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NON-OVERLAPPING COMMUNITY DETECTION 

HOCINE CHERIFI 
 
 
 

Introduction 
 

Many real-world systems are typically made of numerous interacting 
elements. With simply a local knowledge of the overall system and 
minimal communications with each other, these individual elements tend 
to achieve a global goal. Such systems can be adequately described using 
graph theory. Here, individuals are the nodes of the graph and a link 
between two nodes represents the interaction. There are many variations of 
this basic model. For instance, links can be directed, i.e., pointing in one 
direction. For example, in Web networks nodes are the Web pages, and 
oriented links represent the hyperlinks pointing to the pages. It is also 
possible to assign to each link of the graph a weight proportional to the 
intensity of the connections. To illustrate, in the air-transportation 
network, nodes represent airports, and there will be a link if there is a 
flight between two airports. The number of flights between two 
destinations can weigh the links. In practice, there may also be more than 
one different type of node or more than one different type of link in a 
network. A network is said to be “multi relational” or “multiplex” if it 
contains two or more kinds of relations on a single type of node. This is 
typical of social networks where the primary objects of study are people 
and their multiple types of relations. Graphs may contain nodes of distinct 
types as well. In such cases, they are called “multimodal networks.” For 
example, bipartite graphs contain two types of nodes with links running 
only from one type to the other. Affiliation networks, in which people are 
joined together by common membership of groups, can be represented 
using such a graph. These two types of nodes represent people and groups. 
A link accounts for the fact that an individual belongs to one group. 
Besides these extensions, one can also consider many other levels of 
sophistication such as adding different features to nodes and links and so 
on.  

To understand network behaviour thoroughly, proper knowledge of its 
topological properties is required. This analysis can be performed at 
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different levels of granularity ranging from microscopic (at the node level) 
to macroscopic (at the overall network level). However, identifying 
intermediate scales is a critical issue in order to gain insight into their 
functional organization. Indeed, communities have always been ubiquitous 
as elementary forms of organization both in society and nature. As an 
example, in biology, groups of proteins having the same specific function 
within the cell can be identified in protein-protein interaction networks. 
On the World Wide Web, communities correspond to groups of pages 
dealing with the same or related topics. Therefore, uncovering the 
community structure is crucial to understanding many real-world 
networks. It may specifically help to formulate realistic mechanisms for 
their genesis and evolution.  

Although there has been a tremendous effort regarding the community-
detection issue, there is no formal consensus on a definition that captures 
the gist of a community. It is intuitively understood as a cohesive group 
where members interact with each other more intensely than with those 
outside the group. As there are many diverse understandings of how 
cohesiveness translates in formal graph-theoretic terms, various algorithms 
have appeared in the related literature to discover this hidden structure of a 
network.  

In addition to the variety of definitions, communities can overlap or 
not. Historically, a great deal of attention has been devoted to non-
overlapping community-detection algorithms. In this case, the network is 
partitioned into separated communities where each node belongs to only 
one group. Even so, in some situations – particularly in social networks – a  
node might belong to different communities. In order to reflect this 
intuition more precisely, there has been a growing interest in the study of 
overlapping communities in recent years.  

Besides the distinction between overlapping and non-overlapping 
communities, one may consider either global or local approaches to the 
community-detection problem. Certainly, for networks that are too large 
and evolve too quickly to have a fully known structure, one cannot rely on 
global knowledge to uncover a community structure. In order to overcome 
this limitation, the so called “ego-centred” community methods attempt to 
find communities related to a single node. 

The richness of definitions and features of the community-detection 
problem has led to an impressive body of literature. In fact, many 
community-detection methods and surveys have been introduced in recent 
years. The goal here is to present a state-of-the-art of the most mature 
research in this area. We will therefore concentrate on non-overlapping 
community detection with the basic graph model. In this chapter we will 
give an overview of the most influential approaches to community 
detection that encompass most of the main methods and techniques. A 
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special focus will also be given to community evaluation. 
The chapter is organized as follows: In the preliminaries section, we 

will review necessary definitions to ensure a good understanding of all 
elements being addressed. We will then present and analyse the different 
models used to represent real-world complex networks with a community 
structure in the network-model section. The taxonomy of community-
detection algorithms will be discussed in the following section, and the 
most influential community-detection methods will subsequently be 
presented. In the performance evaluation section, we will describe 
performance measures commonly used to evaluate community-detection 
algorithms. Finally, test results conducted with synthetic benchmarks will 
be analysed in order to provide insight into the advantages and drawbacks 
of the evaluated algorithms 

 
 

Preliminaries 
 

In order to understand a complex network fully, one has to analyse its 
structural features from the microscopic level to the macroscopic level 
without neglecting the mesoscopic level. The microscopic level 
concentrates on the differences between individual nodes in order to 
identify the most influential ones. At the macroscopic level, statistical 
measures are used to summarise some of the overall network features. 
Meanwhile, the mesoscopic level results from properties shared by groups 
of nodes. In this section, we will briefly recall the main measures used to 
capture, in quantitative terms, their underlying organizing principles.  

 
 

Microscopic Topological Properties 
 

The degree of a node refers to the number of links attached to the node. 
It can be understood as a measure of the node’s leadership in the network. 
Highly connected nodes, referred to as hubs, are critical elements of the 
networks. A bottleneck is a node controlling the flow from one part to 
another part of the network whose deletion increases the number of 
unconnected sub-networks. A bridge is a link connected to bottlenecks. As 
such, the network is separated into unconnected sub-networks when the 
bridges are removed.  

A clique in an undirected graph is a subset of nodes set such that each 
node is linked to all the other nodes of the subset (complete graph). Its size 
corresponds to the number of nodes it contains.  

The local clustering coefficient quantifies the embeddedness of a node 
in a clique. It is ascertained by taking the proportion of links between the 
nodes within its neighbourhood divided by the number of links that could 
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exist between them. Its value is 0 if none of the node’s neighbours are 
connected, and its value is 1 if all of the neighbours are connected. The 
origins of the local-clustering coefficient can be traced back to sociology, 
where similar concepts have been used. In a typical social network, a 
person’s friends are very likely to know each other. This inherent tendency 
for people to cluster in circles of friends, in which every member knows 
every other member, is quantified by the clustering or transitivity 
coefficient. Such a concept – known also as a “fraction of transitive triples” 
in sociology – is used to capture the degree of social embeddedness that 
characterizes the nodes. 

The distance between two nodes is the number of links in the shortest 
path existing between those nodes in which each link and node appear at 
most once. 

Centrality determines how influential a node is within a network. 
Degree, closeness, and betweenness centrality are the most widely used 
measures to define such a characteristic. Degree centrality measures the 
involvement of a node in the network by the number of nodes connected to 
it. This local definition does not take into account the position of the node 
in the network and therefore cannot measure its ability to reach others 
quickly. Closeness centrality captures this feature. It is based on the 
inverse sum of the shortest distances to the other nodes of the network. 
Betweenness centrality asserts the ability of a node to play a “broker” role 
in the network by measuring how well it lies on the shortest paths 
connecting other nodes.  
 
 

Macroscopic Topological Properties 
 

Undirected real-world networks are known to share some common 
properties. In this section, we will present the most usual properties that 
are implemented to characterize complex networks.  

Density is the ratio of the number of existing links to the number of 
possible links. For a complete network (where all nodes are connected to 
all other nodes), the density is 1. A dense network is a network in which 
the number of links of each node is close to the number of nodes. A sparse 
network, by contrast, is connected by a low number of links only. 

