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Abstract—In this paper we propose a multiple sea floor model
based approach to improve bathymetry estimation with tracking
algorithms. Traditionally interferometry is used to estimate the
phase difference of signals received by two sensors, implicitly
the direction of arrival (DOA) of the wave impinging both
sensors. In our approach, we employ a state space model to
describe data collected by a multi-sensor side scan sonar, and
the evolution of the underlying DOA angle. The challenge with
space state models is choosing the right model, and detecting
the switch between models. We propose the use of several
models that describe different sea-floor patterns and merge them
within the framework of the interacting multiple model (IMM).
Since the sonar array processing problem is non-linear and
non-Gaussian, we propose an IMM particle filter algorithm to
provide robust tracking while not sacrificing performance. Also
an interesting new application is the swath segmentation, which
appears as a side result implied by calculating the different model
probabilities.

Index Terms—side scan sonar, bathymetry, DOA estimation,
tracking, bootstrap filter, multiple model, IMM, Markov jump
systems.

I. INTRODUCTION

In a recent paper [1] we successfully used a DOA tracking

technique for sea-floor angle of arrival estimation in the

case of side scan sonars. The tracking algorithm exploits

noisy array data to recover the sea-floor profile and, more

importantly, to resolve multiple echoes interfering with the

main sea floor echo. The multiple interfering echoes are

caused by the existence of multiple paths involving sea

surface reflections. Moreover, due to the non-linear and

non-Gaussian state space model, the implementation of the

proposed tracker was based on a particle filter, more precisely

the bootstrap filter [2].

In all state space model descriptions a crucial role is

played by the state equation, which represents an added

prior upon the temporal evolution of the internal state. For

example kynematic state models [3] such as the nearly

constant velocity (NCV), wiener acceleration process (WAP)

or coordinated turn (CT) models are employed when tracking

dynamical targets. However, when dealing with maneuvering

targets often one state model isn’t sufficient and several

multiple model (MM) algorithms where developed, the most

popular being the IMM, first proposed in [4]. In our previous

article, since interfering echoes were weakly structured, the

internal state was chosen to be the DOA of the sea floor

echo. However the problem with such an approach is that

one state model cannot describe all possible terrain reliefs

and corresponding angle variation. In this sense, this paper

aims at presenting the adaptation and application of an

IMM Bootstrap filter in the case of bathymetry tracking.

The proposed algorithm is based on the IMM particle filter

introduced in [5]; several batymetrical state models are

employed on simulated signals and real side-scan sonar data.

Also the choice of the state variable between DOA angle and

bathymetric height is presented.

II. MARKOVIAN JUMP MODEL FOR BATHYMETRY

TRACKING

We consider a dynamic system with the internal state

represented by the stochastic process xt, representing either

the sea floor DOA angle θt or the bathymetric height ht,

both being linked by a non-linear transformation. The scope is

to estimate the inner state based on the system observations,

represented by the stochastic process yt, i.e. the signal received

by the sensor array. let us consider equations 1 and 2, that

represent the state and measurement equations of the model:

xt = Ft(xt−1, vt,mt) (1)

yt = Ht(xt, nt,mt) (2)

where t denotes the discrete time and mt, the modal state

(model) which is a time-homogeneous (hidden) Markov chain

with M states (models). Ft and Ht represent the model condi-

tioned transition and measurement functions and are possibly

non-linear. xt together with mt define a hybrid space state

system composed of euclidean and discreet valued variables.

When the modal state is a Hiden Markov Chain the model

is called Markovian jump system. The stochastic processes

v and n are mutually independent white noises with known

probability densities. v represents the model noise and n the

measurement noise.

The Markov chain mt dictates the model active during the

time interval ]t − 1, t], with the transition probability matrix

Π defined as:

[Π]ij = πij , P (mt = j|mt−1 = i), ∀i, j ∈ {1, . . . ,M} (3)

In the context of array processing, the observation is usualy

linked to the DOA angle θt (also indirectly to the bathymetric
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height ht) in the following way:

yt = A(θt)st + nt (4)

where we considered one narrow-band source located in the

far-field of the uniform linear array (ULA) comprised of P
receivers. Ideally this source signal will represent the sea

floor back scattered signal. yt ∈ C
[P×1] represents the signal

received over the array. st ∈ C represents the source signal,

nt ∈ C
[P×1] represents the additive noise component and

A ∈ C
[P×1] represents the steering vector, which is a function

of the internal state. In the case of a well calibrated array, the

steering vector is of the form:

A(θt) =











1
exp(i2π d

λ
sin(θt))

...

exp(i2π d
λ
(P − 1) sin(θt)











(5)

where θ represents the direction of arrival of the source i.e.

the back scattered sea-floor echo, d the receiver spacing and

λ the wavelength. Note that θt is the angle between the

echo DOA and the plane orthogonal to the array axis. In

[1] it was shown that the observation distribution closely

obeys a multivariate Laplace law [6], thus in this article we

will utilize this multivariate probability distribution. Since we

know the distribution of the whole observation p(yt) and not

just the noise distribution p(vt) we are able to avoid the

nuisance parameter st estimation. Furthermore the Laplace

distribution proves to be robust in the sense that it yields a

good overlap between the prediction pdf and the observation

pdf thus making possible the application of the bootstrap filter.

