a message posted

activation of the component on the Android device until it is available to other
components.

5 Conclusion

In this paper we showed the interest of bringing a context-aware framework for
transportation services together with asynchronous communication capabilities.
Indeed, network connection loss, cost or speed could become an important limita-
tion for mobile user, especially as travel distances increase and public transports
are widely used.

Mobile applications are built from different services and the assembly depends
on the context. The main issues in this domain are both connecting services and
obtaining data. If services could be accessed remotely (like web services), they
can also be downloaded locally on the mobile device. And it goes even with
data. By relying on asynchronous communication we are able to post request
for both data or service downloading. Afterwards, the receiving of components
or information could be performed at the appropriate time.

We illustrate the architecture we are proposing with a prototype and re-
sults showing feasibility as well as acceptable performances for asynchronous
context-aware interaction. Different experiments has been made over a concrete
platform to show that using asynchronous request with DDS is not an important
additional cost compared to synchronous interaction.

However, the architecture can be still improved. Here we are using a number
of context elements identified as the most representative for the mobile domain.
These context elements could still be increased in order to refine dynamic adap-
tation opportunities and be able to switch from asynchronous to synchronous
(and vice versa) at the most suitable time. Moreover, due to the multiplicity
of communications capabilities, it is still necessary to handle the case where
asynchronous request is send but the need is satisfied before the reception of
the answer. This could occur when a neighbor or a local access point has been
reachable and had the data or services requested at disposal.



References

1. B. Gaultier, R. Ben Rayana, J.-M. Bonnin, Context management systems applied to
mobility, in: M. Berbineau, M. Itami, G. Wen (Eds.), ITST 2009, 9th International
Conference on Intelligent Transport Systems Telecommunications, IEEE Computer
Society, Piscataway, NJ, USA, 2009, pp. 330–335.

2. D. Popovici, M. Desertot, S. Lecomte, N. Peon, Context-aware transportation ser-
vices (cats) framework for mobile environments, in: International Journal of Next-
Generation Computing, Vol. 2, 2011.

3. D. Popovici, M. Desertot, S. Lecomte, T. Delot, When the context changes, so does
my transportation application: Vespa, Procedia Computer Science 5 (0) (2011) 401 –
408, the 2nd International Conference on Ambient Systems, Networks and Technolo-
gies (ANT-2011) / The 8th International Conference on Mobile Web Information
Systems (MobiWIS 2011). doi:10.1016/j.procs.2011.07.052.

4. C. Escoffier, R. S. Hall, P. Lalanda, ipojo an extensible service-oriented component
framework, in: IEEE International Conference on Service Computing (SCC’07), Salt
Lake City, USA, 2007, pp. 474 – 481.

5. A. Bodhani, Smart transport, IET JOURNALS AND MAGAZINES 7 (6) (2012)
70–73.

6. Z. Xiong, H. Sheng, W. Rong, D. Cooper, Intelligent transportation systems for
smart cities: a progress review, Science China Information Sciences 55 (2012) 2908–
2914. doi:10.1007/s11432-012-4725-1.
URL http://dx.doi.org/10.1007/s11432-012-4725-1

7. L. Anthopoulos, P. Fitsilis, Considering future internet on the basis of smart urban
cities a client-city architecture for viable smart cities, in: INTERNET 2012, The
Fourth International Conference on Evolving Internet, 2012.

8. OMG, Data distribution service v1.0, Tech. rep., OMG, document formal/04-12-02
(2004).

9. Prismtech, Opensplice dds v5 reference guide, Tech. rep., Prismtech (2011).
URL http://www.prismtech.com/opensplice


