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Introduction

Forecasting using many predictors has received a good deal of attention in recent years. The curse of dimensionality has been turned into a blessing with the abundant information in large datasets. Various methods have been originated to extract efficient predictors, for example, non-stationary factor model (NFM), Bayesian model averaging, Lasso, boosting, etc. Among them, non-stationary factor model is conceptually appealing in economics because it is structurally consistent with log-linearlized models such as nonstationary stochastic general equilibrium models. The recent development in statistics provides a new method of dimension reduction in regression for large-dimensioned data. The literature stems from [START_REF] Duan | Slicing regression: a link-free regression method[END_REF], and [START_REF] Li | Sliced inverse regression for dimension reduction (with discussion)[END_REF], which proposed a new way of thinking in the regression analysis, called sliced inverse regression (SIR). SIR reverses the role of response y and predictors x. Classical regression methods mainly deal with the conditional density f (y|x). SIR collects the information of the variation of predictors x along with the change of the response y, by exploring the conditional density h(x|y). Usually the 1 dimension of the response is far more less than the dimension of the predictors, hence, it is a way to avoid the "curse of dimensionality". The traditional SIR does not work well for highly correlated data, because the algorithm requires the inverse of the covariance matrix. This is not feasible when the number of variables N is greater than the number of observations T , which happens a lot in economics studies. In addition, the economic variables are often highly correlated, due to the derivation formula or same category. This makes the covariance matrix ill-conditioned, causes the inverse matrix lack of precision and too sensitive to the variation of matrix entries, and leads to a false or unstable result. There are some extensions of SIR for the highly collinearity data and "T < N " problems, for example, regularized sliced inverse regression ( [START_REF] Zhong | RSIR: Regularized Sliced Inverse Regression for motif discovery[END_REF], [START_REF] Li | Sliced inverse regression with regularizations[END_REF]) and partial inverse regression ( [START_REF] Li | Partial inverse regression[END_REF]). In this paper, we propose a new method of dimension reduction, called the semiindependent sliced inverse regression (SISIR) method, for many predictors in a data rich environment. We evaluate its property theoretically and use it for forecasting economic series. Comparison in terms of pseudo out-of-sample forecasting simulation shows the advantage of our method. The remaining of the paper is organized as follows. Section 2 introduces semi-independent SIR method with its statistical property. An application on an economic dataset is given in Section 3. Conclusions with some discussions are provided in Section 4.

Modeling and methods

The regression model in [START_REF] Li | Sliced inverse regression for dimension reduction (with discussion)[END_REF] takes the form of

y = g(β ′ 1 x, β ′ 2 x, . . . , β ′ K x, ), (2.1) 
where the response y is univariate, x is an N -dimensional vector, and the random error is independent of x. Many methods can be used to find the e.d.r.-directions, for example, principal component analysis might be the most commonly used one in economics. But unlike these methods, SIR not only reduces dimensions in regression but also integrates the information from both predictors and response. Moreover, different from the classical regression methods, SIR intends to collect information on how x changes along with y. That is to say, instead of estimating the forward regression function η(x) = E(y|x), inverse regression considers ξ(y) = E(x|y). Compared with η(x), the inverse regression function ξ(y) depends on one-dimensioned y, which makes the operation much easier. [START_REF] Li | Sliced inverse regression for dimension reduction (with discussion)[END_REF] showed that using SIR method, the e.d.r.-directions can be estimated by solving Cov E(x|y)

β j = ν j Cov(x)β j , (2.2) 
where ν j is the jth eigenvalue and β j is the corresponding eigenvector of Cov E(x|y) with respect to Cov(x). During the forecasting procedure, the covariance matrices can be replaced by their usual moment estimates.

Semi-independent sliced inverse regression

In this section, we introduce grouping methodology with the sliced inverse regression to improve the performance of SIR on collinear data. Assume that the variables of interest can be grouped into several blocks, so that two variables within the same block are correlated to each other, and any two variables belonging to different blocks are independent. In practice, an orthogonalization procedure can be applied to reduce the correlations between blocks in order to fit our assumption. Thus, we can group the variables according to their correlations in order to find the e.d.r-directions, because there is no shared information between groups. The grouping method we use is hierarchical grouping with complete linkage. The dissimilarity is defined as 1 -|Correlation|. The algorithm for the semi-independent SIR method can be described as following.

1. Standardize each explanatory variable to zero mean and unit variance.

2. Cluster x (N ×1) into x 1 ′ • • • x c ′ ′ based on the correlation matrix of x, where x i is N i × 1, c
i=1 N i = N , and c is the number of groups, which will be determined by cross-validation.