The multiple model framework that we propose for

bathymetry tracking is described by the jump Markov system

state equation 1 and the measurement equation 4. The model

state mt is used to switch between different state prediction

models either for the DOA angle or directly for the bathymetric

height. The measurement equation is unaffected by mt, how-

ever in the case of bathymetric height driven state equations

an additional transformation is required.

It is well known [3], [7] that the optimal filtering algorithm

in the switching multiple model framework, that is, the al-

gorithm that recursively computes the posterior distribution

p(xt|y1:t), requires a number of mode matched filters that

exponentially increases with t. This branching of modes phe-

nomenon renders impractical the optimal filter. Thus, several

sub-optimal methods have been proposed. Arguably the most

successful sub-optimal filter, the IMM has a distinctive simi-

larity to the optimal filter while imposing a constant number

of mode matched filters throughout the filtering process, it

has M filters running in parallel [8]. If all the modes in the

Markovian switching system are linear and Gaussian, each of

these mode matched filters is a Kalman filter [9]. However,

since the bathymetry tracking system has a non-linear and

non-Gaussian measurement equation 4, we propose to use a

particle implementation of the mode matched filters. The first

practical particle filter, the bootstrap (BF) was proposed in

[2] and approximates the posterior p(xt|y1:t) distribution with

a weighted set of particles. For a thorough introduction into

particle filtering methods see for instance [10].

III. IMM BF FOR BATHYMETRY TRACKING

In this section we present the proposed IMM based particle

filter aimed at estimating the internal state of the bathymetric

jump Markov system. For a system comprised of M possible

models, the IMM is composed of M parallel mode matched

filters, each for one possible model. The probabilities of each

model, p(mt|y1:t) are recursively computed at each time step

and used to merge the individual filter estimates. The mode

matched filters are implemented using a bootstrap filter, with

each filter having its own set of particles, as opposed to

the single shared set implementation proposed in [11], also

presented into more details in [12]. The IMM algorithm is

generically decomposed into 4 stages: mixing, model con-

ditional filtering, model probability update and merging of

individual filter estimates. The proposed IMMBF algorithm

is illustrated in Algorithm 1.

The key step of the IMM algorithm is the mixing stage,

where the input of each mode matched filter j at time instant

t is obtained from the mixing of the mode matched filter

estimates from time instant t − 1, effectively achieving an

interaction of the M models. The weightings used to perform

the mixing are called mixing probabilities, µi|j and are defined

as the probability that mode i was in effect at time t − 1
given that model j is in effect at time t. In the case of linear-

Gaussian systems the mixing distribution p(xt|mt = j, y1:t)
is a weighted sum of Gaussian distributions with the weights

µi|j [3]. Note that the original IMM approximates the mixing

distribution by a single Gaussian with the same mean and

covariance as the Gaussian mixture. When dealing with non-

linear and non-Gaussian systems, Monte Carlo approximations

of distributions as weighted particles are employed [13]. In

such conditions, the mixing distribution for mt = j is obtained

by sampling from the µi|j weighted sum of model matched

posterior densities obtained at t − 1,
∑

i µ
i|jp(xt−1|mt−1 =

i, y1:t).
The mixing distribution computed for each model j is

utilized to reinitialize the mode matched particle filters in

the model conditioned filtering step. Furthermore filtering is

carried out in the usual two step procedure: prediction of the

reinitialized particles through the state transition equation 1

and weights updating of the reinitialized particles taking into

account the new observation. We only perform resampling

when effective number of particles drops below a threshold

value [14]. At the end of this step the mode conditioned

posterior distribution p(xt|mt = j, y1:t) is obtained for each

mode j as a weighted particle approximation.

