
HAL Id: hal-00960564
https://hal.science/hal-00960564v1

Submitted on 29 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The complexity of the identifying code problem in
restricted graph classes

Florent Foucaud

To cite this version:
Florent Foucaud. The complexity of the identifying code problem in restricted graph classes. Inter-
national Workshop on Combinatorial Algorithms (IWOCA), Jul 2013, Rouen, France. pp.150-163,
�10.1007/978-3-642-45278-9_14�. �hal-00960564�

https://hal.science/hal-00960564v1
https://hal.archives-ouvertes.fr


The complexity of the identifying code problem
in restricted graph classes?

Florent Foucaud

Universitat Politècnica de Catalunya, Building C3, C/ Jordi Girona 1-3, 08034
Barcelona, Spain.

florent.foucaud@gmail.com

Abstract. An identifying code is a subset of vertices of a graph such
that each vertex is uniquely determined by its nonempty neighbourhood
within the identifying code. We study the associated computational prob-
lem Minimum Identifying Code, which is known to be NP-hard, even
when the input graph belongs to a number of specific graph classes such
as planar bipartite graphs. Though the problem is approximable within
a logarithmic factor, it is known to be hard to approximate within any
sub-logarithmic factor. We extend the latter result to the case where
the input graph is bipartite, split or co-bipartite. Among other results,
we also show that for bipartite graphs of bounded maximum degree (at
least 3), it is hard to approximate within some constant factor. We sum-
marize known results in the area, and we compare them to the ones for
the related problem Minimum Dominating Set. In particular, our work
exhibits important graph classes for which Minimum Dominating Set
is efficiently solvable, but Minimum Identifying Code is hard (whereas
in all previously studied classes, their complexity is the same). We also
introduce a graph class for which the converse holds.

1 Introduction

We study the computational complexity of the identifying code problem, where
we want to find a set of vertices in a graph that uniquely identifies each vertex
using its neighbourhood within the set. In particular, we study this complex-
ity according to the graph class of the input. Identifying codes, introduced in
1998 [25], are a special case of the notion of a test cover in hypergraphs, first
mentioned in Garey and Johnson’s book [20]. Test covers have found applications
in the areas of testing individuals (such as patients or computers) for diseases or
faults, see [7,12]. In particular, as graphs model computer networks or buildings,
identifying codes have been applied to the location of threats in facilities [34]
and error detection in computer networks [25].

To avoid confusion, we will usually call hypergraphs and their vertex and
edge sets H = (I,A) and graphs G = (V,E). Given a hypergraph H, a set cover

? An extended version of this paper, containing the full proofs and further results, is
available on the author’s website [16].
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of H is a subset S of its edges such that each vertex v belongs to at least one set
S of S. We say that S dominates v. A test cover of H is a subset T of edges such
that for each pair u, v of distinct vertices of H, there is at least one set T of T
that contains exactly one of u and v [20]. We say that T (and also T ) separates
u from v. A set of edges that is both a set cover and a test cover is called a
discriminating code of H [7]. It has to be mentioned that some hypergraphs
may not admit any set cover (if some vertex is not part of any edge) or test
cover (if two vertices belong to the same set of edges).

Given a graph G and a vertex v of G, we denote by N [v] the closed neigh-
bourhood of v. An identifying code of G is a subset C ⊆ V (G) such that C is a
dominating set, i.e. for each v ∈ V (G), N [v] ∩ C 6= ∅ and C is a separating code,
i.e. for each pair u, v ∈ V (G), if u 6= v, then N [u]∩ C 6= N [v]∩ C. The minimum
size of an identifying code of a given graph G will be denoted γID(G). Identifying
codes were introduced in [25]. Note that a graph may not admit a separating
code if it contains twin vertices, i.e. vertices having the same closed neighbour-
hood. In a graph containing no twins, the whole vertex set is an identifying code;
we call such graphs twin-free.

