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Special reductive groups over an arbitrary field

Mathieu Huruguen

Abstract

A linear algebraic group G defined over a field k is called special if every

G-torsor over every field extension of k is trivial. In 1958 Grothendieck

classified special groups in the case where the base field is algebraically closed.

In this paper we describe the derived subgroup and the coradical of a special

reductive group over an arbitrary field k. We also classify special semisimple

groups, special reductive groups of inner type and special quasisplit reductive

groups over an arbitrary field k.

1 Introduction

Let k be a base field and G an algebraic group defined over k. The group G is
called special if every G-torsor defined over a field extension of k is trivial. In other
words, if for every field extension K of k the first fppf-cohomology set H1(K,G)
contains only one element. Examples of special linear groups include the additive
group Ga, the multiplicative group Gm, the general linear group GLn, and more
generally the group GL1(A), where A is a central simple algebra over k, and the
classical groups SLn and Sp2n. In contrast, the group SOn is not special for n > 3.
The special groups over an algebraically closed field were introduced by Serre in
[12] - recently reprinted in [14]. In this paper, Serre gave the basic properties of
special groups, for example, he showed that they are linear and connected. The
study of special groups over an algebraically closed field was then completed by
Grothendieck in [5]. In the reductive case, his result can be stated as follows :

Theorem 1.1 (Grothendieck, 1958). Suppose that G is reductive and k is alge-
braically closed. Then G is special if and only if its derived subgroup is isomorphic
to a direct product

G1 ×G2 × · · · ×Gr

where, for each i, the group Gi is isomorphic to SLni
or Sp2ni

for some integer ni.

The result of Grothendieck naturally raises the problem of classifying special
reductive groups over an arbitrary field k. The present paper is an attempt to solve
this problem. Our most general classification result is the following :
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Theorem 1.2. Let G be a reductive algebraic group over k. Then G is special if
and only if the three following conditions hold :

(1) The derived subgroup of G is isomorphic to

RK1|k(G1)× RK2|k(G2)× · · · ×RKr |k(Gr)

where, for each index i, the extension Ki of k is finite and separable, RKi|k

denotes the Weil scalar restriction functor - see for example [6, Lemma 20.6] -
and the group Gi is isomorphic over Ki to either SL1(Ai), where Ai is a central
simple algebra over Ki, or Sp2ni

for some integer ni.

(2) The coradical of G is a special torus.

(3) For every field extension K of k, we have

Im(αG′,K) + Ker(H1(K,ZG′) → H1(K,ZG)) = H1(K,ZG′).

where ZG is the center of G, ZG′ is the center of its derived subgroup G′, and
the map αG′,K is defined in 2.1.

Condition (1) above is explicit, as well as condition (2), by the classification
of special tori due to Colliot-Thélène and recalled at the end of the present paper.
In contrast, condition (3) is not very explicit in general. However, under some
additional assumptions on the group G, namely that G is semisimple, an inner form
of a Chevalley group, or quasisplit, we are able to make condition (3) completely
explicit, providing the classification in these cases. We hope that an explicit version
of condition (3) will emerge in the future, unifying these cases and providing the
classification of special reductive groups.

The paper is organized as follows. In Section 2 we gather some facts to be used in
the following sections. In Section 3 we determine which algebraic groups can arise as
derived subgroups of a special group and which can arise as coradicals, respectively
in Proposition 3.2 and 3.4. In Section 4 we prove our general classification result
stated above and then derive from it the classification of special semisimple groups,
special reductive groups of inner type and special quasisplit groups in Proposition
4.2, 4.4 and 4.6 respectively. Finally, we recall in Section 5 the classification of
special tori due to Colliot-Thélène.

To finish this introduction, we say a word about special non-reductive groups.
First, by [10, Lemma 1.13], if an algebraic group G over a field k possesses a k-split
unipotent normal subgroup U , then G is special if and only if G/U is special. For
example, if the field k is perfect, then G is special if and only if its quotient by
the unipotent radical - which is a reductive group - is special, as every unipotent
group over k is k-split. On a different note, Nguyen classifies special unipotent
groups over “reasonable fields” in [8]. It is a direct consequence of the fact that
the additive group Ga is special that every k-split unipotent group is special. In
[8], Nguyen proves conversely that a special unipotent group is k-split for certain
fields k, for example when k is finitely generated over a perfect field.
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2 Preliminary results

Let k be a base field and G a reductive algebraic group defined over k. Throughout
the paper we denote by ZG the center of G, by Gad the adjoint quotient G/ZG

of G, by G′ the derived subgroup of G, by RG the radical of G and by CG its
coradical. We have an exact sequence of algebraic groups :

1 ZG G Gad 1 (∗)

Definition 2.1. Let K be a field extension of k. We denote by

αG,K : Gad(K) H1(K,ZG) and βG,K : H1(K,Gad) H2(K,ZG)

the connecting maps in fppf-cohomology obtained from the exact sequence (∗) above.

Proposition 2.2. The group G is special if and only if for every field extension K
of k, the map αG,K is surjective and the map βG,K has trivial kernel.

