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Isotropic invariants of a completely symmetric third-order tensor

I. INTRODUCTION A. Physical motivation

The theory of representations for tensor functions is at the heart of the rational modeling of material behaviors [START_REF] Boehler | Application of tensor functions in solid mechanics[END_REF][START_REF] Thionnet | A new constructive method using the theory of invariants to obtain behavior laws[END_REF][START_REF] Zheng | Theory of representations for tensor functions -a unified invariant approach to constitutive equations[END_REF] . Taking into account the different restriction a constitutive law must comply (material symmetry, material objectivity, . . .) representation theorems provide the most general shape of tensorial functions satisfying all these constraints. Such a knowledge is important both from theoretical and experimental perspectives, since it indicates the number and the type of independent quantities to be observed in experience. A very interesting and sound review on topic has been written by Zheng [START_REF] Zheng | Theory of representations for tensor functions -a unified invariant approach to constitutive equations[END_REF] , hence we refer the reader to this publication for a deeper presentation of this subject.

In three-dimensional physical space, most of the results that are known today are restricted to sets of tensors up to second-order. In this publication we extend these result to the case of isotropic polynomial functions of a completely symmetric third-order tensor. This result is a first step towards a generalization of classical results to include third and higher-order tensors.

The motivation towards such a generalization is based on, at least, three physical needs:

1. To model non-linear constitutive relations for higher-order continua [START_REF] Dell'isola | Generalized Hooke's law for isotropic second gradient materials[END_REF][START_REF] Forest | Nonlinear microstrain theories[END_REF][START_REF] Javili | Geometrically nonlinear higher-gradient elasticity with energetic boundaries[END_REF][START_REF] Mindlin | Micro-structure in linear elasticity[END_REF][START_REF] Toupin | Elastic materials with couple-stresses[END_REF] . The isotropic hyper-elastic strain-gradient elasticity, for example, need to be supplemented by a non-linear constitutive relation between the hyper-stress tensor and the strain gradient tensor, both of them of third-order [START_REF] Mindlin | Micro-structure in linear elasticity[END_REF] ; 2. To describe behaviors for anisotropic materials described by third-order structural tensors [START_REF] Boehler | On irreducible representations for isotropic scalar functions[END_REF][START_REF] Liu | On representations of anisotropic invariants[END_REF][START_REF] Zheng | Theory of representations for tensor functions -a unified invariant approach to constitutive equations[END_REF] . To take anisotropy into account in the formulation of non-linear laws, the argument of the isotropic behavior is supplemented by some structural tensors, i.e. tensors that describe the material anisotropy. And, indeed, some material symmetry classes are described by higher-order structural tensors.

3.

To identify the symmetry properties of a linear constitutive law experimentally identified in a non-optimal basis [START_REF] Boehler | On the polynomial invariants of the elasticity tensor[END_REF] . Expressed in a generic basis, it is difficult to identity the symmetry class of a linear operator, and to determine one of its optimal basis or representation. As studied, in a special case, for the elasticity tensor by Auffray et al. [START_REF] Auffray | On anisotropic polynomial relations for the elasticity tensor[END_REF] the study of polynomial relations between the elementary invariants of the tensor provide important information. To be extended to other behaviors, such as the piezoelectricity tensor (which is a third-order tensor), the first step is to know a set of elementary invariants of that object.

In the present paper, as a first step towards this goal, an integrity basis for isotropic polynomial functions of a completely symmetric third-order tensor is provided. The real vector space of these tensors will be denoted T (ijk) , the notation (..) indicates invariance under permutation of the indices in parentheses. This tensor space can be decomposed into a space of traceless completely symmetric third-order tensors (H 3 ) and a space of vectors (H 1 ). Contrary to T (ijk) both H 3 and H 1 are O(3)-irreducible spaces [START_REF] Jerphagnon | The description of the physical properties of condensed matter using irreducible tensors[END_REF][START_REF] Sternberg | Group theory and physics[END_REF] . Hence, the integrity basis for isotropic polynomial functions for the space T (ijk) is equivalent to the integrity basis for isotropic polynomial functions for the space H 3 ⊕ H 1 . To make this paper as self-contained as possible, and to precisely state our result, some definitions need to be introduced.