The small-world property refers to the low average distance value 
between any two nodes of a network. This property has been popularized 
by the ‘‘six degrees of separation’’ concept, i.e., anyone on the planet can 
be connected to any other person through a chain of acquaintances that has 
no more than five intermediaries on average. This is typical of many real-
world networks where shortcuts connecting different areas of the networks 
allow for the reduction of distance between any two network nodes. For 
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instance, on the Internet, a computer can be reached on average through 
six routers, and the co-authors in mathematics are on average within four 
authors from each other. 

The global clustering coefficient reflects the tendency of link formation 
between neighbouring nodes in a network. It is also called transitivity. 
This characteristic can be measured by the mean value of the local 
clustering coefficients. (Note that alternative definitions exist for this 
quantity as well.) Transitivity is known to be higher in real-world 
networks as compared to uncorrelated random networks in which triangles 
are sparse. 

Degree distribution measures the statistical repartition of the network 
nodes’ degrees. Along these lines, one of the most interesting 
developments in our understanding of complex networks is that they 
exhibit an inhomogeneous distribution with few nodes linked to many 
other nodes and a large number of poorly connected nodes. In particular, 
for a large number of networks, such distribution can be adequately 
described as a power-law distribution. These networks are often referred 
as “scale-free networks” because their degree distribution does not depend 
on their size. Related experimental studies show that the exponent value of 
the power law usually ranges from 2 to 3 (Albert and Barabasi 2002; 
Boccaletti et al. 2006; Newman 2003).  

The degree correlation measures the tendency of nodes to associate 
with other nodes sharing the same characteristics and especially the same 
degree values. In assortative networks, the nodes tend to associate with 
their connectivity peers, and the degree correlation is positive. In 
disassortative networks, high-degree nodes tend to associate with low-
degree ones, and the degree correlation is negative. Social networks appear 
to be assortative while information, technological and biological networks 
appear to be disassortative. 

The centralization measures the ability of a network to be focused 
around a few central nodes. Centralization measures are based on the 
differences between the centrality scores of the most central point and those 
of all other points. The definition of centralization measures is general, so it 
can be based on any centrality measure. Its value ranges from 0 to 1 for the 
local centrality concepts presented previously. Correspondingly, a value of 
0 is obtained on all three measures for a “complete” graph, while a value 
of 1 is achieved for a “star” or “wheel” graph. Very centralized networks 
are very sensitive to the dominating central node failures or attacks, while 
less centralized ones are more resilient. 
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Mesoscopic Topological Properties 
 

At this scale, the communities are elementary units of the topology. 
Before addressing community properties, the first issue to be solved is to 
express a formal definition of a community. This is quite a challenging 
task because until now, the debate has remained open so that there is no 
consensual definition. There are also many interpretations of the intuition 
of cohesiveness and separation tied to the community notion. Moreover, in 
many cases, community-detection algorithms are not based on a formal 
definition of the communities. In an exhaustive survey, Fortunato (2010) 
identifies three types of definitions: local, global, and similarity-based 
definitions.  

Local definitions consider communities as autonomous entities that 
can be evaluated independently of the rest of the graph except for their 
local neighbourhood. Cohesion is related to basic patterns such as a clique 
or relaxed variants. The community structure is obtained by searching for 
maximal subsets of the pattern.  

In global definitions, communities are defined with respect to the 
graph as a whole, and a global criterion is used to uncover the community 
structure. More often, the criterion compares a property of the graph to a 
similar random graph known to have no community structure. Many 
global definitions are based on the density of nodes guided by the intuition 
that a community is a group of densely connected nodes that are sparsely 
connected to the rest of the network. Community-detection algorithms try 
to maximise the number of links inside the groups while minimising the 
number of edges between nodes in different groups. 

Node-similarity definitions assume that communities are made of 
nodes with common properties. Irrespective of whether they are connected 
by an edge or not, nodes are classified according to a similarity measure of 
a given local or global property (distance, commute time between nodes, 
etc.). Recently, Coscia et al. (Coscia, Giannotti, and Pedreschi 2011) 
introduced a meta-definition of a community based on the following 
intuition: a community is made of entities that are closer to others within 
the community than to the ones outside it. A community is defined as a set 
of entities sharing a “common set of actions”. This meta-definition 
encompasses the vast majority of models used in the related literature. For 
example, considering the links between two nodes as a particular kind of 
action allows for representing density-based definitions. Node-similarity-
based definitions can be apprehended by modelling the similarity 
measures as the similarity of the action set. However, note that some 
definitions of community cannot fit into these taxonomies. 

While the extreme richness of definitions and features has led to the 
publication of extensive literature on the community-discovery problem, 
few authors have been interested in the analysis of real-world network 
community structures. An important issue in this regard is whether or not 
there is a characteristic size for a community. Studies show that 
community-size distribution is inhomogeneous. It can be adequately 
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described by a power law (Guimerà et al. 2003; Newman 2004a) with an 
exponent ranging from 1 to 3 (Palla et al. 2005). Thus, many small 
communities coexist with a few very large ones.  

The “embeddedness” of a node measures the proportion of its 
neighbours belonging to its community. Its value is 1 when all of the node 
neighbours are in its community, whereas it is 0 when all its neighbours 
belong to different communities. In real-world networks, low-degree 
nodes predominantly have a very high embeddedness. Some networks 
(like the Internet, communication networks and biological networks) 
exhibit a peak of around 0.5, whereas others have a more uniform 
distribution (such as social networks and information networks) 
(Lancichinetti et al. 2010). 

The density of a community indicates the cohesion of the community 
as compared to the overall network density. Undoubtedly, a community is 
supposed to be denser than the network it belongs to. The scaled density is 
obtained by multiplying the density by the community size (Lancichinetti 
et al. 2010). Its value is 2 when the community has a tree structure. On the 
other hand, if it is a completely connected subgraph, its value is the size of 
the community. According to this measure, real-world networks such as 
the Internet or communication networks have essentially tree-like 
communities. Meanwhile, on social and information networks, the scaled 
density increases with the community size, suggesting a clique-type 
behaviour. Then we have biological networks, which exhibit a hybrid 
behaviour as their small communities are tree-like, while the large ones are 
denser and close to cliques (Lancichinetti et al. 2010). 

 Hub dominance reveals the presence of hubs in communities. This 
factor corresponds to the maximal internal-degree ratio in the community 
and the maximal theoretical degree given the community size. Its value is 
1 when at least one node is connected to all other nodes in the community. 
Yet it can reach 0 in the unlikely case where no nodes are connected. For 
communication networks, the hub dominance value is close to 1 and rather 
independent of the community size. More generally, complex networks do 
not have as many hubs in their large communities. This is why their hub 
dominance generally decreases when the community size increases 
(Lancichinetti et al. 2010). 

Modularity measures the deviation of “intra-community” links’ 
repartition of a given community structure compared to the one obtained 
in a similar network with links placed at random. This measure is based on 
the idea that the number of links between nodes in a community is higher 
than in a random network. It has been introduced by Newman and Girvan 
to measure the quality of a partition. When the communities are not better 
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than a random partition, or when the network does not exhibit any 
community structure, its value is low. Moreover, it can be negative if the 
network has a disassortative structure. For real-world networks, 
modularity values between 0.3 and 0.7 are considered high. Modularity is 
used as a performance measure to quantify how good a given network 
partition is. It is also an optimisation criterion in many community-
discovery algorithms. Nonetheless, one should note that modularity 
presents some drawbacks. For example, it is sensitive to community size 
(Fortunato and Barthélemy 2007;  Lancichinetti and Fortunato 2011) and it 
is possible to find partitions of random networks with relatively high 
modularity values (Guimera, Sales-Pardo, and Amaral 2004).  
 