Identifying codes and further related notions have been studied extensively in
the literature. We refer to Lobstein’s on-line bibliography [27] on these topics. In
particular, see [1,2,5,9,15,17,18,21,26,29,31,32] for studies of the computational
complexity of these problems.

For definitions of computational complexity, we refer to the books of Ausiello
et al. and of Garey and Johnson [3,20]. Let us formally define the minimization
problem associated with identifying codes (other problems used herein are de-
fined analogously; we skip their definitions).

Min Id Code
INSTANCE: A graph G.
TASK: Find a minimum-size identifying code of G.

We will study Min Id Code from an approximation point of view, but also from
a decision point of view; in that case Min Id Code is said to be NP-hard if the
associated decision problem (consisting in deciding whether a given graph has
an identifying code of a given size) is NP-hard.

We recall that the class APX is the class of all optimization problems that
are c-approximable for some constant c. We also refer to the class log-APX as
the class of all optimization problems that are f(n)-approximable, where n is
the size of the instance and f is a poly-logarithmic function.

In this paper, we will study specific graph classes, of which many are stan-
dard, such as bipartite graphs, planar graphs or graphs of given maximum degree.
Bipartite graphs which do not have any induced cycle of length more than 4 are
called chordal bipartite (note that they are in general not chordal). Complements
of bipartite graphs are called co-bipartite graphs. Split graphs are those whose
vertex set can be partitioned into a clique and an independent set.
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1.1 Related work

It is well-known that Min Dominating Set is log-APX-hard (whereas a loga-
rithmic factor approximation exists) [11, 22]. The same properties hold for Min
Test Cover [12] (a result that is easily seen to be transferrable to Min Dis-
criminating Code1) and Min Id Code (see [5, 26,32], for different proofs).

Regarding restrictions of the instances to specific graph classes, much is
known for Min Dominating Set: NP-hardness of Min Dominating Set holds
for many classes such as (chordal) bipartite graphs, split graphs, line graphs or
planar graphs, but not for strongly chordal graphs, directed path graphs (which
include the well-known interval graphs), or graphs having a dominating shortest
path (see e.g. [13] for an on-line database, and [22] for a survey). The log-APX-
completeness of Min Dominating Set is known to hold even for bipartite
graphs and split graphs [11], however it does not hold for planar graphs or unit
disk graphs (in which Min Dominating Set admits PTAS algorithms [4, 23])
or in (bipartite) graphs of bounded maximum degree (at least 3), where it is
APX-complete [11].

In comparison, much less is known about Min Id Code; extending this
knowledge is the main goal of this paper. It was known that, in general, Min
Id Code is NP-hard, even for bipartite graphs [9], planar graphs of maximum
degree 3 [1, 2], planar bipartite unit disk graphs [29], line graphs [17], split
graphs [15,18], and, interestingly, interval graphs [15,18]. Regarding the approx-
imation hardness, log-APX-completeness of Min Id Code is known only for
general graphs [5, 26, 32], and APX-completeness, for graphs of bounded maxi-
mum degree at least 8 [21].

1.2 Our contribution and structure of the paper

We extend the knowledge about the computational complexity of Min Id Code
when restricted to specific classes of graphs. We compare these results to the
corresponding ones for Min Dominating Set; see Table 1 for a summary of
many known complexity results for these problems for selected graph classes.

We show in Section 2 that Min Id Code is log-APX-complete for bipartite,
split and co-bipartite graphs. Prior, three different papers [5,26,32] showed that
Min Id Code is log-APX-complete, but only in general graphs; intuitively speak-
ing, the proximity between Min Discriminating Code and Min Id Code is
used to design simpler reductions. Note that on co-bipartite graphs, Min Domi-
nating Set is trivially solvable in polynomial time; in contrast, our result shows
that Min Id Code is computationally very hard on this class.

In Section 3, we show that Min Id Code is APX-complete for bipartite
graphs of maximum degree 3, improving on a result from Gravier et al. [21]. We
also show that it is NP-hard for the same class with the additional restriction of
planarity, as well as for chordal bipartite graphs.