B. Some prior definitions

An isotropic scalar-valued invariant function W is formally defined by the property

∀T ∈ T (ijk) , W (T) = W (g ⋆ T), ∀g ∈ O(3) (I.1)
in which the natural action of O(3) on T (ijk) is denoted by ⋆ and defined by:

⋆ : O(3) × T (ijk) → T (ijk) ; (g, T) → g ⋆ T with (g ⋆ T) ijk := g ip g jq g kr T pqr (I.2)
Two tensors T 1 and T 2 are said to be O(3)-related, and denoted T 1 ≈ T 2 , if there exists

g ∈ O(3) such that T 2 = g ⋆ T 1 .
The set of all vectors T ∈ T (ijk) which are related to T 1 by O(3) is called the O(3)-orbit of T 1 and is denoted by

O(3) ⋆ T 1 := {T = g ⋆ T 1 | g ∈ O(3)}
Hence, as it can directly be observed, isotropic invariant functions are constant on O(3)orbits. Now, among all functions, let us consider more specifically the polynomial ones. As well-known from invariant theory, since the orthogonal Lie group O(3) is compact, the algebra of invariant polynomial functions on T (ijk) is finitely generated 4331 and, furthermore, in the real case, polynomial invariants separate the orbits. From now on, G will either be O(3) or SO (3). A basis for the G-invariant polynomial algebra is called an integrity basis 44 : Definition I.1. Let V be a real vector space with a G-action. A finite set p 1 , . . . , p k of G-invariant polynomials on V is called an integrity basis if every G-invariant polynomial on

V can be written as a polynomial in p 1 , . . . , p k .

An integrity basis is said to be irreducible if none of its elements can be expressed as a polynomial of the others. It is worth noting that this definition does not exclude that some polynomial relations exist between generators. Such relations, which can not be avoided in most cases, are known as syzygies and their determination is a difficult problem.

Beside integrity bases, functional bases [START_REF] Boehler | On irreducible representations for isotropic scalar functions[END_REF][START_REF] Boehler | On the polynomial invariants of the elasticity tensor[END_REF][START_REF] Wineman | Material symmetry restrictions on constitutive equations[END_REF] can be defined:

Definition I.2. Let V be a real vector space with a G-action. A finite set s 1 , . . . , s k of G-invariant functions of V is called a functional basis if

s i (v 1 ) = s i (v 2 ), ∀i = 1, . . . , n (I.3) implies v 1 = g.v 2 for some g ∈ G.
A functional basis is said to be irreducible if none of its elements can be expressed as a function of the others. It is worth noting that this definition does not preclude that some functional relations between generators exist. In the definition of a functional basis, basis invariants are not required to be polynomial. However for physical applications it is often more convenient to determine polynomial functional bases [START_REF] Boehler | On irreducible representations for isotropic scalar functions[END_REF][START_REF] Boehler | Application of tensor functions in solid mechanics[END_REF] .

Before going any further, the two aforementioned definitions have to be discussed. While the former is centered on finding a generating system for the algebra of G-invariant polynomial functions, the latter is concerned with the determination of a separating system, i.e. on finding a set of (polynomial) functions that separates G-orbits of V elements. This distinction is important because, although the algebra of invariant polynomials separates the orbits, this set might be very large. As a consequence, an integrity basis is a functional basis, but the converse is generally false [START_REF] Boehler | On the polynomial invariants of the elasticity tensor[END_REF][START_REF] Wineman | Material symmetry restrictions on constitutive equations[END_REF] . Hence, the cardinal of a minimal integrity basis is generally greater than that of a functional basis. In mathematics, an irreducible functional basis is called a separating set [START_REF] Derksen | Computational Invariant Theory[END_REF] , but if their conciseness is appealing, no general algorithm currently exists to produce them. Let us now do a quick review on the state-of-the-art in invariant functions modeling in continuum mechanics.