 
Networks Models 

 
Traditionally, large networks with no apparent design principles have 

been described as “random graphs.” The classical Erdös-Reyni random 
network model, abbreviated as ER, is the most influential model to 
represent such graphs. It is based on the assumption of independent and 
purely random link formation. Even if it shares with real-world networks a 
short average distance, this model does not capture the main 
characteristics of real-world data. Indeed, the clustering coefficient is 
several orders of magnitude larger in real-world networks. Furthermore, its 
degree distribution follows a Poisson law, while a power law is a better fit 
for real-world networks. Note that the power law indicates the presence of 
hubs, whereas these highly connected nodes have a very low probability in 
Poissonian distribution. Given that the Erdös-Reyni model is evidently 
unable to mimic real networks, various attempts have been made to find 
appropriate theoretical models. In addition, since the seminal paper of 
Watts and Strogatz on “small-world networks” was published, activity in 
this field has been growing. From that time on, the major focus of research 
has moved from small-world networks to “scale-free” networks. Within 
this framework, there exist two main approaches: static or dynamic 
network models. Static models give a snapshot of a real-world network, 
while dynamic models try to capture how the network actually grows. 

The so called “inhomogeneous random graph” is a static model aimed 
at generating graphs with a given degree distribution. To do so, equal edge 
probabilities of the Erdös-Reyni random graph are replaced by edge-
occupation statuses that are independent and are moderated by certain 
node weights. The Configuration Model, abbreviated as CM, is another 
static model introduced to generate random networks with controlled 
degree distribution (Molloy and Reed 1995). It operates in two steps. First, 
to each node a number of half links called “stubs” is assigned at random 
according to the degree distribution. Then, pairs of stubs are chosen at 
random, and a link is made between the corresponding nodes. So even 
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though the node degree distribution of the graph remains intact, the 
configuration model results in a completely random network. The reader 
should observe that vertices having self loops as well as multiple edges 
may occur. However, such types of connections are scarce. Furthermore, 
one can add a constraint to avoid such patterns. 

The network models discussed thus far assume that the size of the 
graph is fixed, while many real-world networks grow continuously 
throughout the lifetime of the network by the addition of new nodes. In 
order to explain the network-formation process, Barabási and Albert 
(1999) popularized the concept of preferential attachment introduced by 
Yule in the context of species evolution. Their model, hereafter referred to 
as the BA model, is based on two ingredients: growth and preferential 
attachment. Starting with a small network of arbitrary structures where 
each node is at least connected to one other node, new nodes are 
sequentially added with a number of links connected to them. These links 
are attached to another node with a probability proportional to the degree 
of the receiving node. Such a process, also known as “the rich get richer,” 
favours highly connected nodes. For a large network size, it leads to a 
scale-free degree distribution with an exponent value equal to 3. Following 
the publication of Barabási’s and Albert’s study, a large body of work 
investigating dynamic models appeared in the relevant literature. Building 
on this model, many fitness-based models have been proposed (Nguyen 
and Tran 2011). The basic idea of such models is to use more sophisticated 
features than the simple degree value to explain the propensity of a node to 
attract new links. Once a fitness value is associated with each node, the 
growing process can be implemented.  

To date, many network models can generate scale-free features based 
on different ideas and mechanisms, but few network models with 
community structure have been proposed. In the rest of this section, we 
provide an overview of the most famous benchmarks specifically designed 
for community-structured complex networks. Also, we report a recent 
work showing that these models can be improved to reproduce the 
structural properties observed in real networks.  

In order to test the performance of community-detection algorithms on 
networks with varying degrees of community structure, Girvan and 
Newman  (2002) introduced one of the first models (abbreviated as GN). 
Each graph is constructed with 128 nodes separated in 4 communities of 
equal size and each node is linked on average to 16 nodes. Links joining 
nodes inside a community are placed independently at random according 
to a given intra-community probability value. Conversely, nodes of 
different communities are linked at random according to an inter-
community probability value. The strength of community associations is 
controlled by the ratio of intra-community to inter-community links. 
Although this model deviates drastically with measurements from real-
world networks, it has been widely used in order to test community-
detection algorithms (Donetti and Munoz 2004; Duch and Arenas 2005; 
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Girvan and Newman 2002; Radicchi et al. 2004). First of all, the network 
size is not realistic. Nowadays, many complex networks are actually made 
of millions of nodes. Furthermore, the nodes’ degrees follow a Poisson 
distribution, while in many real networks, the degree distribution displays 
a fat tail. Finally, communities have identical size, whereas experimental 
studies on real networks show that the community-size distribution 
follows a power law. In order to overcome these limitations, several 
variants of this model have been defined producing larger networks and 
communities with heterogeneous sizes (Danon, Diaz-Guilera, and Arenas 
2006; Pons and Latapy 2005).  

More recently, Bagrow (2008) introduced a different approach based 
on rewiring an initial network such as a community structure. Starting 
from a graph with a given degree distribution, nodes are randomly 
assigned to different communities. Afterwards, a random pair of inter-
community links is rewired to be intra-community links. This switching 
process of the link-pair extremities preserves the degree distribution of the 
network. In his experiments, Bagrow used the BA model to generate the 
initial network. Meanwhile, the community structure is made of four 
equally sized communities, and 25% of the edges are rewired. Keep in 
mind that since the partition is random, the initial modularity is very small. 
This is because with edges being moved within communities, the 
modularity increases with the proportion of rewired pairs.  

 Lancichinetti, Fortunato and Radicchi (2008) introduced a model 
based on a rewiring principle, which has obvious advantages over 
Bagrow’s scheme. In this model, denoted as LFR, users chooses the 
network size. Furthermore, the degree of the nodes and the community 
size can be adjusted in order to follow a power-law distribution while 
controlling the exponent value. The LFR algorithm produces networks 
with non-overlapping communities using a two-step process. First, a scale-
free network with controlled size n is generated using the configuration 
model. The minimum and maximum degree are chosen such that the 
degree distribution follows a power law with a given average degree value 
<k> and exponent γ. Then, the second step is applied in two phases. First, 
the communities are randomly drawn so that their distribution size follows 
a power law with a given exponent value β. Second, an iterative rewiring 
process takes place to control the fraction of links μ shared by a node with 
nodes in other communities. As it is generally not possible to meet such a 
constraint exactly, this tunable parameter called the “mixing coefficient” is 
only approximated in practice. Its value determines how clearly the 
communities are defined. For small μ values, the communities share only a 
few links and are therefore clearly separated. Increasing μ, the proportion 
of inter-community links grows and the original communities gradually 
disappear. 

The configuration model used in the first step of the LFR model is very 
flexible as it is able to produce networks with any size or degree 
distribution. Nevertheless, it is known to generate networks with no 
correlation between the degrees of connected nodes (Serrano and Boguñá 
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2005) and low transitivity when degrees are power-law distributed 
(Newman 2003). To overcome these drawbacks, more realistic models can 
be used. For this purpose, in (Orman, Labatut, and Cherifi 2013) two 
alternative models have been evaluated : the BA model and a fitness-based 
model called evolutionary preferential attachment (Poncela et al. 2008) 
abbreviated as EV. Both models generate scale-free networks with a 
desirable size and average degree.  

