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Kevin B. Li

Beijing Jiaotong University

Abstract

This paper deals with dimension reduction in regression for large
dataset. A new method based on the sliced inverse regression ap-
proach is introduced, called semi-independent regularized sliced in-
verse regression. Our method can handle highly correlated variables.
Asymptotic properties are established under some linearity conditions.
An application on an economic dataset shows that our method out-
performes the non-stationary factor model.

1 Introduction

Forecasting using many predictors has received a good deal of attention in re-
cent years. The curse of dimensionality has been turned into a blessing with
the abundant information in large datasets. Various methods have been
originated to extract efficient predictors, for example, non-stationary fac-
tor model (NFM), Bayesian model averaging, Lasso, boosting, etc. Among
them, non-stationary factor model is conceptually appealing in economics
because it is structurally consistent with log-linearlized models such as non-
stationary stochastic general equilibrium models. The recent development
in statistics provides a new method of dimension reduction in regression for
large-dimensioned data. The literature stems from [24], and [37], which pro-
posed a new way of thinking in the regression analysis, called sliced inverse
regression (SIR). SIR reverses the role of response y and predictors x. Classi-
cal regression methods mainly deal with the conditional density f(y|x). SIR
collects the information of the variation of predictors x along with the change
of the response y, by exploring the conditional density h(x|y). Usually the



dimension of the response is far more less than the dimension of the predic-
tors, hence, it is a way to avoid the “curse of dimensionality”. The traditional
SIR does not work well for highly correlated data, because the algorithm re-
quires the inverse of the covariance matrix. This is not feasible when the
number of variables NV is greater than the number of observations 7', which
happens a lot in economics studies. In addition, the economic variables are
often highly correlated, due to the derivation formula or same category. This
makes the covariance matrix ill-conditioned, causes the inverse matrix lack
of precision and too sensitive to the variation of matrix entries, and leads to
a false or unstable result. There are some extensions of SIR for the highly
collinearity data and “I" < N” problems, for example, regularized sliced
inverse regression ([76], [44]) and partial inverse regression ([42]). In this
paper, we propose a new method of dimension reduction, called the semi-
independent sliced inverse regression (SISIR) method, for many predictors
in a data rich environment. We evaluate its property theoretically and use it
for forecasting economic series. Comparison in terms of pseudo out-of-sample
forecasting simulation shows the advantage of our method. The remaining of
the paper is organized as follows. Section 2 introduces semi-independent SIR
method with its statistical property. An application on an economic dataset
is given in Section 3. Conclusions with some discussions are provided in
Section 4.

2 Modeling and methods
The regression model in [37] takes the form of

Yy = g(ﬁllxa /3,2X7 SR 7/6lKX7 6)7 (2'1)

where the response y is univariate, x is an /N-dimensional vector, and the
random error € is independent of x. Many methods can be used to find
the e.d.r.-directions, for example, principal component analysis might be the
most commonly used one in economics. But unlike these methods, SIR not
only reduces dimensions in regression but also integrates the information
from both predictors and response. Moreover, different from the classical re-
gression methods, SIR intends to collect information on how x changes along
with y. That is to say, instead of estimating the forward regression function
n(x) = E(y|x), inverse regression considers &(y) = E(x|y). Compared with
n(x), the inverse regression function &(y) depends on one-dimensioned y,



which makes the operation much easier. [37] showed that using SIR method,
the e.d.r.-directions can be estimated by solving

COV(E(X|y)),6j = v;Cov(x)B;, (2.2)
where v; is the jth eigenvalue and 3; is the corresponding eigenvector of

COV(E (x|y)) with respect to Cov(x). During the forecasting procedure, the
covariance matrices can be replaced by their usual moment estimates.

2.1 Semi-independent sliced inverse regression

In this section, we introduce grouping methodology with the sliced inverse
regression to improve the performance of SIR on collinear data. Assume
that the variables of interest can be grouped into several blocks, so that two
variables within the same block are correlated to each other, and any two
variables belonging to different blocks are independent. In practice, an or-
thogonalization procedure can be applied to reduce the correlations between
blocks in order to fit our assumption. Thus, we can group the variables
according to their correlations in order to find the e.d.r-directions, because
there is no shared information between groups. The grouping method we use
is hierarchical grouping with complete linkage. The dissimilarity is defined
as 1 — |Correlation|. The algorithm for the semi-independent SIR method
can be described as following.

1. Standardize each explanatory variable to zero mean and unit variance.

2. Clusterx (Nx1)into ( x1/ -+ % )/ based on the correlation matrix
of x, where x; is N; x 1, "7 | N; = N, and ¢ is the number of groups,
which will be determined by cross-validation.