1 We can reduce Min Test Cover to Min Discriminating Code: given a hypergraph
H, construct H ′ by adding to H a single vertex x and the set V (H) ∪ {x}. Now H
has a test cover of size k if and only if H ′ has a discriminating code of size k + 1.
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Finally, in Section 4, we exhibit a class of graphs, which we call SC-graphs,
where Min Dominating Set is NP-hard, but Min Id Code is solvable in poly-
nomial time. Until now, all known results for given graph classes were showing
that Min Id Code was at least as hard as Min Dominating Set.

Min Id Code Min Dominating Set

graph class LB UB LB UB

in general log-APX-h [5, 26,32] O(lnn) [12] log-APX-h [11] O(lnn) [24]

bipartite log-APX-h (Co. 4) O(lnn) [12] log-APX-h [11] O(lnn) [24]

chordal bipartite (∗) NP-h (Th. 15) O(lnn) [12] NP-h [28] O(lnn) [24]

split, chordal log-APX-h (Th. 7) O(lnn) [12] log-APX-h [11] O(lnn) [24]

planar (+ bipartite
NP-h (Th. 11) 7 [31] NP-h [33] PTAS [4]max. degree 3) (∗)

line (∗) APX-h [15] 4 [17] APX-h [10] 2 [10]

K1,`-free (` ≥ 3) log-APX-h (Th. 7) O(lnn) [12] APX-h [10] `− 1 [11]

max. degree ∆
APX-h O(ln∆) APX-h O(ln∆)

∆ ≥ 8: [21] [12] ∆ ≥ 3: [30] [24]

max. degree ∆ ≥ 3
APX-h (Th. 11)

O(ln∆) [12] APX-h [11] O(ln∆) [24]
and bipartite

unit disk (∗) NP-h [29] O(lnn) [12] NP-h [8] PTAS [23]

co-bipartite log-APX-h (Th. 7) O(lnn) [12] P (trivial)

interval, (∗) NP-h [18] O(lnn) [12] P [6]

permutation (∗) OPEN O(lnn) [12] P [14]

(planar) SC-graphs (∗) P (Th. 18) NP-h (Th. 19) O(lnn) [24]

Table 1. Comparison of complexity lower bounds,“LB”, and upper bounds, “UB”,
on approximation ratios (as functions of the order n of the input graph) of Min Id
Code and Min Dominating Set for selected graph classes. Underlined entries are new
results proved in this paper. Graph classes for which the precise complexity class of
Min Id Code is not fully determined are marked with (∗). SC-graphs will be defined
in Section 4. Definitions for classes that are not defined here can be found in [13].

2 Bipartite, co-bipartite and split graphs

In this section, we provide three reductions from Min Discriminating Code
to Min Id Code for bipartite, split and co-bipartite graphs. We begin with
preliminary considerations.
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2.1 Useful bounds and constructions

Theorem 1 ( [7]). Let H = (I, A) be a hypergraph admitting a discriminating
code C. Then |C| ≥ log2(|I|+ 1). If C is inclusion-wise minimal, then |C| ≤ |I|.

We now describe two constructions that ensure that the vertices of some
vertex set A are correctly identified using the vertices of another set L.

Construction 2 (bipartite logarithmic identification of A over (A,L)).
Given two sets of vertices A and L with |A| ≤ 2|L|− 1, the bipartite logarithmic
identification of A over (A,L), denoted LOG(A,L), is the graph of vertex set
A ∪ L and where each vertex of A has a distinct nonempty subset of L as its
neighbourhood.

The next construction is similar, but makes sure that each vertex of A has
at least two neighbours in L.

Construction 3 (non-singleton bipartite logarithmic identification of
A over (A,L)). Given two sets of vertices A and L with |A| ≤ 2|L| − |L| −
1,2 the non-single bipartite logarithmic identification of A over (A,L), denoted
LOG∗(A,L), is the graph of vertex set A ∪ L and where each vertex of A has a
distinct subset of L of size at least 2 as its neighbourhood.