In the BA model, the capacity of a node to attract links from 
newcomers depends on its current degree value while in the EV model it is 
linked to its evolutionary fitness. This dynamical-variable value is 
proportional to the payoffs obtained when playing a prisoner’s dilemma 
game with its neighbours. In this setting, nodes with higher scores are 
more attractive to newcomers because their strategy has proven to be 
successful. Meanwhile, in every iteration, each node plays either 
cooperation or defection against all of its neighbours. It gets a total score 
depending on the individual results: 0 for unilateral cooperation or 
bilateral defection, 1 for bilateral cooperation, and b for unilateral 
defection, with b >1. The first move is randomly chosen, whereas the next 
one depends on the respective results of the considered node and a 
randomly picked neighbour. If the neighbour’s score is better, the node 
might switch its strategy with a probability depending on the difference 
between their scores. A parameter called the “selection pressure” (ε) 
allows modulating the influence of fitness in the attachment mechanism. 
The evolutionary dynamic has no influence for ε=0 while the fitness 
scores are fully considered for ε=1. According to its authors, when the 
selection pressure is large, networks generated by this model display both 
high transitivity and degree-correlation values.  

Hereafter, we will refer to the network models by using the following 
abbreviations: LFR-CM denotes the original LFR method, while LFR-BA 
and LFR-EV are the modified versions utilising respectively BA and EV 
in the first step of the algorithm. In order to illustrate the comparative 
realism of the networks generated by the three algorithms, we report 
representative results on the degree correlation, the clustering coefficient, 
and the degree centralization on figure 11-1. More details are given in 
(Orman, Labatut, and Cherifi 2013). For every value of the mixing 
parameters ranging from 0.05 to 0.95 with a step value of 0.05, 25 
networks have been generated, and the mean and standard deviation values 
of the topological properties have been computed. Note that parameters 
values have been chosen such that generated networks exhibit realistic 
topological properties. 

The models exhibit a very different behaviour concerning the degree 
correlation. Specifically, for LFR-EV, the degree correlation decreases 
almost linearly when the proportion of inter-community links increases. 
Whatever the mixing coefficient value, it exhibits a rather higher degree 
correlation value as compared to its competitors. In contrast, the degree 
correlation increases with the mixing parameter in LFR-BA. This almost 
linear growth is nevertheless observed with a lower slope and lower 
variance estimates. We also have LFR-CM, which is the less realistic 
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benchmark. Starting from a reasonable value when the communities are 
well separated, it decreases rapidly and oscillates around zero for mixing 
coefficient values greater than 0.4. 

The behaviour of the three algorithms is quite similar regarding the 
clustering coefficient. As the proportion of inter-community links 
increases, transitivity decreases. Nonetheless, the three models exhibit 
realistic transitivity when the communities are more or less well separated. 
Most definitely, real-world networks with a transitivity greater than 0.3 are 
considered highly transitive (da F. Costa et al. 2008). Whatever the mixing 
coefficient value, LFR-BA is always the worst, while the results are more 
mixed for the two other models. In addition, LFR-CM outperforms LFR-
EV when the mixing coefficient is less than 0.3, and the latter takes a 
slight advantage for higher values. In any case, the results are not very 
satisfactory for high μ values.  

Degree centralization is very insensitive to the mixing-proportion 
variations. It is higher for LFR-BA and LFR-EV as compared to LFR-CM. 
Moreover, there are virtually no influential nodes in the networks 
generated by LFR-CM as suggested by the very low values of the 
centralization. The attachment mechanism used in the dynamic models 
tends to generate nodes highly connected to their neighbours. As such, the 
presence of these hubs results in higher centralization values. Note that the 
same behaviour is observed with closeness and betweenness 
centralization. 

 Overall, we can conclude that dynamic models produce more realistic 
networks, at least for the degree correlation and the centralization as 
compared to the original LFR model. Even so, except for well separated 
communities, the three models fail to reproduce networks with high 
transitivity values. The explanation may originate from the rewiring 
process or more fundamentally from the construction process of these 
networks. Indeed, pairwise relations (dyads) between nodes make for the 
fundamental unit when modelling a network, regardless of whether they 
come by growth or probabilistic models. The basic assumption underlying 
these models is that dyads are independent. However, the large clustering 
coefficient observed in many networks hints at dependence between the 
connections. This observation thusly suggests that models should be 
defined based on triads (sets of three nodes) rather than dyads (Winkler 
and Reichardt 2013). 
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Fig.  11-1. Variation of macroscopic topological properties with the mixing 
coefficient μ. Red squares represent LFR-BA, green triangles LFR-EV, and blue 
crosses LFR-CM. The vertical lines represent the average mixing limit above 
which communities stop being clearly defined. Networks parameters are n = 5000, 
<k>= 30, γ ≈ 3, β=2. 
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Algorithms 
 
Community detection is a prolific subject in the literature regarding 

complex networks. A great variety of algorithms have been developed so 
far to deal with this issue. However, there has evidently been no clear and 
precise definition of what a community is, so the problem has been dealt 
with from many points of view. For instance, a community has been 
expressed as a graph partitioning, community mining, spectral analysis, an 
optimisation problem, a statistical problem, and so on. Some recent 
surveys that aimed at providing an overview of the field have proposed 
taxonomies of the community-detection methods. Even in the relatively 
mature area of non-overlapping community detection, there is no 
consensus on a classification. To this end, the main difficulties lie in the 
fact that there is an overlap of methods and in the underlying definition 
used, if any. Finally, work is still in progress, and new solutions are 
constantly scrambling the proposed taxonomies. 

Not to add to the confusion, we adopt in the following section the 
classification proposed in (Coscia, Giannotti, and Pedreschi 2011). To our 
knowledge, this is the most recent work on the subject. Furthermore, rather 
than focusing on how communities are detected, the classification is based 
on the definition of the community used by the algorithms. Starting from a 
meta definition of a community, algorithms are classified into eight 
categories according to different interpretations of the meta definition. 
Using the same terminology, we present the most influential categories. 
Among the various solutions existing in the pertinent literature, we also 
present a representative sample of community-detection algorithms known 
for their effectiveness or their popularity. 

 
 

Internal Density 
 

Internal density is highly influential in the community-detection 
literature. It is based on the widespread assumption that a community is a 
set of densely connected nodes. Generally, the algorithms in this category 
try to expand or collapse the node partitions in order to optimize a given 
density function. Despite the fact that different density functions have 
been proposed, the key concept linked to the approach is modularity. 
Under this definition, a community is a set of nodes with a higher density 
than what would be expected in a random network with the same degree 
distribution. Numerous solutions to this NP complete-optimisation 
problem have been proposed ranging from greedy heuristics to stochastic 
formulations. We present here three widespread algorithms. 

FastGreedy is an agglomerative hierarchical clustering method 
developed by Newman et al. (Newman 2004b). Starting with each node in 
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its own community, it iteratively merges the two communities producing 
the greatest modularity increase. At each step, communities sharing one or 
more links are allowed to merge. The process stops when all of the nodes 
are in the same final community. At this point, the outcome is a 
dendrogram representing the hierarchical decomposition of the network 
into communities. The optimal community structure is obtained by cutting 
the dendogram at the maximum point of its modularity.  