C. State-of-the-art in applied invariant theory

Integrity and functional bases are currently known for invariant functions of an arbitrary number of vectors and skew and symmetric second order tensors [START_REF] Boehler | Application of tensor functions in solid mechanics[END_REF][START_REF] Liu | On representations of anisotropic invariants[END_REF][START_REF] Zheng | Theory of representations for tensor functions -a unified invariant approach to constitutive equations[END_REF] , that is for sets of tensors up to second-order. For higher-order tensors results are very partial and restricted to particular cases [START_REF]Generally the group action is not O(3), but O(2) (or a subgroup) 16,24[END_REF] . The reason lies in the fact that the classical geometrical methods used for low-order tensors cease to function since third-order tensors. Even if not directly expressed in these terms this point was clear to authors who worked on this topic [START_REF] Boehler | On the polynomial invariants of the elasticity tensor[END_REF][START_REF] Smith | Isotropic invariants of traceless symmetric tensors of orders three and four[END_REF][START_REF] Smith | Constitutive Equations for Anisotropic and Isotropic Materials[END_REF] . As a consequence, for higher-order tensors, methods stemming from the classical invariant theory have to be employed. This change of point of view has important implications:

1. Due to the fact that, for sets of tensors up to second-order, with some geometric intuition functional bases can be constructed results mostly concern the constructions of such bases. For higher-order tensors this inductive procedure cannot be employed anymore, and attention has moved to integrity bases. This point is clear in the late works of Boehler 7 and Smith [START_REF] Smith | Isotropic invariants of traceless symmetric tensors of orders three and four[END_REF] .

2. If up to second-order, whole tensors can be considered as the elementary variables of isotropic functions, this point of view cannot be extended. Instead, tensor have to be decomposed into O(3)-irreducible elements, that is, into a sum of completely symmetric traceless tensors. This decomposition is sometimes referred to as the harmonic decomposition [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF][START_REF] Jerphagnon | The description of the physical properties of condensed matter using irreducible tensors[END_REF] . O(3)-irreducible tensors are the elementary variables of isotropic functions 46 .

The problem we are presently interested in concerns an extension of a result previously obtained by Smith and Bao [START_REF] Smith | Isotropic invariants of traceless symmetric tensors of orders three and four[END_REF] . In this reference the authors provide an integrity basis for isotropic functions of a traceless symmetric third-order tensor (T ∈ H 3 ). In our present paper we extend this result to isotropic functions of a full symmetric third-order tensor. In terms of tensor space, this amounts to consider a space constituted of a traceless completely symmetric third-order tensor and a vector, i.e. the tensor space H 3 ⊕ H 1 . As said in this first part of the introduction, this result might found interesting applications in continuum mechanics to construct constitutive laws [START_REF] Boehler | Application of tensor functions in solid mechanics[END_REF][START_REF] Dell'isola | Generalized Hooke's law for isotropic second gradient materials[END_REF][START_REF] Ferretti | Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory[END_REF][START_REF] Zheng | Theory of representations for tensor functions -a unified invariant approach to constitutive equations[END_REF] .

Let us now briefly draw the big picture of the approach used to determine an integrity basis for T (ijk) .