2.2 Bipartite graphs

Theorem 4. Min Id Code is log-APX-complete, even for bipartite graphs.

Theorem 4 is proved using the following reduction.

Reduction 5. Given a hypergraph (I, A), we construct in polynomial time the
bipartite graph G(I, A) on |I|+ |A|+ 9dlog2(|A|+ 1)e+ 3 vertices, with vertex
set V (G(I, A)) = I ∪ A ∪ {x, y, z} ∪ {aj , bj , cj , dj , ej , fj , gj , hj , ij | 1 ≤ j ≤
dlog2(|A|+ 1)e}, and edge set:

E (G(I, A)) = {x, y} ∪ {y, z} ∪ {{z, i} | i ∈ I} ∪ E (B(I, A))

∪ E (LOG(A, {aj | 1 ≤ j ≤ dlog2(|A|+ 1)e}))
∪ {{aj , bj}, {bj , cj}, {aj , dj}, {dj , gj} | 1 ≤ j ≤ dlog2(|A|+ 1)e}
∪ {{dj , ej}, {ej , fj}, {gj , hj}, {hj , ij} | 1 ≤ j ≤ dlog2(|A|+ 1)e} .

where B(I, A) denotes the bipartite incidence graph of (I, A) and E (LOG(A,L))
denotes the bipartite logarithmic identification of A over (A,L) (see Construc-
tion 2). The construction is illustrated in Figure 1.

Theorem 6. A hypergraph (I, A) has a discriminating code of size at most k if
and only if graph G(I, A) has an identifying code of size at most k+6dlog2(|A|+
1)e+ 2, and one can construct one using the other in polynomial time.

2 There are exactly 2|L| − |L| − 1 distinct subsets of L with size at least 2.
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Fig. 1. Reduction from Min Discriminating Code to Min Id Code.

Proof. Let D ⊆ A be a discriminating code of (I, A), |D| = k. We define C(D) as
follows: C(D) = D ∪ {x, z} ∪ {aj , cj , dj , fj , gj , ij | 1 ≤ j ≤ dlog2(|A|+ 1)e}. One
can easily check that C(D) has size k+ 6dlog2(|A|+ 1)e+ 2. Code C(D) has size
k+6dlog2(|A|+1)e+2 is clearly a dominating set. To see that it is an identifying
code of G(I,A), observe that vertex z separates all vertices of I from all vertices
which are not in I ∪ {z}. Vertex z itself is the only vertex dominated only by z
(each vertex of I being dominating by some vertex of D); y is dominated by both
x, y and x, only by itself. Since D a discriminating code of (I, A), all vertices
of I are dominated by a distinct subset of D. Furthermore, due to the bipartite
logarithmic identification of A over (A, {aj | 1 ≤ j ≤ dlog2(|A|+1)e}) (and since
each vertex aj belongs to the code), all vertices of A are dominated by a unique
subset of {aj | 1 ≤ j ≤ dlog2(|A| + 1)e}. Finally, it is easy to check that all
vertices of type aj , bj , cj , dj , ej , fj , gj , hh, ij are correctly separated.

For the other direction, Let C be an identifying code of G(I, A), |C| = k +
6dlog2(|A|+ 1)e+ 2. We first “normalize” C by constructing an identifying code
C∗ of G(I, A), |C∗| ≤ |C|, such that the two following properties hold:

|C∗ ∩ {V (G(I, A)) \ {I ∪A}}| = 6dlog2(|A|+ 1)e+ 2 (1)

|C∗ ∩ I| = ∅. (2)