Louvain is another greedy agglomerative hierarchical algorithm 
proposed by Blondel et al. (2008). In this case, two phases are repeated 
iteratively. Starting with each node in its own community, the gains in 
modularity obtained by placing a node in the same community than its 
neighbours are evaluated. The community offering maximal gain is then 
retained. This process is applied repeatedly and sequentially for all nodes 
until no individual move can improve the modularity. At the end of this 
first phase, the algorithm yields the first partitioning scheme. In the second 
phase, a new network is built whose nodes are the communities found 
during the first phase. The intra-community links are represented by self-
loops, whereas the inter-community links are aggregated and represented 
as links between the new nodes. It is then possible to start the first phase 
again on the resulting weighted network. This process is iterated until only 
one community remains.  

Spinglass was introduced by Reichardt and Bornholdt (Reichardt and 
Bornholdt 2006). The authors show that searching for the optimal 
modularity partition is analogous to finding the spin configuration that 
minimizes the energy of a statistical physical model named Potts spin 
glass. In this setting, the spin states are the hidden community 
membership. Simulated annealing is used to minimise the non-quadratic 
energy function. Note that any other scheme that can deal with this 
combinatorial optimisation problem can be implemented.  

Leading Eigenvector is a spectral partitioning technique introduced by 
Newman (Newman 2006). While in traditional methods, a good partition 
is one that minimises the number of links running between the 
communities (known as cut size), Newman claims that a good partition is 
one where it is smaller than expected. In other words, rather than 
minimizing the cut size, he proposes to minimise the modularity. To do so, 
the modularity is written in matrix form, and the principal component 
analysis is applied on this matrix. 

Notice that although widely used, modularity suffers from some 
limitations. In particular, it fails to identify communities smaller than a 
network-dependent critical size. For a good review of modularity 
limitations, refer to (Good, De Montjoye, and Clauset 2010). 
 
 

Closeness 
 

The closeness approach is based on the assumption that a community 
member can reach any other member of the same community by crossing a 
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smaller number of links as compared to the network’s average distance. 
Undoubtedly, a community is supposed to be a smaller world than the 
overall network. Inspired by this definition, several algorithms rely on 
random walks to uncover the community structure. Recall that in a random 
walk, a walker performs a series of sequential moves from node to node, 
and each move is chosen randomly from its neighbours. The basic idea of 
these algorithms is to perform several random walks and to cluster the 
nodes frequently crossed in the same walk. We will present three well-
known algorithms of this type. 

At the heart of the Markov Cluster algorithm lies the idea of simulating 
a controlled flow through random walks in order to detect communities 
(Van Dongen 2008). The basic idea here is that the current is strong in the 
communities yet weak between communities. Promoting the flow where 
the current is strong and mitigating the flow where the current is weak will 
result in no flow between communities, thus revealing the community 
structure of the network. This algorithm simulates random walks by 
iteratively applying two transformations (expansion and inflation) on the 
network-transfer matrix until convergence occurs. The final matrix can be 
interpreted as the adjacency matrix of a network with disconnected 
components representing the communities. Expansion corresponds to the 
computation of random walks of higher length. Since higher length paths 
are more common within communities than between different 
communities, the probabilities associated with node pairs lying in the same 
cluster will, in general, be relatively large as there are many ways of going 
from one to the other. Inflation changes the probabilities of random walks, 
favouring more probable walks over less probable ones. This operation 
boosts the probabilities of intra-community walks and demotes inter-
community walks. Eventually, iterating expansion and inflation results in 
the separation of the graph into distinct components interpreted as 
communities. 

WalkTrap (Pons and Latapy 2005) is based on the intuition that random 
walks are able to unveil the real distance among nodes. Based on the 
information given by random walks, a distance that captures structural 
similarity between the nodes is computed. At this point, the community-
detection problem reduces to a clustering one. The algorithm thusly uses a 
hierarchical agglomerative approach. At each step, the two communities 
that minimize the variation of the squared distances’ mean value between 
each node and its community are merged. Ultimately, to find the optimal 
community structure, the dendrogram is cut at the maximum point of the 
modularity. 

InfoMap (Rosvall and Bergstrom 2008) uses a compression technique 
to describe the information flow on networks. Random walks of a given 
length and with a given probability of jumping to a random node are 
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performed. Each walk is described as a sequence of steps inside a 
community followed by a jump through a two-level nomenclature based 
on Huffman coding. The first one is used to distinguish communities in the 
network and the other to distinguish nodes in a community. Each node 
codeword is derived from the visit-node frequency of an infinitely long 
random walk. This coding strategy leads to a compact representation of the 
walks. Indeed, with a partition featuring limited inter-community links, the 
walker is statistically more likely to stay longer inside communities. 
Therefore, only the second part of the nomenclature is needed to describe 
its path. The authors showed that the optimal partitioning problem is 
reduced to finding the minimum description length for all of the walks. 

 
 

Diffusion 
 

The main idea with diffusion is to consider a community as a set of 
nodes grouped by the propagation of the same property or information in 
the network. Algorithms based on this definition usually perform a 
diffusion on the network following a particular set of transmission rules 
and then group together any nodes that end up in the same state.  

Label Propagation (Raghavan, Albert, and Kumara 2007), simulates the 
diffusion of some information in the network to identify communities. 
Initially, each node carries a label denoting the community to which it 
belongs. Then, each node updates its community based on the labels of its 
neighbours. The rule used is to join the most frequent community in its 
neighbourhood (ties are broken randomly). As the labels propagate, densely 
connected groups of nodes reach a consensus on a unique label. This process 
goes on until each node has the majority label of its neighbours. 

Even if we focus on only one algorithm of this class, it is worth 
mentioning influence-spreading propagation techniques. The idea is to 
take advantage of the influence propagation in order to identify a group of 
users – often called tribes – that behave homogeneously (Chen, Wang, and 
Yang 2009; Goyal, Bonchi, and Lakshmanan 2008; Khorasgani, Chen, and 
Zaäne 2010). 

 
 

Bridge Detection 
 

The bridge-detection approach relies on the idea that a community is 
made of dense components linked by a few bridges. Removing these 
bridges allows for uncovering the communities. The core issue is to define 
these bridges, which can be either nodes or links. The basic procedure is to 
compute a measure of either nodes’ or links’ contribution to keep the 
network connected and to remove the ones with the highest scores. We 
will present two methods. The first one is based on a global-link-centrality 
measure, while the second utilises a local-link-centrality definition. 
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The most popular algorithm in this category, Edge Betweeness, uses a 
link centrality measure. Proposed by Newman (Girvan and Newman 
2002), Edge Betweeness measures the centrality of a link by considering 
the proportion of shortest paths going through it. The main assumption 
here is that all of the shortest paths between different communities must go 
along the bridges leading to high scores for these links. The algorithm uses 
a divisive hierarchical approach. Starting with the initial network, the most 
central link is removed, and the link centrality is computed on the 
remaining network. When ties exist, one edge is to be chosen at random. 
Accordingly, this process is iterated until no links remain. The main 
drawback with this algorithm is that centrality must be computed at each 
step, making it unsuitable for large networks. 

Radetal, (Radicchi et al. 2004) uses an alternative centrality measure. 
This local measure is defined in analogy with the usual node-clustering 
coefficient, as the number of triangles to which a given edge belongs, 
divided by the number of triangles that might potentially include it. Note 
that, unlike betweenness centrality, this measure called link clustering 
takes high values for links inside a community and low ones for bridges. 
Indeed, clustering is higher in a community while links connecting nodes 
in different communities are included in few or no triangles. Radetal 
works exactly as Edge Betweeness with the difference that, at every step, 
the removed edges are those with the smallest edge clustering value. 