The model conditioned likelihoods p(yt|x
(n)j
t ) computed

for each particle (n) and model j are utilized to update the

model probabilities. As suggested in [15] we consider an

average model likelihood Lj
t as the mean of the individual

particles likelihoods in each of the models. Based on the newly

computed model probabilities the overall posterior density

p(xt|y1:t) is estimated as the weighted sum of the model

conditioned posterior distributions p(xt|mt = j, y1:t). This

operation is again achieved by sampling.
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Algorithm 1: IMM Bootstrap Filter (IMMBF).

for j = 1 to M do

1. Mixing or model conditional reinitialization

Predicted mode probability: µj

t|t−1 , P (mt = j|y1:t−1) =
∑

i πijµ
i
t−1

Mixing weight: µi|j , P (mt−1 = i|mt = j, y1:t−1) = πijµ
i
t−1/µ

j

t|t−1

Mixing density: p(xt−1|mt = j, y1:t−1) =
∑

i µ
i|jp(xt−1|mt−1 = i, y1:t−1)

Sample {(x
(n)
t−1|mt=j

, w(x
(n)
t−1|mt=j

))n=1,...,N} ∼ p(xt−1|mt = j, y1:t−1)

2. Model conditional filtering

for n = 1 to N do

Particle propagation: x̃
(n)j
t ∼ p(xt|x

(n)
t−1|mt=j

,mt = j)

Particle likelihood: q
(n)j
t = p(yt|x̃

(n)j
t )

Particle weight update: w(x̃
(n)j
t ) = q

(n)j
t w(x

(n)
t−1|mt=j

)

end

Compute mode likelihood: Lj
t =

1
N

∑

n q
(n)j
t

Normalize particle weights: w̃(n)j =
w(x̃

(n)j
t )

∑
n w(x̃

(n)j
t )

Compute effective number of samples: N j
eff = 1∑

n w̃(n)j

if N j
eff < Nthresh then

Resample {(x̃
(n)j
t , w̃(n)j)n=1,...,N} to obtain {(x

(n)j
t , w(n)j = 1

N
)n=1,...,N}

else

{(x
(n)j
t , w(n)j)n=1,...,N} = {(x̃

(n)j
t , w̃(n)j)n=1,...,N}

end

end

3. Model Probability update

for j = 1 to M do

Mode probability: µj

t|t , P (mt = j|Y1:t) =
µ
j

t|t−1
L

j
t

∑
M
i=1 µi

t|t−1
Li

t

end

4. Model merging

Overall MMSE estimate: x̂t|t , E{xt|y1:t} ≈

M
∑

j=1

µj
t

N
∑

n=1

x
(n)j
t w(n)j

IV. RESULTS: SIMULATION AND REAL SONAR DATA

A. Simulated underwater scene

The simulated underwater scenario is used to assess the

ability of the IMMBF algorithm to detect jumps, i.e. model

changes in the DOA angle evolution and to track the

bathymetry. Thus two models for the bathymetric height were

envisaged: a random walk model, RW and a nearly constant

slope NCS, defined in a similar fashion as the nearly constant

velocity model for dynamical targets. The idea behind the two

is that the NCS model is intended to describe flat smooth

regions with unknown inclination angles and the RW model

is intended for rough, i.e. non-smooth areas. The IMMBF

consisted of N = 100 particles in each model. The initial

model probabilities and the transition matrix are given by:

µ0 =

[

0.5
0.5

]

Π =

[

0.98 0.02
0.02 0.98

]

. (6)

The state variable xt is composed of the bathymetric height

and it’s derivative with respect to the slant range rS . ∆S =
cTs/2 represents the range bin width, Ts the sampling period

and c the celerity.

xt =
[

ht
∂ht

∂rS

]T

(7)

The model transition functions are given by:

F (xt−1, vt, 1) = FRWxt−1 + vRW
t (8)

F (xt−1, vt, 2) = FNCSxt−1 + ΓvNCS
t (9)

FNCS =





1 ∆S

0
∆2

S

2



 , Γ =





∆2
S

2
∆S



 , FRW =

[

1 0
0 0

]

(10)



4

vRW
t and vNCS

t are white zero mean Gaussian sequences

with standard deviations σRW and σNCS and represent a

bathymetric height noise and a height ”acceleration” noise

sequence. The simulated underwater scene is presented in Fig.

1 and represents the swath bathymetric profile of one ping

line. The tilted sonar array is located 15m above the sea-floor,

which exhibits a flat and smooth surface except for a rough

patch, a fluctuation of the sea-floor height. Since the scenario is

intended only for the switching of models, there is no shadow

effects simulated on the backscattered signal. However noise is

added to the backscattered signal and the SNR, signal to noise

power ratio is considered to drop from 30dB to 10dB along

the swath width accounting for the wave spherical spreading

effect. Also in Fig. 1 we present in detail the rough patch and

also the estimates obtained with the IMMBF algorithm.