3. Restricted to each group, perform SIR method and pick up k; SIR di-
rections based on the sequential chi-square test (Li, 1991), say 0?, j=
Loooki=1,...c

4. Collect all the SIR variates obtained from the groups, say {0§i)/xi,i =
1,2,....¢,j=1,2,... k.

5. Let A} = ( 0, Oy)/ 0, )/, l=1,....m, m :.Zle k;, where 0, and
05 are zero column vectors with dimension 7 % Ny and S5 1 N,
respectively. Denote A = (A1, g, ..., Ap). The variates {Oyyxi} can
be written in a vector form as (A|x,..., Al x)' = A’x.
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6. Then, perform SIR method one more time to the pooled variates A'x to
reduce dimensions further, and get the e.d.r.-directions (v, ¥a, - - -, 7,),
where v is also determined by the sequential chi-square test. Denote
I'=(v1,72,---»7), the final SISIR variates we chose are I[VA'x.

7. Estimate the values of forecasting series using the SISIR variates IV A’x.
Linear models are used in this paper.

Note that the matrices I is m x v, A is N x m, so I"A’x is v x 1. Therefore,
we only use v factors to build the final model for forecasting y, instead of
using N variables based on the original dataset.

2.2 Statistical property of semi-independent SIR

[37] established the unbiasedness for the e.d.r.-directions found by SIR, as-
suming the following linearity condition.

Linearity Condition 1. For any b € RY, the conditional expectation
E(b'x|31x%,...,0%x) is linear in @\x, ..., B%x.

The linearity condition is not easy to verify, however, [26] showed when x
is elliptically symmetrically distributed, for example, multivariate normally
distributed, the linearity condition holds. Furthermore, [32] showed that
elliptical symmetric distribution is not a restrictive assumption, because the
linearity condition holds approximately when N is large even if the dataset
is not elliptically symmetric. Without loss of generality, we assume each
variable in x has been standardized to zero mean and unit variance for our
discussion. [37] proved the following theorem,

Theorem 1. Assume Linearity Condition 1, the centered inverse regression
curve E(x|y) is contained in the space spanned by ¥x08;, j =1,..., K, where
Yx 18 the covariance matrix of x.

Similar unbiasedness property can be proved for our semi-independent
SIR.

Theorem 2. Under certain linearity conditions, E(x|y) is contained in the
space spanned by S AT .

Theorem 2 describes the desirable property that there is no estimation
bias. The e.d.r.-space estimated by our SISIR method contains the true
inverse regression curve.



2.3 Orthogonalization

For a given dataset X with dimension N x T, and groups Xjy, ..., X, the
correlations between these groups need to be reduced to zero, to achieve
group-wise independence. QR decomposition along with projection opera-
tors is used to perform the orthogonalization. To begin with, use QR decom-
position to find the orthogonal bases of the first group X;, named as Q;.
Next, project the second group X, onto the space of span{Q;}*, which is
the orthogonal complement of the space spanned by X, named as X5*,

Xy = (I - QIQII)X2- (2-3>

Then use QR decomposition again to find the orthogonal bases of X", named
as Qa, and project X3 onto the space of span{Qy, Qz}+, named as X3z*.
Keep doing such process till the last group X, we will get a new sequence
of groups Xy, X", ..., X", in which every two groups are orthogonal, and
the new sequence contains all the information of the original dataset X.

2.4 Regularization

Due to the high correlations between the series within each group, the covari-
ance matrices of each group Yy, are ill-conditioned, which make them hard
to be inversed. We suggest a regularized version of the covariance matrix to
overcome this issue ([28]).

triiy,

Y (1) =(1—7)2 +7 In,, (2.4)

1

where 7 € [0, 1] is the shrinkage parameter. This is similar to the ridge
version proposed by [76], which replaces ¥y, with Xy, + 71y,. The shrink-
age parameter 7 can be chosen by cross-validation. Note when 7 = 1, the
regularized covariance matrix will degenerate to a diagonal matrix whose di-
agonal elements are the means of the eigenvalues of X,. In such case, the
chosen e.d.r.-direction is one of the input series, and the other series, which
may also contain information for the predictors, are discarded.