 
Evaluation Criteria 

 
Objective evaluation of the community-detection algorithms is a 

strategic issue. Indeed, we need to verify that the communities identified 
are actually the good ones. Moreover, it is necessary to compare results 
between two distinct algorithms to determine which is most effective. This 
complex and open problem is mainly considered from the evaluation-of-
clustering-algorithms perspective. In such a setting, validation is simply 
accomplished by comparing discovered communities against known ones. 
Various clustering-comparison measures have been proposed that can be 
classified into three main categories: measures based on pair counting, set-
matching-based measures and information-theoretic-based measures. 
Because of the overwhelming number of measures and their heterogeneity, 
choosing the most adapted is a difficult problem. The following section 
presents the standard evaluation measures emerging for the evaluation of 
community-detection methods. Note that all of the measures presented 
here can be derived from the confusion matrix whose elements are the 
number of nodes that are common to both partitions.  
 
 

Pair-Counting-Based Measures 
 

With pair-counting-based measures, clustering comparison is based on 
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counting the pairs of points on which two partitions agree or disagree. Any 
pair of points can be classified under one of the following four categories. 
In the first two cases, the two partitions are in accordance: either the pair 
of points is in the same cluster in both partitions or it does not belong to 
the same cluster in both partitions. In the two remaining cases, the 
partitions disagree. It is when a pair of points belongs to different clusters 
in a partition but is in the same cluster in the other partition. The Rand 
Index (Rand 1971) is a well-known measure in this class. It computes the 
proportion of agreement between the two partitions. Its value is 1 when the 
two partitions are identical and 0 when no pair of points appears either in 
the same cluster or in different clusters in both partitions. This extreme 
situation happens only when a partition consists of a single cluster. 
Meanwhile, the other consists only of clusters containing single points. As 
the expected value between two random partitions does not take a constant 
value, Hubert and Arabie (Hubert and Arabie 1985) proposed a corrected 
for chance version of the Rand Index. The so called Adjusted Rand Index 
takes on the value 0 when the two partitions are picked at random. 
Negative values indicate a strong divergence between the partitions. The 
Jaccard Index is the ratio of the number of point pairs classified in the 
same cluster in both partitions, to the number of pairs classified in the 
same cluster by at least one partition. There is a corrected for chance 
version of this measure. It should be remembered that, there are many 
other measures in this class (Albatineh, Niewiadomska-Bugaj, and 
Mihalko 2006). However, after correction for chance, many of these 
measures are equivalent (Warrens 2008). 
 
 

Set-Matching-Based Measures 
 

Set-matching-based measures are based on set cardinality. They intend 
to find the largest overlaps between pairs of different partition clusters. 
Purity is the proportion of correctly assigned nodes. Each identified cluster 
is matched to the one with the maximum overlap in the reference cluster, 
and then the accuracy of this assignment is measured by counting the 
number of correctly assigned nodes. When community structures are very 
dissimilar, the purity value is close to 0, while a perfect clustering has a 
purity of 1. High purity is easy to achieve when the number of clusters is 
large. In particular, purity is 1 if each node gets its own cluster. The 
classification error (Meila 2005) and the Van Dongen metric are two 
alternative measures aimed at finding the best match for each cluster in 
both partitions. The main drawback of these measures is that they fail to 
take into account some clusters when their overlap with the other 
partitions is not enough large. 
 
 

Information-Theoretic-Based Measures 
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Information-theoretic-based measures have gained increasing attention 
in the clustering literature. They are based on the mutual information 
shared by two partitions in order to assess their agreement. When two 
partitions are independent, they do not share any information. On the 
contrary, when they have the same distribution, the information shared is 
maximum. Knowing one of the partitions gives a perfect knowledge of the 
other one. This mutual information is a non-negative quantity upper 
bounded by the entropies of both partitions. We also have the variation of 
information that was introduced by Meila (2005). This metric is defined as 
the sum of the entropies of two partitions minus two times the mutual 
information. It measures the amount of information lost and gained in 
changing from one partition to the other. When the two partitions are 
identical, its value is 0, and its upper bound depends on the size of the 
network. Normalized mutual information (NMI) is defined as the ratio of 
the mutual information to the mean value of the entropy of both partitions. 
It takes the value of 1 when the two partitions are identical and 0 when 
they are independent. 
 
 

Quality Functions 
 

When there is no ground truth, the only way to evaluate a partition is to 
use a quality function. Existing quality functions formalise in different 
ways the idea that communities are sets of nodes densely connected and 
poorly connected to the rest of the network. In (Yang and Leskovec 2012), 
eleven quality functions are reported. The authors show that these 
functions can be grouped into four classes: quality functions based on 
internal connectivity of the partition, quality functions based on external 
connectivity of the partition, quality functions based on internal and 
external connectivity, and quality functions based on a model. In the first 
group, we notice the internal density, which is the internal-link density of 
the node set. In the second group, the cut ratio is the fraction of existing 
edges out of all possible links leaving the communities. Conductance is a 
prominent measure of the third group. It measures a fraction of the volume 
of the total edges that points outside the cluster. The fourth group includes 
the modularity and its variants. Modularity is the most widely used quality 
function to compare the effectiveness of community-detection algorithms 
on real data when the underlying community structure is not known. This 
approach expresses how a community structure has a high-density ratio as 
compared to a random graph with the same degree sequence. The main 
weakness of the modularity approach is that it is also an optimization 
criterion used by a large number of algorithms; using it as a quality 
function introduces a bias in the comparisons. Furthermore, it has been 
reported that a community-detection method yielding strong modularity 
results is not always the best choice.  

More recently, an alternative to modularity called surprise has been 
proposed (Aldecoa and Marín 2013). It assumes as a null model that links 
between nodes emerge randomly. It then evaluates the departure of the 
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observed partition of the expected distribution of nodes and links into 
communities according to the null model. The higher the surprise value the 
more unlikely the partition is a realisation of a random graph. 

 
 

Tests on Synthetic Networks  
 

The evaluation of community-detection algorithms is a complex 
problem that has received very little attention in the related literature. We 
can distinguish two main trends for assessing the performance of 
community-detection methods based respectively on subjective or 
objective evaluations. Subjective evaluation relies on a panel of experts 
who decide whether or not the community structure revealed by the 
algorithm is valid. This decision depends on the relevance of results in the 
domain. In the subjective procedure, which is difficult to carry out on large 
networks, the results may vary depending on the expert and on the angle of 
interpretation adopted. On the other hand, objective evaluation is 
conducted using a set of benchmark graphs with a well known community 
structure and one or more evaluation measures chosen among the ones 
presented in the previous section. Both real-world and synthetic data can 
be used for this purpose. In some real-world networks, group membership 
for the nodes is explicitly defined. It is used to define ground-truth 
communities. A typical example, called the Zachary’s Karate Club 
network, is widely used in the literature. This small graph is made of two 
groups that are easily recovered by any community-detection method. The 
Stanford Large Network Dataset Collection1 is a solid attempt at 
establishing a standard real-world benchmark. It contains a set of social, 
information and collaboration networks with ground-truth communities. 
Networks in this benchmark cover a wide range of density, size and 
community structures. However, as of now, there has been no consensus in 
the scientific community on a standard real-world data set to explore the 
properties of community-detection algorithms. Most papers introducing a 
new method just use the simple classical benchmark graphs that can be 
visually interpreted in order to quantify the performance of their algorithm 
on real data. Things evolve more favourably regarding synthetic data. To 
date, the LFR benchmark is a de facto standard used for the large-scale 
evaluation of diverse community-detection methods. In what follows, we 
will focus on the objective assessment of artificial benchmarks. In this 
case the networks can be arbitrarily designed and controlled to highlight 
the strengths and weaknesses of community-detection algorithms in a 
broad range of situations. We will briefly review recent works on 
experimental evaluation, concentrating on the algorithms presented above, 
with two questions in mind: 1) Is there a community definition better 
suited than another according to performances? 2) How do the 

                                                
1 http://snap.stanford.edu/data/ 
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performances evolve according to the degree of the benchmarks’ realism 
used in the evaluation? 