D. Technical construction

There exists a deep link between the SO(3)-action [START_REF]The case of an O(3)-action is closely related to the SO(3) case[END_REF] on harmonic tensors and the SL(2, C)action on the space of binary forms, i.e. the space of complex homogeneous polynomials in x, y. This connection was already known by authors in mechanics [START_REF] Boehler | On the polynomial invariants of the elasticity tensor[END_REF][START_REF] Smith | Isotropic invariants of traceless symmetric tensors of orders three and four[END_REF][START_REF] Spencer | A note on the decomposition of tensors into traceless symmetric tensors[END_REF][START_REF] Zheng | Theory of representations for tensor functions -a unified invariant approach to constitutive equations[END_REF] but, except in few references [START_REF] Boehler | On the polynomial invariants of the elasticity tensor[END_REF][START_REF] Smith | Isotropic invariants of traceless symmetric tensors of orders three and four[END_REF] , has not really been exploited. In Boehler et al. [START_REF] Boehler | On the polynomial invariants of the elasticity tensor[END_REF] , for example, to obtain an integrity basis for a fourth-order completely symmetric traceless tensor (T ∈ H 4 ) the authors used some purely mathematical results obtained by Shioda [START_REF] Shioda | On the graded ring of invariants of binary octavics[END_REF] . This work was about the construction of an integrity basis for S 8 , the space of binary forms of degree 8 under SL(2, C)-action. Hence, the problem of the determination of integrity bases for tensor spaces can be rephrased in terms of binary forms. Such a reformulation allows one to reinvest existing tools from classical invariant theory. This strategy is adopted in the present paper.

The most famous approach was initiated by Hilbert [START_REF] Hilbert | Theory of algebraic invariants[END_REF] , and successfully applied (without any computer assistance) by Shioda [START_REF] Shioda | On the graded ring of invariants of binary octavics[END_REF] . More recently, and with the extensive use of computer, Dixmier and Lazard 12 , Bedratyuk [START_REF] Bedratyuk | A complete minimal system of covariants for the binary form of degree 7[END_REF] and Popovisciu and Brouwer 8,9 have derived integrity basis for binary forms up to S 10 , which would correspond to H 5 , i.e. fifth-order completely symmetric and traceless tensor space. It has to be emphasized that this approach relies on very intensive computations since matrix ranks have to be tested up to order 20000.

According to a mathematical point of view, this is essentially an algebraical geometric method that relies on the subtle notion of system of parameters of an algebra [START_REF] Sturmfels | Algorithms in invariant theory[END_REF] . It appears that this notion is not an effective one: up to our knowledge, there is no general algorithm to decide whether a set of variables is a system of parameters or not. Instead we decide to use a nineteenth century algorithm first given by Gordan in 1868 [START_REF] Gordan | Beweis, dass jede covariante und invariante einer bineren form eine ganze func-tion mit numerischen coefficienten einer endlichen anzahl solcher formen ist[END_REF] . This approach leads to the constructive theorem IV.2 used in the present paper.

II. RESULTS

In this section our main results are summed-up, and proofs postponed to the next sections.

First let us consider the result obtained by Bao and Smith [START_REF] Smith | Isotropic invariants of traceless symmetric tensors of orders three and four[END_REF] . Their result will be given using the diagrammatic representation already used by Boehler et al. Now let us consider the case of a completely symmetric third order tensor. This situation is amount to add a vector u ∈ H 1 to the previous component D ∈ H 3 . In the diagrammatic notation this vector component will be denoted by a small black dot. Hence, our main result is: [START_REF] Backus | A geometrical picture of anisotropic elastic tensors[END_REF] is given by:

Theorem II.2. An integrity basis for R[H 3 ⊕ H 1 ] O(
I 2 := D ijk D ijk J 2 := u 2 i I 4 := D ijk D ijl D pqk D pql J 4 := D ijk u k D ijl u l K 4 := D ijk D ijl D klp u p L 4 := D ijk u k u j u i I 6 := v 2 i J 6 := D ijk D ijl u k D lpq u p u q K 6 := v k w k L 6 := D ijk D ijl D k v l M 6 := D ijk D pqk u i u j u p u q I 8 := D ijk D ijl u k D pql D pqr v r I 10 := D ijk v i v j v k in which v p := D ijk D ijl D klp ; w k := D ijk u i u j J 2 J 4 K 4 L 4 J 6 K 6 L 6 M 6 I 8