3. Restricted to each group, perform SIR method and pick up k i SIR directions based on the sequential chi-square test [START_REF] Li | Sliced inverse regression for dimension reduction (with discussion)[END_REF], say θ

(i) j , j = 1, . . . , k i , i = 1, . . . , c.
4. Collect all the SIR variates obtained from the groups, say {θ

(i)′ j x i , i = 1, 2, . . . , c, j = 1, 2, . . . , k i }. 5. Let λ l = 0 1 ′ θ (i)′ j 0 2 ′ ′ , l = 1, . . . , m, m = c i=1 k i ,
where 0 1 and 0 2 are zero column vectors with dimension i-1 k=1 N k and c k=i+1 N k , respectively. Denote Λ = (λ 1 , λ 2 , . . . , λ m ). The variates {θ

(i)′ j x i } can be written in a vector form as (λ ′ 1 x, . . . , λ ′ m x) ′ = Λ ′ x.
6. Then, perform SIR method one more time to the pooled variates Λ ′ x to reduce dimensions further, and get the e.d.r.-directions (γ 1 , γ 2 , . . . , γ v ), where v is also determined by the sequential chi-square test. Denote Γ = (γ 1 , γ 2 , . . . , γ v ), the final SISIR variates we chose are Γ ′ Λ ′ x.

7. Estimate the values of forecasting series using the SISIR variates Γ ′ Λ ′ x.

Linear models are used in this paper.

Note that the matrices

Γ is m × v, Λ is N × m, so Γ ′ Λ ′ x is v × 1.
Therefore, we only use v factors to build the final model for forecasting y, instead of using N variables based on the original dataset.

Statistical property of semi-independent SIR

[37] established the unbiasedness for the e.d.r.-directions found by SIR, assuming the following linearity condition.

Linearity Condition 1. For any b ∈ R N , the conditional expectation E(b ′ x|β ′ 1 x, . . . , β ′ K x) is linear in β ′ 1 x, . . . , β ′ K x.
The linearity condition is not easy to verify, however, [START_REF] Eaton | A characterization of spherical distributions[END_REF] showed when x is elliptically symmetrically distributed, for example, multivariate normally distributed, the linearity condition holds. Furthermore, [START_REF] Hall | On almost linearity of low dimensional projections from high dimensional data[END_REF] showed that elliptical symmetric distribution is not a restrictive assumption, because the linearity condition holds approximately when N is large even if the dataset is not elliptically symmetric. Without loss of generality, we assume each variable in x has been standardized to zero mean and unit variance for our discussion. [START_REF] Li | Sliced inverse regression for dimension reduction (with discussion)[END_REF] proved the following theorem, Theorem 1. Assume Linearity Condition 1, the centered inverse regression curve E(x|y) is contained in the space spanned by Σ x β j , j = 1, . . . , K, where Σ x is the covariance matrix of x.

Similar unbiasedness property can be proved for our semi-independent SIR. Theorem 2. Under certain linearity conditions, E(x|y) is contained in the space spanned by Σ x ΛΓ.

Theorem 2 describes the desirable property that there is no estimation bias. The e.d.r.-space estimated by our SISIR method contains the true inverse regression curve.

Orthogonalization

For a given dataset X with dimension N × T , and groups X 1 , . . . , X c , the correlations between these groups need to be reduced to zero, to achieve group-wise independence. QR decomposition along with projection operators is used to perform the orthogonalization. To begin with, use QR decomposition to find the orthogonal bases of the first group X 1 , named as Q 1 . Next, project the second group X 2 onto the space of span{Q 1 } ⊥ , which is the orthogonal complement of the space spanned by X 1 , named as X 2 * ,

X 2 * = (I -Q 1 Q 1 ′ )X 2 . (2.3)
Then use QR decomposition again to find the orthogonal bases of X 2 * , named as Q 2 , and project X 3 onto the space of span{Q 1 , Q 2 } ⊥ , named as X 3 * . Keep doing such process till the last group X c , we will get a new sequence of groups X 1 , X 2 * , . . . , X c * , in which every two groups are orthogonal, and the new sequence contains all the information of the original dataset X.

Regularization

Due to the high correlations between the series within each group, the covariance matrices of each group Σ x i are ill-conditioned, which make them hard to be inversed. We suggest a regularized version of the covariance matrix to overcome this issue ( [START_REF] Friedman | Regularized discriminant analysis[END_REF]).

Σ x i (τ ) = (1 -τ )Σ x i + τ trΣ x i N i I N i , (2.4) 
where τ ∈ [0, 1] is the shrinkage parameter. This is similar to the ridge version proposed by [START_REF] Zhong | RSIR: Regularized Sliced Inverse Regression for motif discovery[END_REF], which replaces Σ x i with Σ x i + τ I N i . The shrinkage parameter τ can be chosen by cross-validation. Note when τ = 1, the regularized covariance matrix will degenerate to a diagonal matrix whose diagonal elements are the means of the eigenvalues of Σ x i . In such case, the chosen e.d.r.-direction is one of the input series, and the other series, which may also contain information for the predictors, are discarded.