Table 11-1 reports the results of an experimental evaluation of the 
algorithms presented in the previous section using the LFR model with 
5,000 nodes. The exponent values of the power law of the degree 
distribution and of the community-size distribution are respectively γ≈3 
and β=2. The average degree is <k> ≈30, and the maximum degree is 
kmax=90. Two different values of the mixing parameter μ {0.2, 0.6} are 
used. The first one corresponds to well separated communities, while the 
second one is not far from the limit where the networks have no 
community structure. For each parameter set, 25 networks are generated. 
The Rand Index, the Adjusted Rand Index and Normalized Mutual 
Information have been computed to assess the performance of the 
algorithms. For clarity, only the mean NMI values are reported.  

 
Algorithm NMI Rank NMI Rank Mean Rank 
Mixing Proportion μ=0.6 μ=0.2  
InfoMap 1.0 1 1.0 1 1 
WalkTrap 0.98 2 1.0 2 2 
Label Propagation 0.98 2 1.0 3 2,5 
Spinglass 0.95 4 0.97 4 4 
Louvain 0.93 5 0.95 5 5 
Markov Cluster 0.78 5 0.92 6 5,5 
Radetal 0.78 5 0.80 7 6 
FastGreedy 0.41 8 0.48 8 8 
Leading Eigenvector 0.28 9 0.37 9 9 

 
Table 11-1. Performance evaluation of community-detection algorithms for well 
separated communities (μ=0.2) and mixed communities (μ=0.6) 

 
The result of this empirical evaluation illustrates the general behaviour 

of the algorithms well. It clearly shows that algorithms can be grouped 
into two categories: algorithms that are more or less efficient and ones that 
perform poorly. Along these lines, FastGreedy and Leading Eigenvector 
cannot identify the real community structure in any situation. The strength 
of the community structure clearly exerts a major influence on 
performances. As a matter of fact, performances generally decrease when 
the mixing parameter increases. Moreover, when the communities are well 
separated, all of the algorithms belonging to the first category easily 
uncover the community structure leading to high values of NMI. 
Differences are more pronounced when communities are more mixed. In 
this case, where communities are harder to detect, Markov Cluster and 
Radetal are not far from their limits. InfoMap outperforms all of the other 
algorithms under test. While WalkTrap and Label Propagation exhibit a 
good performance level, Spinglass and Louvain are one step behind. Note 
that the ranking deduced from the different measures of performance is 
quite comparable. Indeed, rank correlation values between any two 
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performance measures are always higher than 0.95. 
These results corroborate previous studies on the subject. In 

(Lancichinetti and Fortunato 2009), the authors conducted a comparative 
evaluation of twelve community-detection algorithms including Radetal, 
Louvain, FastGreedy, InfoMap and Markov Cluster. Performances have 
been computed using the NMI on two benchmark graphs with a known 
community structure (GN, LFR) and two random graphs (ER, CM) with 
no community structure. The results demonstrate that most methods 
perform rather well on the GN benchmark. But this is not the case when 
graphs are generated using the LFR. In particular, FastGreedy performs 
poorly. Its performances deteriorate rapidly when the network size 
increases and when community size decreases. Radetal and Markov 
Cluster are not very impressive either as their performances deteriorate 
with larger communities. As for the best algorithms, InfoMap ranks first 
followed by Louvain. When comparing these two, tests conducted on 
graphs with 100,000 nodes and community size ranging from 20 to 1000 
have shown that InfoMap is not affected by these hard conditions, while it 
gets harder for Louvain to find the real communities. In addition, tests on 
random graphs are very informative. They should ideally lead to trivial 
solutions such as only one community or as many communities that there 
are nodes. Such is the case for Radetal, which always finds a single 
community with both benchmarks. InfoMap discovers no community on 
the ER benchmark but a few on the CM benchmark. On the contrary, 
Markov Cluster finds always as many communities as there are nodes. The 
remaining algorithms always find a few communities in these networks 
with no community structure. One of the major lessons of this work is that 
realistic benchmarks must be used for testing community-detection 
algorithms. In addition, the GN benchmark does not qualify to support the 
idea that new algorithms perform well as far as representing real-world 
networks adequately.  

In (Orman, Labatut, and Cherifi 2011), eleven algorithms have been 
compared using the NMI. The LFR benchmark was tuned with parameters 
values typical of measurements on real-world networks. Results are in 
agreement with our previous observations concerning the ordering of the 
nine algorithms presented in table 11-1. Infomap outperforms the eleven 
algorithms under investigation. WalkTrap, Label Propagation, Spinglass 
and Louvain follow with satisfying performances, although not as good. 
Markov Cluster is very effective until the mixing proportion gets close to 
0.4. Above this value, its performances decrease until a limit NMI value 
around 0.8. Radetal is very erratic and, FastGreedy and Leading 
Eigenvector are clearly outclassed. Besides the mixing coefficient, 
network size and average degree also affect the algorithms’ performances 
but to a lesser extent. Performances worsen for Spinglass, Leading 
Eigenvector, Louvain, and Radetal when the network size increases, while 
the others are more insensitive to this parameter. To a certain extent, 
performances get better when the average degree increases. This may be 
due to an increase of the inter-community density that makes the 
community more visible. Undeniably, even if the intra-community links 
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increase in the same proportion, the effect is distributed among many 
communities. 

In (Coscia, Giannotti, and Pedreschi 2011), thirteen algorithms have 
been compared using a graph extracted from the ego network of one of the 
authors’ Facebook profiles. In this small graph (261 nodes and 1,772 
edges), communities are well separated. The authors had a perfect 
knowledge of the network’s community structure. Thusly, the comparison 
relies on quality measures such as the modularity and the reverse 
conductance. Seven out of eight of the non-overlapping community-
detection methods used in their evaluation are quite effective according to 
modularity. In fact, modularity ranges from 0.71 to 0.74. Label 
Propagation, WalkTrap, and Edge Betweeness tied for first, and were 
followed by InfoMap. Interestingly, WalkTrap favours a few bigger and 
denser communities, whereas InfoMap focuses on smaller and sparser 
ones. No solid conclusions can be drawn from this experiment. Of course, 
this network is not a very severe test and consequently not very 
discriminating for the algorithms. Moreover, testing the algorithms was 
not the primary goal of the authors in this work. They were more focused 
on classification according to the underlying community definition. 