To get Condition (1), we replace |C ∩ {V (G(I, A)) \ {I ∪ A}}| by {x, z} ∪
{aj , cj , dj , fj , gj , ij | 1 ≤ j ≤ dlog2(|A| + 1)e} to get code C′ (whose structure
is similar to the one of the code constructed in the first part of the proof).
We claim that |C′| ≤ |C|. First of all, observe that we had |C ∩ {V (G(I, A)) \
{I ∪A}}| ≥ 6dlog2(|A|+ 1)e+ 2. To see this, note that vertex z is the only one
separating {x, y}, and |C∩{x, y}| ≥ 1 since C must dominate x. Similarly, for any
j ∈ {1, . . . , log2(|A|+1)}, vertices aj , dj , gj are the only ones separating {bj , cj},
{ej , fj} and {hj , ij}, respectively, and |C ∩ {bj , cj}| ≥ 1, |C ∩ {ej , fj}| ≥ 1 and
|C ∩ {hj , ij}| ≥ 1, since C must dominate cj , fj and ij , respectively.

To fulfill Condition (2), we replace each vertex i ∈ I ∩ C′ by some vertex
in A. If C′ \ {i} is an identifying code, we may just remove i from the code.
Otherwise, note that i is not needed for domination since all vertices of I are
dominated by z and all vertices of A are dominated by some vertex in {aj | 1 ≤
j ≤ dlog2(|A| + 1)e}. Hence, i separates i itself from some other vertex i′ in I



The complexity of the identifying code problem in restricted graph classes 7

(indeed, one can check that all other types of pairs which could be separated by i
are actually already separated by some vertex of C′∩ (V (G(I, A))\ I). But then,
the pair {i, i′} is unique (suppose i separates i itself from two distinct vertices i′

and i′′ of I, then i′ and i′′ would not be separated by C′, a contradiction). Since
(I, A) admits a discriminating code, there must be some vertex a of A separating
i from some i′. Hence we replace i by a. Doing this for every i ∈ C′ ∩ I, we get
code C∗, and |C∗| ≤ |C′| ≤ |C|.

Using these observations and similar arguments as in the first part of the
proof, one can check that the obtained code C∗ is still an identifying code.

To complete the proof, we claim that C∗∩A is a discriminating code of (I,A):
indeed, all pairs {I, I ′} of I are separated by C∗. By Condition (1), they must
be separated by some vertex of A (note that z is adjacent to all vertices of I),
and we are done. ut

Theorem 6 proves that Min Id Code for bipartite graphs is NP-hard, and
can be used to prove Theorem 4:

Proof (Proof of Theorem 4). We use Theorem 6 to show that any c-approximation
algorithm A for Min Id Code for bipartite graphs can be turned into a 7c-
approximation algorithm for Min Discriminating Code. Min Discriminat-
ing Code being log-APX-complete [12] and Min Id Code being in log-APX, we
get the claim.

Let (I,A) be a hypergraph with optimal value OPT, and let G(I, A) be the
bipartite graph constructed using Reduction 5. By Theorem 6, we have:

γID(G(I, A)) ≤ OPT + 6dlog2(|A|+ 1)e+ 2. (3)

Let C be an identifying code of G(I, A) computed by A . We have:

|C| ≤ cγID(G(I, A)). (4)

By Theorem 6, we can compute in polynomial time a discriminating code D
of (I, A). Using Inequalities 3 and 4 together with the fact that dlog2(|A|)e ≤
OPT ≤ |D| (Theorem 1), we get:3

|D| ≤ |C| − 6dlog2(|A|+ 1)e − 2 ≤ cγID(G(I, A))− 6dlog2(|A|+ 1)e − 2

≤ c(OPT + 6dlog2(|A|+ 1)e+ 2)− 6dlog2(|A|+ 1)e − 2

≤ cOPT + (c− 1)(6dlog2(|A|)e+ 8) ≤ cOPT + (c− 1)(6OPT + 8)

≤ 7cOPT. ut

2.3 Split graphs and co-bipartite graphs

Theorem 7. Min Id Code is log-APX-complete for split graphs and for co-
bipartite graphs.