2.5 Comparison between SISIR and SIR

Before applying the proposed SISIR method to real data, consider the follow-
ing simulated example first to compare the performance of SISIR and SIR



methods. Let x7, X2, ,X10 be independent and identically distributed
(i.i.d.) with multivariate normal distribution N(0,3), where X is a 10 x 10
covariance matrix with 1 at diagonal and 0.9 at off-diagonal. The random
error e is independent to x;’s, and follows normal distribution N (0,0.1). The
response y is simulated using the following formula,

10
y:ijxj+e
j=1

Root mean square error (RMSE) is considered as a criterion to evaluate the
prediction performance.

RMSE = | Y (4 - yi)Z/T, (2.5)

i=1

where g; is the ith predicted value of response, y; is the ¢th observed value,
and T is the number of observations. We simulate 300 observations at each
run under above conditions. In SISIR, the parameters ¢ and 7 are chosen as
¢ =10, 7 = 0.5 to minimize RMSE. Table 1 presents the means and standard
deviations for the RMSE of SISIR and SIR across 100 runs. From Table 1,

Table 1: RMSE for SISIR and SIR

| SISIR  SIR
Mean | 11.73 17.04
S.D. 081 195

it is clear that SISIR has much smaller RMSE than SIR. In fact, our other
simulations, which are not presented here, show that SISIR performs even
better when the sample size T decreases to N.

3 Application

The dataset contains 143 quarterly economic variables from 13 economic
categories. We use 109 of them as explanatory variables, since the other
34 are just high-level aggregates of the 109. All 143 variables are used for



forecasting purpose. The correlation plot of the 109 predictor series after
logarithm and/or differencing transformation is showed in Figure 1, which
demonstrates that there do exist some highly correlated blocks. Therefore,
our semi-independent method is necessary for this dataset. For the purpose
of comparison, similar rolling pseudo out-of-sample forecasting simulation is
used. The main steps can be described as follows,

1.

From 1985 to 2008, at each date ¢, use cross-validation, which is de-
scribed below, to the most recent 100 observations to choose the pa-
rameter ¢ and 7 in SISIR based on mean square error.

. Use the chosen ¢ and 7, apply SISIR one more time to predict g,

where h is the forecasting period.

Calculate the RMSE for the forecasting procedure,

T

RMSE = Z (Z/t+h - @t+h)2/T-

t=1

The steps for cross-validation are described as follows,

1.

Regress ;4 and z; on the autoregressive terms 1, y;, Y1, Yi—2, Yi—3,
in order to eliminate the autoregressive effect. Denote the residuals as
Ut+n and Ty

. Let &(¢) ={1,--- ,t —2h — 3,t +2h + 3,--- ,100}, at each date t =

1,---,100 — A, find the e.d.r-directions and linear regression model
using SISIR and observations ¢; and Z;, i € ().

Use the e.d.r-directions and linear regression model from the above step
at date t to predict g yp.

For fixed h, parameters (c,7) are chosen by minimizing the sum of
squared forecasting error,

1 100—h 9
(6.7) = argming o 3~ (Grn — Gien)
100 — h 4
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Figure 1: Plot of Correlations of the 109 Predictor Series



We compare our method with the non-stationary factor model using the
first five principle components (NFM-5), which was claimed to be no worse
than any other shrinkage methods according to Stock and Watson (2011).
Autoregressive model of order 4 (AR(4)) is used as a benchmark, all RMSEs
are recorded as the ratio relative to AR(4). Smaller relative RMSE indicates
better forecasting performance. Table 2 presents the number of series with
smaller RMSE than AR(4) model for SISIR and NFM-5. We can see that for
forecasting period h = 1, if SISIR is used, there are 97 series out of 143 have
smaller RMSE than the benchmark AR(4) model. If NFM-5 is used, only
85 series out of 143 have smaller RMSE than AR(4) model. The differences
become even larger for big forecasting period, when h = 4 the number of
series of SISIR increases to 115 while the number of NFM-5 decreases to
53. Table 3 presents the distributions of the RMSEs for AR(4), NFM-5, and

Table 2: Number of Series with Smaller RMSE than AR(4) Model
| NFM-5 SISIR

h=1 85 97
h=2 59 109
h=4 93 115

SISIR methods. When h = 1, the first quartile of the relative RMSE of
SISIR is just 0.768, which is much smaller than the relative RMSE of NFM-5
(0.961), and the median relative RMSE of SISIR is 0.907, while NFM-5 has
0.993. When h = 2 and h = 4, SISIR improves the forecasting results of
AR(4) for more than 3/4 of the series. The relative RMSE of SISIR at first,
second, and third quartile are all smaller than those of NFM-5. From Table
2 and 3, one can tell that SISIR improves the forecasting results significantly
compared to the NFM-5 method, especially for longer forecasting period.
Table 4 presents the median RMSE relative to AR(4) model by category
via cross-validation. Column “S&W” reports the smallest relative RMSE
Stock and Watson got using NFM-5 and other shrinkage methods in their
2011 paper. Comparing all these results, SISIR method has smaller median
relative RMSESs for more than 70% of these categories among three forecast-
ing period, which demonstrates its superiority again. Table 4 also indicates
the performance of SISIR varied across categories. It has outstanding perfor-
mance for some categories, such as Industrial Production, Unemployment