In (Orman, Labatut, and Cherifi 2012), the authors empirically tackle 
the relationship between performance measures and topological properties 
of the discovered community structure. The LFR benchmark is tuned in 
order to match the topological properties of three real-world networks 
(biological, Internet, communication). A comparative evaluation of eight 
algorithms is conducted using four performance measures (Purity, RI, 
ARI, NMI) and topological measures of the detected communities 
(embeddedness, community-size distribution, transitivity, scaled density, 
average distance, hub dominance). Table 11-2 summarizes some results 
for the algorithms previously evaluated. In extreme situations, the results 
are consistent. For example, InfoMap is still the best performing and 
FastGreedy is recognised as a substandard performer in both cases. Results 
are more mixed for the other algorithms. Thus, although the community 
structure identified by Louvain deviates significantly from the original, its 
NMI score is rather high. To summarise, there is no clear relation between 
these two types of evaluations that are rather complementary. 

Algorithm d Emb
. 

 
Dis.  
Siz

e 

 Hub 
Dom

. 
Clust

.  
Sc. 

Dens. NMI 

InfoMap Ok Ok Ok Ok Ok Ok 0.930 
WalkTrap Ok Ok Ok Ok Ok Ok 0.865 
Louvain  Ok     0.735 

Markov Cluster Ok  Ok  Ok Ok 0.881 
FastGreedy  Ok     0.588 

 
Table 11-2. Qualitative comparison of the discovered communities’ characteristics 
with the real community structure. The properties are average distance (d), 
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embeddedness (Emb.), community-size distribution (Dis. Size), hub dominance 
(Hub Dom.), transitivity (Clust.), and scaled density (Sc. Dens.). When both 
properties are akin, Ok is reported. 

 
In order to investigate the realism level of synthetic benchmarks’ effect 

on the performance of community-detection algorithms, eleven algorithms 
have been tested using LFR-CM, LFR-BA and LFR-EV (Orman, Labatut, 
and Cherifi 2013). The major trend is that performances deteriorate when 
the degree of the networks’ realism increases. The highest performances 
are in general obtained when applied to the LFR-CM benchmark, whereas 
the lowest correspond to LFR-BA data. It turns out that InfoMap is the 
least sensible algorithm to network characteristic variations followed by 
Spinglass and WalkTrap. Figure 11-2 represents the best performing 
algorithms for each class of community definition. It shows that 
performances of Spinglass and InfoMap are insensitive to benchmark 
variations in a broad range of the mixing-proportion value. Differences 
appear when community discovery becomes a challenging task. On the 
contrary, Radetal and Label Propagation are affected almost in the whole 
range of mixing-proportion variation. The key lesson learned from this 
study is that even a slight variation of the network model can have 
important consequences on performances. It is therefore important to 
develop more realistic network models in order to have a clear view of the 
algorithms’ efficiency.  
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Fig.  11-2. Performances of the community-detection algorithms on the three 
benchmarks. Crosses are used for LFR-CM, dots for LFR-BA and triangles for 
LFR-EV. Each data point corresponds to an average over 25 generated networks 
with parameters values n = 5000, <k> = 30, γ ≈ 3, β=2. The vertical lines at μ = 
0.86 represent the average mixing limit above which communities stop being 
clearly defined. 
 

Focusing on the various community-structure definitions, we will 
notice that three definition classes out of four have one of their members 
in the top four (Spinglass for internal density, InfoMap for closeness, and 
Label Propagation for diffusion). Radetal is one step behind the other 
categories. Unfortunately, as it is the only algorithm for the bridge-
detection category, no serious conclusions can be drawn. Although it is 
somewhat risky to generalise from the study of a limited number of 
algorithms, it seems as if different definitions allow for the defining of 
equally efficient methods. To substantiate this intuition, it is necessary to 
conduct an extensive assessment on both synthetic and real-world data 
using a larger number of algorithms that must be selected among the top 
performers in each category. 
 
 

Conclusion 
 

Initially focused on either microscopic or macroscopic properties, 
research on complex networks has shifted to mesoscopic properties of 
networks. While a great deal of work has been devoted to the community-
detection issue, there are very few papers that analyse topological 
properties of the community structure in real-world networks. Strange as 
that might seem, most of the works are interested in discovering the 
community structure without really knowing what it may look like. 
Proposed solutions are usually based on a specific interpretation of an ill-
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defined concept of community. To demonstrate the effectiveness of their 
solution, small sized networks such as the Zachary Karate Club are used and 
(or) non-realistic synthetic benchmark graphs associated with traditional 
quality measures. This distorted view is aimed at pressing the point on the 
three complementary aspects of the community-detection issue: data, 
detection algorithms and objective evaluation. In order to ascertain a clear 
picture, progress must be made regarding these three directions. 

Traditionally, in order to characterise real-world networks, research 
has been focused on macroscopic statistical properties to highlight their 
similarities. Empirical studies have demonstrated that numerous real-world 
networks share small-world and scale-free properties. It is now time to 
conduct a finer analysis of these networks to highlight their differences. 
Building a taxonomy of networks is one of the major steps in order to 
reach a consensus on ground-truth data to use for testing purposes. 
Furthermore, a taxonomy can have multiple benefits such as to shed light 
on networks’ construction process. Mention may be made of two recent 
studies in this direction. In (Nicosia, De Domenico, and Latora 2013), 
node properties’ values such as the degree, the average degree of the 
nearest neighbours, and the clustering coefficient are used to build time 
series generated by random walks. Based on these time series, a set of 
characteristic exponents is used to classify networks. More interestingly, 
the approach used in (Onnela et al. 2012) is based on the community 
structure of the networks. The authors introduce three mesoscopic 
response functions representing the evolution of the community structure 
according to a resolution parameter. The minimum value of this parameter 
forces each node into its own community, while the maximum value 
corresponds to a single community. The effective energy function is linked 
to the modularity. The two others, respectively denoted as “effective 
entropy” and “effective number of communities”, are correspondingly a 
normalised measure of the entropy and the number of communities at a 
given scale. Based on these signatures, they build a taxonomy for 746 
networks. Besides classifying networks in different categories, their 
approach allows for classifying networks within individual categories. 
These works can be exploited to define a set of real-world networks in 
order to test the algorithms in specific situations. They may also allow us 
to identify better what realistic properties according to the different 
network categories are. This idea is in line with the development of 
models for generating synthetic graphs with controlled properties. Indeed, 
there is room for improvement on models in order to provide an adequate 
description of real graphs with community structure. For instance, models 
whose transitivity can be adjusted might make for a significant refinement 
over existing solutions. Furthermore, knowledge about the topological 
properties of community structures must be developed in order to define 
appropriate models that can generate realistic networks. It is essential to 
progress in this area as tests on artificial data with controlled properties are 
needed to characterize detection algorithms. Undoubtedly, with real-world 
data, there is no guarantee that communities defined on a subjective basis 
are encoded in the structural information of the network. To date, even if 
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there is some divergence on the way to organising community-detection 
algorithm categories, the situation gets clearer. The main difficulty is 
linked to the overlap between the definitions of community, which 
undermine the necessary consensus. To overcome this drawback, there is a 
need for someone to produce an extensive study on the complex 
connections between the algorithms and the definitions. Moreover, 
investigating if one definition is more relevant than the others or if these 
multiple views of the same problem are complementary is also essential. 
Finally, although traditional performance measures are used extensively, it 
appears very clearly that they cannot distinguish community structures 
with different topological properties. It is therefore necessary to propose 
alternative measures more sensitive to the community-structure variations 
in order to conduct more effective comparisons. Throughout this chapter 
we deliberately did not address the complexity issue. However, the analyst 
must not ignore this crucial information in order to choose an effective 
algorithm and a fair comparison should involve algorithms from the same 
class of complexity. 
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