3 For the last line inequality, we assume here that OPT ≥ 2.



8 Florent Foucaud

Theorem 7 is proved using the two following reductions from Min Discrim-
inating Code to Min Id Code.

Reduction 8. Given a hypergraph (I, A), we construct in polynomial time the
following split graph Sp(I, A) on |I| + |A| + 6dlog2(|A| + 1)e + 1 vertices, with
vertex set V (Sp(I, A)) = K ∪ S (K is a clique and S, an independent set).
More specifically, K = I ∪ {u} ∪ {kj | 1 ≤ j ≤ 2dlog2(|A| + 1)e} and S =
A ∪ {v} ∪ {sj , tj | 1 ≤ j ≤ 2dlog2(|A|+ 1)e}.

Sp(I, A) has edge set:

E (Sp(I, A)) = {u, v} ∪ E (B(I, A))

∪ E (LOG∗(A, {kj | 1 ≤ j ≤ 2dlog2(|A|+ 1)e}))
∪ {{kj , sj}, {kj , tj} | 1 ≤ j ≤ dlog2(|A|+ 1)e}
∪ {a, b | a, b ∈ K, a 6= b},

where B(I, A) denotes the bipartite incidence graph of (I, A) and E (LOG∗(A,L))
denotes the non-singleton bipartite logarithmic identification of A over (A,L)
(see Construction 3). The construction is illustrated in Figure 2(a).

Reduction 9. Given a hypergraph (I, A), we construct in polynomial time the
following co-bipartite graph G(I, A) on |I| + |A| + 6dlog2(|A| + 1)e vertices,
with vertex set V (G(I, A)) = K1 ∪K2, where K1 and K2 are two cliques over
the two sets of vertices K1 = I ∪ {aj , bj , cj | 1 ≤ j ≤ dlog2(|A| + 1)e} and
K2 = A ∪ {dj , ej , fj | 1 ≤ j ≤ dlog2(|A|+ 1)e}.

G(I, A) has edge set:

E (G(I, A)) = E (B(I, A)) ∪ E (LOG(A, {aj | 1 ≤ j ≤ dlog2(|A|+ 1)e}))
∪ {{aj , dj}, {bj , dj}, {bj , ej}, {bj , fj}, {cj , fj} | 1 ≤ j ≤ dlog2(|A|+ 1)e}
∪ {x, y | x, y ∈ K1} ∪ {x, y | x, y ∈ K2}.

where B(I, A) denotes the bipartite incidence graph of (I, A) and E (LOG(A,L))
denotes the bipartite logarithmic identification of A over (A,L) (see Construc-
tion 2). The construction is illustrated in Figure 2(b).

Proof (Sketch of proof of Theorem 7). Reductions 8 and 9 can be used to show
that, given a hypergraph (I, A), (I,A) has a discriminating code of size at most k
if and only if Sp(I, A) has an identifying code of size at most k + 4dlog2(|A| +
1)e+1 and G(I, A) has an identifying code of size at most k+5dlog2(|A|+1)e−
2, respectively. Moreover these constructions can be performed in polynomial
time. Using similar arguments as for bipartite graphs, we can show that any c-
approximation algorithm for Min Id Code for split graphs or co-bipartite graphs
can be turned into a 5c- or 6c-approximation algorithm for Min Discriminating
Code, respectively.
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Fig. 2. Two reductions from Min Discriminating Code to Min Id Code.

3 Reductions for (planar) bipartite graphs of bounded
maximum degree and chordal bipartite graphs

In this section, we improve results from the literature by showing that Min
Id Code is NP-hard for planar bipartite graphs of maximum degree 3. We also
improve and extend the APX-hardness results for Min Id Code for non-bipartite
graphs of maximum degree at least 8 from [21] by showing that they are APX-
hard even for bipartite graphs of maximum degree 3. Finally, we show that Min
Id Code is NP-hard for chordal bipartite graphs.

We will use the standard concept of L-reductions, that is widely used to prove
APX-hardness of optimization problems.