III. MATHEMATICAL FRAMEWORK A. O(3)-tensor spaces

The space T (ijk) is endowed with the natural O(3)-action given by I.2:

(g ⋆ T) ijk := g il g jm g kn T lmn

More generally, this action, sometimes referred to as the Rayleigh action, can be defined on any kth-order tensor space T. A subspace F ⊆ T is said to be O(3)-stable provided g • F ⊆ F for every g ∈ O(3). As can be observed T (ijk) ⊆ T ijk is stable but can still be decomposed into smaller stable subspaces. In other terms T (ijk) is not irreducible. As it will be detailed, O

-irreducible tensors are encoded by harmonic tensors.

Let us consider H k to be the space of kth-order harmonic tensors [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF] . The denomination harmonic is due to a classical isomorphism 3 in R 3 between H k and the space of kth-degree harmonic polynomials 49 . A classical mathematical result [START_REF] Sternberg | Group theory and physics[END_REF] states that SO(3)-action on H k is irreducible: non-trivial SO(3)-stable subspace 50 cannot be found in H k . Now, it is easy to show that O(3)-action on each H k is irreducible. Furthermore, since O(3) is compact, the Peter-Weyl theorem [START_REF] Sternberg | Group theory and physics[END_REF] ensures that every O(3)-space can be isomorphically decomposed into irreducible subspaces. This decomposition is sometimes referred to as the harmonic decomposition [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF][START_REF] Quang | The number and types of all possible rotational symmetries for flexoelectric tensors[END_REF] .

The space T (ijk) can be uniquely decomposed 51

T (ijk) ≃ H 3 ⊕ H 1
i.e. there exists an isomorphism T → (D, u) with D ∈ H 3 and u ∈ H 1 such that g ⋆ T → (g ⋆ D, g ⋆ u).

B. SU(2)-spaces of binary forms

In this subsection the important link between the SU(2)-space of binary forms and the SO(3)-space of harmonic tensors will be pointed out. Through this correspondence it is possible to find polynomial invariants using classical invariant theory [START_REF] Grace | The algebra of invariants[END_REF] . Most of the classical results presented in this subsection are borrowed from the classcial monograph of Sternberg [START_REF] Sternberg | Group theory and physics[END_REF] .

Let us first consider the classical group morphism

ϕ : SU(2) -→ SO(3)
which kernel is {±id}. Now, let S 2k be the space of 2kth-degree binary forms over C 2 , meaning the C-vector space 52 of f given by 2) has a natural irreducible action on the space S 2k , which is:

f (x, y) := n i=0   2k -i i   a i x 2k-i y i for (x, y) ∈ C 2 SU(
(γ • f )(x, y) := f (γ -1 • (x, y)) for γ ∈ SU(2)
Another important result states [START_REF]This result is a direct consequence of the Schur lemma[END_REF] that there exists an isomorphism

ψ : S 2k -→ H k (III.1) satisfying ψ(γ • f ) = ϕ(γ) ⋆ ψ(f )

C. Polynomial invariants on tensor spaces

Let T be a stable O(3)-tensor space and C[T] the algebra of polynomials in T. Now consider the following two invariant algebras [START_REF] Backus | A geometrical picture of anisotropic elastic tensors[END_REF] the first being the algebra of isotropic polynomials, while the second is the one of hemitropic polynomials. These algebras satisfy the following obvious inclusion:

A := C[T] O(3) ; A s := C[T] SO(
A ⊂ A s (III.2)
As a graded algebra, A s can be decomposed into ith-degree homogeneous polynomials:

A s = A s 0 ⊕ A s 1 ⊕ • • • ⊕ A s i • • • Hence Lemma III.1.
A is exactly the even part of A s ; that is

A = A s 0 ⊕ A s 2 ⊕ • • • ⊕ A s 2i • • •
Proof. It has to be observed that if p is a jth-degree homogeneous polynomial in A, then p(-g ⋆ T) = p(T) = (-1) j p(g ⋆ T) = (-1) j p(T) for all g ∈ SO(3) and T ∈ T. This implies our lemma.