Comparison between SISIR and SIR

Before applying the proposed SISIR method to real data, consider the following simulated example first to compare the performance of SISIR and SIR methods. Let x 1 , x 2 , • • • , x 10 be independent and identically distributed (i.i.d.) with multivariate normal distribution N (0, Σ), where Σ is a 10 × 10 covariance matrix with 1 at diagonal and 0.9 at off-diagonal. The random error e is independent to x i 's, and follows normal distribution N (0, 0.1). The response y is simulated using the following formula,

y = 10 j=1 j × x j + e
Root mean square error (RMSE) is considered as a criterion to evaluate the prediction performance.

RMSE = T i=1 ŷi -y i 2 T , (2.5) 
where ŷi is the ith predicted value of response, y i is the ith observed value, and T is the number of observations. We simulate 300 observations at each run under above conditions. In SISIR, the parameters c and τ are chosen as c = 10, τ = 0.5 to minimize RMSE. Table 1 presents the means and standard deviations for the RMSE of SISIR and SIR across 100 runs. From Table it is clear that SISIR has much smaller RMSE than SIR. In fact, our other simulations, which are not presented here, show that SISIR performs even better when the sample size T decreases to N .

Application

The dataset contains 143 quarterly economic variables from 13 economic categories. We use 109 of them as explanatory variables, since the other 34 are just high-level aggregates of the 109. All 143 variables are used for forecasting purpose. The correlation plot of the 109 predictor series after logarithm and/or differencing transformation is showed in Figure 1, which demonstrates that there do exist some highly correlated blocks. Therefore, our semi-independent method is necessary for this dataset. For the purpose of comparison, similar rolling pseudo out-of-sample forecasting simulation is used. The main steps can be described as follows,

1. From 1985 to 2008, at each date t, use cross-validation, which is described below, to the most recent 100 observations to choose the parameter c and τ in SISIR based on mean square error.

2. Use the chosen ĉ and τ , apply SISIR one more time to predict ŷt+h , where h is the forecasting period.

3. Calculate the RMSE for the forecasting procedure,

RMSE = T t=1 y t+h -ŷt+h 2 /T .
The steps for cross-validation are described as follows,

1. Regress y t+h and x t on the autoregressive terms 1, y t , y t-1 , y t-2 , y t-3 , in order to eliminate the autoregressive effect. Denote the residuals as ỹt+h and xt . We compare our method with the non-stationary factor model using the first five principle components (NFM-5), which was claimed to be no worse than any other shrinkage methods according to Stock and Watson (2011). Autoregressive model of order 4 (AR(4)) is used as a benchmark, all RMSEs are recorded as the ratio relative to AR(4). Smaller relative RMSE indicates better forecasting performance. Table 2 presents the number of series with smaller RMSE than AR(4) model for SISIR and NFM-5. We can see that for forecasting period h = 1, if SISIR is used, there are 97 series out of 143 have smaller RMSE than the benchmark AR(4) model. If NFM-5 is used, only 85 series out of 143 have smaller RMSE than AR(4) model. The differences become even larger for big forecasting period, when h = 4 the number of series of SISIR increases to 115 while the number of NFM-5 decreases to 53. Table 3 presents the distributions of the RMSEs for AR(4), NFM-5, and SISIR methods. When h = 1, the first quartile of the relative RMSE of SISIR is just 0.768, which is much smaller than the relative RMSE of NFM-5 (0.961), and the median relative RMSE of SISIR is 0.907, while NFM-5 has 0.993. When h = 2 and h = 4, SISIR improves the forecasting results of AR(4) for more than 3/4 of the series. The relative RMSE of SISIR at first, second, and third quartile are all smaller than those of NFM-5. From Table 2 and3, one can tell that SISIR improves the forecasting results significantly compared to the NFM-5 method, especially for longer forecasting period. Table 4 presents the median RMSE relative to AR(4) model by category via cross-validation. Column "S&W" reports the smallest relative RMSE Stock and Watson got using NFM-5 and other shrinkage methods in their 2011 paper. Comparing all these results, SISIR method has smaller median relative RMSEs for more than 70% of these categories among three forecasting period, which demonstrates its superiority again. Rate, Inventories, Interest Rates, etc. But it does not work well for some others, such as Housing, Money, Exchange Rates. Figure 2 plots six series from both SISIR favored and no-favored categories. Three of them in Figure 2a are from SISIR favored categories and three of them in Figure 2b are from SISIR no-favored categories. From these plots, one can see that the responses of the SISIR no-favored series are quite disordered. They are more like white noises, the variations are big but the changes of x means are not distinct. The inverse regression method is aimed to detect the variation of E(x|y). If the conditional expectations of x do not have much difference for different values of y, the estimation for the e.d.r.-directions will be inaccurate, and will lead to the poor performance on forecasting.