Definition 10 ( [30]). Let P and Q be two optimization problems. An L-
reduction from P to Q is a four-tuple (f, g, α, β) where f and g are polynomial
time computable functions and α, β are positive constants with the following
properties:

1. Function f maps instances of P to instances of Q and for every instance IP
of P , OPTQ(f(IP )) ≤ α ·OPTP (IP ).

2. For every instance IP of P and every solution SOLf(IP ) of f(IP ), g maps the
pair (f(IP ), SOLf(IP )) to a solution SOLIP of IP such that |OPTP (IP ) −
|SOLIP || ≤ β · |OPTQ(f(IP ))− |SOLf(IP )||.

As discovered in [30], if there exists an L-reduction between two optimization
problems P and Q with parameters α and β and it is NP-hard to approximate
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P within ratio rP = 1 + δ, then it is NP-hard to approximate Q within ratio
rQ = 1 + δ

αβ .

3.1 (Planar) bipartite graphs of maximum degree 3

Theorem 11. Reduction 12 applied to graphs of maximum degree 3 is an L-
reduction with parameters α = 4 and β = 1. Therefore, Min Id Code is APX-
complete, even for bipartite graphs of maximum degree 3. Moreover, Min Id
Code is NP-hard, even for planar bipartite graphs of maximum degree 3.

We prove Theorem 11 using the following reduction.

Reduction 12. Given a graph G, we construct the graph G′ on vertex set

V (G′) = V (G) ∪ {pe, qe | e ∈ E(G)},

and edge set

E(G′) ={{x, pe}, {y, pe}, {pe, qe} | e = {x, y} ∈ E(G)}.

The construction is illustrated in Figure 3 (where vertices of G are circled).

pe

qe

x y

Fig. 3. Reduction 12 from Min Vertex Cover to Min Id Code.

For the following claims, let G be a graph and G′, the graph obtained from
G using Reduction 12.

Claim 13. Let N be a vertex cover of G. Using N , one can build an identifying
code of G′ of size at most |N |+ |E(G)|.

Proof. First of all, we may assume that G is connected. Furthermore, it has no
vertex of degree less than 2. Indeed, assuming we have a vertex cover contain-
ing a degree 2-vertex x, we can always replace it by its neigbour in the solution.
Removing x and its neighbour from the graph, one gets a computationally equiv-
alent instance.

Let C = N ∪{pe | e ∈ E(G)}. Set C is an identifying code of G′: any original
vertex x of G is dominated by the unique set of vertices {pe | x ∈ e, e ∈ E(G)}
(this set having at least two elements). For each edge {x, y} = e ∈ E(G), vertex
pe is dominated by itself and at least one of x, y; qe is dominated by pe only. ut

Claim 14. Let C be an identifying code of G′. One can use C to build a vertex
cover of G of size at most |C| − |E(G)|.
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Proof. For each edge e = {x, y} of G, one of pe, qe belongs to C, since C has to
dominate qe. Moreover, one of x, y belongs to C since pe, qe need to be separated.
Hence, C ∩ V (G) is a vertex cover of G with size at most |C| − |E(G)|. ut

We are now ready to prove Theorem 11. In what follows, let τ(G) denote the
minimum size of a vertex cover of G.

Proof (Proof of Theorem 11). Let G be a graph of maximum degree 3 and G′ the
graph constructed from G using Reduction 12. We have to prove Properties 1
and 2 from Definition 10.

By Claim 13, given an optimal vertex cover N ∗ of G, we can construct an
identifying code C with γID(G′) ≤ |C| ≤ |N ∗| + |E(G)| = τ(G) + |E(G)|. By
Claim 14, given an optimal identifying code C∗ of G′, we can construct a vertex
cover N of G such that τ(G) ≤ |N | ≤ |C∗| − |E(G)| = γID(G)− |E(G)|. Hence:

γID(G′) = τ(G) + |E(G)|. (5)

Proof of Property 1. Since G has maximum degree 3, each vertex can cover

at most three edges, hence we have τ(G) ≥ |E(G)|
3 , so |E(G)| ≤ 3τ(G). Using

Equality (5), we get that γID(G′) = τ(G) + |E(G)| ≤ 4τ(G).