This lemma allows to consider the algebra of SO(3)-invariant polynomials on tensor spaces.

Due to the isomorphism ψ of III.1, this amount to consider the algebra of SU(2)-invariant polynomials on the space of binary forms. Once particularized to the space H 3 ⊕ H 1 , the following result is obtained Lemma III.2. The algebra of SO(3)-invariant polynomials on the C-vector space H 3 ⊕ H 1 is isomorphic to the algebra of SU(2)-invariant polynomials on the C-vector space S 6 ⊕ S 2 .

As noted by Boehler et al. [START_REF] Boehler | On the polynomial invariants of the elasticity tensor[END_REF] , the algebra of SO(3)-invariant polynomials on the real vector space H 3 ⊕H 1 is isomorphic to the algebra of SL(2, C)-invariant 54 polynomials on the complex vector space S 6 ⊕ S 2 ; that is

R H 3 ⊕ H 1 SO(3) ≃ C [S 6 ⊕ S 2 ] SL(2,C) D. Polynomial invariants of S 6 ⊕ S 2
Let us consider the space V := S 6 ⊕ S 2 of binary forms. In the monograph of Sturmfels [START_REF] Sturmfels | Algorithms in invariant theory[END_REF] , some important and classical results about R := C[V ] SL(2,C) can be found. These results provide important information to check whether a candidate basis of invariants generates or not the sought invariant algebra.

1. As a graded algebra, R can be decomposed

R = R 0 ⊕ R 1 ⊕ • • •
where each homogeneous space R i is a finite C-vector space. Let us consider the formal

Hilbert series 37 H R (z) := i r i z i , with r i := dimR i 2.
In the case of binary forms, this series can be computed a priori. An integration approach 26 leads to the following result:

Lemma III.3. H R (z) := A(z) (1 -z 2 )(1 -z 4 ) 3 (1 -z 6 ) 2 (1 -z 10 )
where A(z) := 1 + z 2 + 2 z 4 + 5 z 6 + 3 z 7 + 7 z 8 + 10 z 9 + 8 z 10 + 14 z 11 +10 z 12 + 14 z 13 + 10 z 14 + 14 z 15 + 8 z 16 + 10 z 17 + 7 z 18 +3 z 19 + 5 z 20 + 2 z 22 + z 24 + z [START_REF] Littelmann | On the Poincaré series of the invariants of binary forms[END_REF] 3. By Hilbert's theorem [START_REF] Hilbert | Theory of algebraic invariants[END_REF] , the algebra R is finitely generated: there exist

p 1 , p 2 , • • • , p n such that R = C[p 1 , p 2 , • • • , p n ]
With the help of these results integrity bases can now be determined.

IV. INTEGRITY BASIS

A. Integrity basis for S 6 ⊕ S 2 For binary forms, a classical way to construct covariants is to use the transvectant operator 30 : Definition IV.1. Let f and g be two binary forms of respective order m and n. We define the rth-order transvectant of f and g to be the binary form:

{f , g} r := (m -r)! m! × (n -r)! n! r i=0 (-1) i   r i   ∂ r f ∂ r-i x∂ i y ∂ r g ∂ i x∂ r-i y
As a first example, for a quadratic form u ∈ S 2 given by u(x, y) := a 0 x 2 + 2a 1 xy + a 2 y 2 we get {u, u} 2 = 2a 0 a 2 -2a 2 1 which is a classical invariant. And for a cubic form g ∈ S 3 given by g(x, y) := b 0 x 3 + 3b 1 x 2 y + 3b 2 xy 2 + b 3 y 3 we get a quadratic covariant:

{g, g} 2 = 2(b 0 b 2 -b 2 1 )x 2 + 2(b 0 b 3 -b 1 b 2 )xy + 2(b 1 b 3 -b 2 2 )y 2
Such a covariant is said to be of degree 2 (in the coefficients b i ) and of order 2 (in the variables

x, y). This definition of degree and order is general: the degree of a covariant is the degree of the coefficients, while the order concerns the degree of the variables. Hence a 0th-order covariant is an invariant. The next computations will be made using the covariant basis for a sextic form given in table IV A. Such a basis is classic and has been computed by the end of nineteenth century [START_REF] Grace | The algebra of invariants[END_REF] . In this The following result [START_REF] Grace | The algebra of invariants[END_REF][START_REF] Olive | On Gordan's algorithm for binary forms[END_REF] is used to determine a finite generating set of invariants for the algebra R:

1 f 2 {f , f } 6 {f , f } 4 {f , f } 2 3 {C 2,4 , f } 4 {C 2,4 , f } 2 {C 2,4 , f } 1 {C 2,8 , f } 1 4 {C 2,4 , C 2,4 } 4 {C 3,2 , f } 2 {C 3,2 , f } 1 {C 2,8 , C 2,4 } 1 5 {C 2,4 , C 3,2 } 2 {C 2,4 , C 3,2 } 1 {C 2,8 , C 3,2 } 1 6 {C 3,2 , C 3,2 } 2 C 6,6a := {C 3,8 , C 3,2 } 2 C 6,6b := {C 3,6 , C 3,2 } 1 {f , C 2 
Theorem IV.2. If {h 1 , • • • , h s } is a covariant basis for S n
, and if u is a quadratic form, then irreducible invariants of S n ⊕ S 2 are taken from one of this set:

• {h i , u r } 2r for i = 1 • • • s such that h i is of order 2r ;
• {h i h j , u r } 2r where h i is of order 2p + 1 and h j is of order 2r -2p -1.

It should be noted that the obtained generating set need not be irreducible. Hence, invariants can be obtained, degree per degree:

• Degree 2:

i 2 := {f , f } 6 j 2 := {u, u} 2
• Degree 4:

i 4 := {C 2,4 , C 2,4 } 4 j 4 := {C 3,2 , u} 2 k 4 := {C 2,4 , u 2 } 4 l 4 := {f , u 3 } 6
• Degree 6: 

i 6 := {C 3,2 , C 3,2 } 2 j 6 := {C 5,
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 7110 An integrity basis for R[H 3 ] O(3) is given by I 2 , I 4 , I 6 and I 10 In this representation the big circle represents D ∈ H 3 and the lines index contractions. For instance, the invariant 48 λ = D ijk D ijk has the graphical representation:

I 2 : 2 := u 2 iI 4 :I 6 := v 2 iJ 6 :

 2224626 = D ijk D ijk J = D ijk D ijl D pqk D pql J 4 := D ijk u k D ijl u l K 4 := D ijk D ijl D klp u p L 4 := D ijk u k u j u i = D ijk D ijl u k D lpq u p u q K 6 := v k w k L 6 := D ijk D ijl D k v l M 6 := D ijk D pqk u i u j u p u q I 8 := D ijk D ijl u k D pql D pqr v r I 10 := D ijk v i v j v k in which v p := D ijk D ijl D klp ; w k := D ijk u i u j Proof. Let define B := C[I 2 , J 2 , • • • , I 10 ] and A := C[V ] O(3) = C[I 2 , B 2 , • • • , A 10 ]We put B k (resp. A k ) to be the space of kth-degree homogeneous space of B (resp. A). Now it is clear that B ⊂ A By computing dimensions of the vector spaces B k up to k = 10 the same dimension as A k are obtained. Thus each generator A 2 , B 2 , • • • , A 10 belongs to B. Hence it can be concluded that A = B. Now, because all invariants I 2 , • • • , I 10 have real coefficients, this leads us to an integrity basis for R[H 3 ⊕ H 1 ] O(3) .

  table covariants of degree d and order o are denoted C d,o .

	d/o	0	2	4	6	8	10	12

TABLE I .