Table 3: Distributions of Relative RMSEs by Pseudo Out-of-Sample Fore-

casting

Method Percentiles
0.050 0.250 0.500 0.750 0.950
AR(4) 1.000 1.000 1.000 1.000 1.000
NFM-5 0.874 0.961 0.993 1.022 1.089
SISIR 0.621 0.768 0.907 1.048 1.372
(a) h=1

Table 4: Median Relative RMSE for Forecasting by Category of Series

h=1 h=2 h=4

Category NFM-5 S&W SISIR | NFM-5 S&W SISIR | NFM-5 S&W  SISIR
1. GDP Components 0.905  0.905 1.079 0.907  0.870 0.807 0.906  0.906 0.839
2. Industrial Production 0.882  0.882 0.669 0.861  0.852 0.694 0.827  0.827 0.745
3. Employment 0.861  0.861 0.849 0.861  0.859 0.803 0.844  0.842 0.823
4. Unempl. Rate 0.800  0.799 0.771 0.750  0.723 0.723 0.762  0.743 0.647
5. Housing 0.936  0.897 1.220 0.940  0.902 1.081 0.926  0.882 0.807
6. Inventories 0.900 0.886 0.856 0.867  0.867 0.764 0.856  0.856 0.784
7. Prices 0.980  0.970 0.865 0.977  0.961 0.892 0.963  0.948 0.797
8. Wages 0.993  0.938 0.967 0.999  0.919 0.960 1.019  0.931 1.031
9. Interest Rates 0.980  0.946 0.849 0.952  0.928 0.892 0.956  0.949 0.822
10. Money 0.953  0.926 1.000 0.933  0.921 0.950 0.909  0.909 0.927
11. Exchange Rates 1.015  0.981 0.974 1.015  0.980 1.108 1.036  0.965 1.150
12. Stock Prices 0.983  0.983 0.840 0.977  0.955 0.893 0.974  0.961 1.039
13. Cons. Exp. 0.977 0977 0.765 0.963  0.960 1.082 0.966  0.955 0.963
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Rate, Inventories, Interest Rates, etc. But it does not work well for
some others, such as Housing, Money, Exchange Rates. Figure 2 plots six
series from both SISIR favored and no-favored categories. Three of them in
Figure 2a are from SISIR favored categories and three of them in Figure 2b
are from SISIR no-favored categories. From these plots, one can see that the
responses of the SISIR no-favored series are quite disordered. They are more
like white noises, the variations are big but the changes of x means are not
distinct. The inverse regression method is aimed to detect the variation of
E(x|y). If the conditional expectations of x do not have much difference for
different values of y, the estimation for the e.d.r.-directions will be inaccurate,
and will lead to the poor performance on forecasting.

4 Conclusion

Sliced inverse regression now becomes a popular dimension reduction method
in computer science, engineering and biology. In this article, we bring it to
economic forecasting model when there is a large number of predictors and
high collinearity. Compared to the classical non-stationary factor model,
SIR retrieves information not only from the predictors but also from the re-
sponse. Moreover, our semi-independent regularized SIR has the ability to
handle highly collinearity or “T" < N” data. The simulation confirms that
it offers a lot of improvements over NFM-5 model on the economic dataset.
After finding the SISIR variates, we use linear models for forecasting the re-
sponses ¥y, because scatter plots for SISIR variates and y values show strong
linear relationships, and the results are desirable. But one may use poly-
nomials, splines, Lasso, or some other more advanced regression techniques
for different situations. Based on its basic idea, there are more than one
generalizations of SIR using higher order inverse moments. For instance,
SAVE, SIR-1T ([37]), DR ([45]), and SIMR ([71]). Our semi-independent al-
gorithm can also be applied to these methods for highly collinearity data,
and good performance is expected. Above all, we can conclude that the
semi-independent regularized sliced inverse regression is a powerful tool in
forecasting using many predictors. It may not be limited in economic fore-
casting, and can also be applied to dimension reduction or variable selection
problems in social science, microarray analysis, or clinical trails when the
dataset is large and highly correlated.
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