Proof of Property 2. Let C be an identifying code of G′. Using Claim 14
applied to C, we obtain a vertex coverN with |N | ≤ |C|−|E(G)|. By Equality (5),
we have −τ(G) = |E(G)| − γID(G′). So we obtain:

|N | − τ(G) ≤|C| − |E(G)|+ |E(G)| − γID(G′)

|τ(G)− |N || ≤|γID(G′)− |C||.

For the second part of the statement, Min Vertex Cover is known to be
APX-complete for graphs of maximum degree 3 [11]. It is easy to check that the
constructed graphs have maximum degree 3 and are bipartite. For the final part
of the statement, we apply Reduction 12 to Min Vertex Cover for planar
graphs of maximum degree 3, which is known to be NP-hard [19]. Claims 13
and 14 applied to an optimal vertex cover and an optimal identifying code show
that γID(G′) = τ(G) + |E(G)|. ut

3.2 Chordal bipartite graphs

Theorem 15. Min Id Code is NP-hard, even for chordal bipartite graphs.

Reduction 16. Given a graph G, we construct the graph G′ on vertex set

V (G′) = V (G) ∪ {ax, bx, cx, dx, ex | x ∈ V (G)},

and edge set

E(G′) =E(G) ∪ {{x, ax}, {x, ex}, {ax, bx}, {ax, cx}, {ax, dx}, {ex, bx},
{ex, cx}, {ex, dx} | x ∈ V (G)}.

The construction is illustrated in Figure 4.
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x

ax

bx cx dx

ex

G

..
.

Fig. 4. Reduction from Min Dominating Set to Min Id Code.

To prove Theorem 15, we show that G has a dominating set of size at most k
if and only if G′ has an identifying code of size at most k + 3|V (G)|. The proof
is omitted due to lack of space.

4 Further classes of graphs for which the complexities of
Min Dominating Set, and Min Id Code differ

We saw that for co-bipartite graphs, Min Id Code is hard (whereas Min Dom-
inating Set is trivially solvable in polynomial time). In this section, we define
a class for which the converse holds: Min Dominating Set is NP-hard, but
Min Id Code is solvable in polynomial time. We call these graphs SC-graphs.

Definition 17. A graph G is an SC-graph if it can be built from a bipartite
graph with parts S and T and an additional set S′ with |S′| = 2|S| such that:

– for each vertex x of S, there is a path x, ux, vx of length 2 starting at x with
ux, vx ∈ S′, degG(ux) = 2 and degG(vx) = 1, and

– each vertex of T has a distinct neighbourhood within S, and this neighbour-
hood has at least two elements.

An example of an SC-graph is pictured in Figure 5. We have the following
theorems (proofs are omitted due to lack of space).

T S S′

Fig. 5. Example of an SC-graph.
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Theorem 18. Let G be an SC-graph built from a bipartite graph with parts S
and T , with S1, the set of all degree 1-vertices of the pendant paths attached to
the vertices of S. We have γID(G) = 2|S| and S ∪S1 is an identifying code of G.
Hence, Min Id Code can be solved in polynomial time in the class of SC-graphs.

Theorem 19. Min Dominating Set is NP-hard in planar (bipartite) SC-
graphs of maximum degree 4.

5 Open problems

The complexity for Min Id Code is open for several important input graph
classes, as shown in Table 1. Regarding interval graphs, the approximation com-
plexity of Min Id Code is still an open question. It is also of interest to deter-
mine the complexity of Min Id Code for permutation graphs (for which Min
Dominating Set is polynomial-time solvable [14]). Finally, we remark that Min
Dominating Set admits PTAS algorithms for planar graphs [4] and for unit
disk graphs [23]. Does the same hold for Min Id Code?
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