 I Covariant basis for S 6

  2 , u} 2 k 6 := {C 4,4 , u 2 } 4 l 6 := {C 3,6 , u 3 } 6 m 6 := {C 2,8 , u 4 } 8 {C 8,2 , u} 2 j 9 := {C 7,4 , u 2 } 4 k 9 := {C 6,6a , u 3 } 6 l 9 := {C 6,6b , u 3 } 6 m 9 := {C 5,8 , u 4 } 8 n 9 := {C 4,10 , u 5 } 10 o 9 := {C 3,12 , u 6 } 12 By use of theorem IV.2 we know that R = C[i 2 , j 2 , • • • , i 15 ]. Now we compute homogeneous space dimensions dim(R i ) i=1...15 and compare them with the r i of the Hilbert series H R . These computations have been performed using scripts written in Macaulay 2 20 , the following result is obtained: Proposition IV.3. A minimal Hilbert basis for the algebra C[S 6 ⊕ S 2 ] SL 2 is given by the 27 ,j 9 , k 9 , l 9 , m 9 , n 9 , o 9 9 i 4 , j 4 , k 4 , l 4 4 i 10 10 i 6 , j 6 , k 6 , l 6 , m 6 , 6 i 11 , j 11 11 i 7 , j 7 , k 7 In order to obtain an integrity basis for H 3 ⊕ H 1 , the even part of C[S 6 ⊕ S 2 ] SL 2 has to be determined. For that purpose, we consider the algebra B := C[i 2 , j 2 , i 4 , j 4 , k 4 , l 4 , i 6 , j 6 , k 6 , l 6 , m 6 , i 8 , i 10 ] and compute dim(B 2j ) j=1...13 to compare it with the r 2j of the Hilbert series H R . Finally we get: Lemma IV.4. The even part of the algebra C[S 6 ⊕ S 2 ] SL 2 is generated by the thirteen invariants i 2 , j 2 , i 4 , j 4 , k 4 , l 4 , i 6 , j 6 , k 6 , l 6 , m 6 , i 8 , i 10 Now, from lemmas III.1 and IV.4 and using the isomorphism ψ of III.1: Theorem IV.5. There exist polynomials A 2 , B 2 of degree 2, A 4 , B 4 , C 4 , D 4 of degree 4, A 6 , B 6 , C 6 , D 6 , E 6 of degree 6, A 8 of degree 8 and A 10 of degree 10 such that C[H 3 ⊕ H 1 ] O(3) = C[A 2 , B 2 , . . . , A 10 ] In other terms, Theorem IV.6. An integrity basis for R[H 3 ⊕ H 1 ] O(3) is given by:

	• Degree 15:			
		i 15 := {C 3,8 , C 4 3,2 } 8	
	invariants			
	Name	Degree	Name	Degree
	i 2 , j 2	2 i 9 7	i 13	13
	i 8	8	i 15	15
	B. Integrity basis for H 3 ⊕ H 1			
	• Degree 10:			
		i 10 := {C 3 3,2 , f } 6	

• Degree 7: i 7 := {C 5,4 , u 2 } 4 j 7 := {C 4,6 , u 3 } 6 k 7 := {C 3,8 , u 4 } 8 • Degree 8: i 8 := {C 7,2 , u} 2 • Degree 9: i 9 := • Degree 11: i 11 := {C 9,4 , u 2 } 4 j 11 := {C 10,2 , u} 2 • Degree 13: i 13 := {C 12,2 , u} 2

& Mech. of Solids, 2014,(On-line First).

ACKNOWLEDGMENTS

The second author wishes to thank the pole EMC2 and the Region Pays de la Loire for their funding.