In Fig. 2 we compare the angular pseudo-spectrum obtained

with MUSIC [16], the sea-floor profile and the estimated

probabilities of both models, RW and NCS, obtained with the

IMMBF algorithm. The effect of the rough patch on the DOA

of the backscattered wave can be seen in a detail of the pseudo-

spectrum, however, affected by the averaging of the MUSIC

algorithm. As expected, we observe that the model active in

the flat regions of the sea-floor is the NCS model, while the

RW is active in the rough patch area. The IMMBF algorithm

successfully detects the switch (jump) of the model best suited

to describe the sea-floor height evolution. The variances were

set to σRW = 1m and σNCS = 1m−2. Although some design

considerations should be taken into account when choosing

the value of these variances, the detection of the model jumps

was found to be robust for values within the chosen order.

The ability of the IMMBF algorithm to detect model jumps

is not only important for improving the estimates by using

the locally best adapted model but considering the model

probability vector also provides an information about the sea-

floor’s nature: segmenting the swat into the classes determined

by the models.

Similar results were obtained, in terms of model jump de-

tection, with two random walk sea-floor models with standard

deviations: σRW1 = 0.01m and σRW1 = 1m. The first model

describes a smoother surface while the second one describes

a rougher surface; coupled with the IMMBF they achieve

basically the same segmentation, as shown in Fig. 2.

B. Real side-scan sonar data

The IMMBF algorithm was also tested on data issued from

a bathymetric side-scan sonar. The sonar receiving arrays are

composed of 8 staves allowing for bathymetry reconstruction

as well as classical imagery. The data was collected in a survey

of a shallow water harbor, with a relatively flat floor at depth

varying around 15m. This particular combination of shallow

water, calm sea and pole mounted sonar causes the apparition

of multi-path echoes in the angular spectrogram, as shown

in Fig. 3 and reference [1]. The spectrogram in Fig. 3 was

obtained with the MVDR or Capon beamformer [17], and

superimposed on this image are the IMMBF estimates. Let

us notice the similarity of the DOA arch-like curve similar

with the one in Fig. 2 that is typical of a relatively flat sea-

bottom.

Fig. 1. Simulated underwater scene and detail of rough patch.

Fig. 2. Comparison of angular spectrum, sea-floor profile and IMMBF model
probabilities.

We used a two model Markovian switching system with

model transition matrix and initial probabilities given by 6.

For the implementation, we used again N = 100 particles in

each model. However both models are angular random walk

models with different model noises.

xt = θt (11)

F (xt−1, vt,mt ∈ {1, 2}) = xt−1 + vmt

t (12)

where θt represents the DOA angle, vmt

t is white zero mean

Gaussian noise sequences with variance σmt
. The first model

has a constant standard deviation σ1 = 0.1◦ and the second

one has a time varying standard deviation σ2 = f(t), starting

with 0.1◦ at the beginning of the swath and increasing linearly

to 2◦ at the end of the swath width.

In Fig. 4 we present the IMMBF estimated probabilities

for both models. At the beginning of the swath width the

second model is better adapted to describe the evolution of

the bathymetry. Indeed the DOA angle has a faster changing

rate at the beginning of the swath than at the end of the swath

and the first model with its small variability does not cope

well at small range values. However, it offers better estimates

at bigger ranges. To better illustrate the model choice, in Fig. 5

we present the particle clouds of both models. In each mode
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Fig. 3. Capon angular spectrum and IMMBF DOA estimates.

Fig. 4. IMMBF model probabilities.

and at each range bin, there are 100 particles, i.e. angular

positions, which together with their associated weights form

the empirical posterior density. Although the particle positions

are not enough to characterize the variance of particles inside

each mode, they offer a visual interpretation of the fluctuation

in each mode. Also in Fig. 5 around the 35m range mark

we can observe a sudden increase in particle fluctuation in

both of the models. This is caused by a discontinuity of the

DOA curve and its effect is also visible in Fig. 4 with a short-

transient jump in the model probabilities. Such discontinuities,

generally caused by shadows, correspond to an absence of

signal and need to be detected beforehand since tracking

should not be conducted over shadows.

V. CONCLUSION AND PERSPECTIVES

This paper presents the application of the IMMBF algorithm

to simulated and real side-scan sonar data. At the price of

increased complexity, multiple model algorithms offer the

possibility of robust tracking when the models used to track

the dynamics of the target are relevant. The simulated and

real data experiments show the potential interest of multiple

model algorithms for bathymetry enhancement. Also a new

and interesting application, which will be further investigated

is the swath segmentation.
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Fig. 5. Particle clouds for both models.
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