Let

ℑ(t) = {1, • • • , t -2h -3, t + 2h + 3, • • • , 100}, at each date t = 1, • • • , 100 -h,

Conclusion

Sliced inverse regression now becomes a popular dimension reduction method in computer science, engineering and biology. In this article, we bring it to economic forecasting model when there is a large number of predictors and high collinearity. Compared to the classical non-stationary factor model, SIR retrieves information not only from the predictors but also from the response. Moreover, our semi-independent regularized SIR has the ability to handle highly collinearity or "T < N " data. The simulation confirms that it offers a lot of improvements over NFM-5 model on the economic dataset.

After finding the SISIR variates, we use linear models for forecasting the responses y, because scatter plots for SISIR variates and y values show strong linear relationships, and the results are desirable. But one may use polynomials, splines, Lasso, or some other more advanced regression techniques for different situations. Based on its basic idea, there are more than one generalizations of SIR using higher order inverse moments. For instance, SAVE, SIR-II ( [START_REF] Li | Sliced inverse regression for dimension reduction (with discussion)[END_REF]), DR ( [START_REF] Li | On directional regression for dimension reduction[END_REF]), and SIMR ( [START_REF] Ye | Sliced inverse moment regression using weighted chi-squared tests for dimension reduction[END_REF]). Our semi-independent algorithm can also be applied to these methods for highly collinearity data, and good performance is expected. Above all, we can conclude that the semi-independent regularized sliced inverse regression is a powerful tool in forecasting using many predictors. It may not be limited in economic forecasting, and can also be applied to dimension reduction or variable selection problems in social science, microarray analysis, or clinical trails when the dataset is large and highly correlated.
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 1 Figure 1: Plot of Correlations of the 109 Predictor Series

Figure 2 :

 2 Figure 2: Plots of the Forecasting Values (△) vs. Real Observations (•) from 1985 to 2008.

Table 2 :

 2 Number of Series with Smaller RMSE than AR(4) Model

		NFM-5 SISIR
	h = 1	85	97
	h = 2	59	109
	h = 4	53	115

Table 4

 4 also indicates the performance of SISIR varied across categories. It has outstanding performance for some categories, such as Industrial Production, Unemployment

Table 3 :

 3 Distributions of Relative RMSEs by Pseudo Out-of-Sample Forecasting

	Method	Percentiles
		0.050 0.250 0.500 0.750 0.950
	AR(4)	1.000 1.000 1.000 1.000 1.000
	NFM-5	0.874 0.961 0.993 1.022 1.089
	SISIR	0.621 0.768 0.907 1.048 1.372
		(a) h = 1

Table 4 :

 4 Median Relative RMSE for Forecasting by Category of Series

			h = 1			h = 2			h = 4	
	Category	NFM-5 S&W SISIR NFM-5 S&W SISIR NFM-5 S&W SISIR
	1. GDP Components	0.905	0.905	1.079	0.907	0.870	0.807	0.906	0.906	0.839
	2. Industrial Production	0.882	0.882	0.669	0.861	0.852	0.694	0.827	0.827	0.745
	3. Employment	0.861	0.861	0.849	0.861	0.859	0.803	0.844	0.842	0.823
	4. Unempl. Rate	0.800	0.799	0.771	0.750	0.723	0.723	0.762	0.743	0.647
	5. Housing	0.936	0.897	1.220	0.940	0.902	1.081	0.926	0.882	0.807
	6. Inventories	0.900	0.886	0.856	0.867	0.867	0.764	0.856	0.856	0.784
	7. Prices	0.980	0.970	0.865	0.977	0.961	0.892	0.963	0.948	0.797
	8. Wages	0.993	0.938	0.967	0.999	0.919	0.960	1.019	0.931	1.031
	9. Interest Rates	0.980	0.946	0.849	0.952	0.928	0.892	0.956	0.949	0.822
	10. Money	0.953	0.926	1.000	0.933	0.921	0.950	0.909	0.909	0.927
	11. Exchange Rates	1.015	0.981	0.974	1.015	0.980	1.108	1.036	0.965	1.150
	12. Stock Prices	0.983	0.983	0.840	0.977	0.955	0.893	0.974	0.961	1.039
	13. Cons. Exp.	0.977	0.977	0.765	0.963	0.960	1.082	0.966	0.955	0.963
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(a) From SISIR Favored Categories (b) From SISIR No-Favored Categories