Proof. Part of the exact sequence of pointed sets obtained from the exact sequence
(∗) reads :

Gad(K) H1(K,ZG) H1(K,G) H1(K,Gad) H2(K,ZG)
αG,K βG,K

It is a straightforward consequence of the exactness of this sequence of pointed
sets that H1(K,G) is trivial if and only if αG,K is surjective and βG,K has trivial
kernel.

Proposition 2.3. Let K be a field extension of k. If G is special then the following
properties hold :

(1) the map

βG′,K : H1(K, (G′)ad) H2(K,ZG′)

has trivial kernel.

(2) the image of the map βG′,K intersects the kernel of the morphism

H2(K,ZG′) H2(K,ZG)

trivially.
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(3) the following exact sequence of diagonalizable groups

1 ZG′ ZG ZG/ZG′ 1 (∗∗)

induces the following exact sequence in fppf-cohomology :

0 H1(K,ZG/ZG′) H2(K,ZG′) H2(K,ZG)

Proof. We will obtain these properties from Proposition 2.2 and the fact that the
adjoint groups (G′)ad and Gad are equal. The inclusion of G′ in G gives rise to a
natural commutative diagram :

1 ZG′ G′ (G′)ad 1

1 ZG G Gad 1

||

where both rows are exact. The diagram above leads to a commutative diagram of
connecting maps in fppf-cohomology :

H1(K,Gad)

H2(K,ZG′)

H2(K,ZG)

βG′,K

βG,K

where the vertical map is induced by the inclusion of ZG′ in ZG. As G is special,
by Proposition 2.2, the map βG,K has trivial kernel, which readily implies (1) and
(2).

To prove (3) we look at the following diagram in fppf-cohomology:

Gad(K)

H1(K,ZG′)

H1(K,ZG)
αG,K

αG′,K

where the vertical map is induced by the inclusion of ZG′ in ZG. As G is special, by
Proposition 2.2 we see that αG,K is surjective, forcing the vertical map to be sur-
jective as well. Now, part of the long exact sequence in fppf-cohomology obtained
from the short exact sequence (∗∗) reads :

H1(K,ZG′) H1(K,ZG) H1(K,ZG/ZG′) H2(K,ZG′) H2(K,ZG)

and the result readily follows.
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Proposition 2.4. Suppose that the coradical CG of G is special. Then G is special
if and only if, for every field extension K of k, the following two conditions hold :

(1) Im(αG′,K) + Ker(H1(K,ZG′) → H1(K,ZG)) = H1(K,ZG′)

(2) the map

βG′,K : H1(K, (G′)ad) H2(K,ZG′)

has trivial kernel.

Proof. The coradical CG is equal to ZG/ZG′. As it is special, we know that the
morphism

H1(K,ZG′) H1(K,ZG)

is surjective. Therefore, by the commutative diagram :

Gad(K)

H1(K,ZG′)

H1(K,ZG)
αG,K

αG′,K

we see that (1) is equivalent to αG,K being surjective. Similarly, because the corad-
ical CG is special, we know that the morphism

H2(K,ZG′) H2(K,ZG)

induced by the inclusion is injective. Therefore, by the commutative diagram :

H1(K,Gad)

H2(K,ZG′)

H2(K,ZG)

βG′,K

βG,K

we see that (2) is equivalent to the fact that βG,K has a trivial kernel. We can
conclude that G is special by Proposition 2.2.

3 The derived subgroup and the coradical of a

special reductive group

In this section we will determine which algebraic groups can arise as derived sub-
groups of a special reductive group and which can arise as coradicals respectively
in Proposition 3.2 and 3.4 below.
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3.1 A lemma on hermitian forms

In order to lighten the proof of Proposition 3.2, we start by proving Lemma 3.1
below about hermitian forms. We refer the reader to [6, §4] for the definition of
hermitian forms on a right module over an algebra D equipped with an involution.

Let D be a division algebra, k a subfield of its center and τ an involution of
D. Let n be an integer and t1, . . . , tn be algebraically independent variables over
k. We denote by K be the field of fractions k(t1, . . . , tn). We fix an integer m, a
collection of scalars α1, . . . , αn in k∗ and, for every index i between 1 and m, we
fix an element ai = (ai,1, . . . , ai,n) of Z

n.

Lemma 3.1. Suppose that the images of the ais in (Z/2Z)n are all different. Then,
the hermitian form :

h(x, y) =
m
∑

i=1

αit
ai,1
1 . . . tai,nn τ(xi)yi

is anistropic on (D ⊗k K)m.

Proof. The proof goes along the same line as [9, p.111]. Suppose that there exists
an isotropic vector x. By clearing the denominator we can further assume that all
the coordinates xi of x belong to D ⊗k k[t1, . . . , tn]. Now, as a consequence of our
assumption, we see that the leading monomials of the Laurent polynomials

αit
ai,1
1 . . . tai,nn τ(xi)xi

with respect to the lexicographic order are all different when i ranges from 1 to m.
Therefore they cannot cancel.

3.2 The derived subgroup of a special reductive group

We will use [6, §26] as a basic reference for the classification of algebraic groups
over non-algebraically closed fields. We will adopt the notations of [6] throughout.

Proposition 3.2. Let G be a special reductive algebraic group over k. The derived
subgroup of G is isomorphic to

RK1|k(G1)× RK2|k(G2)× · · · ×RKr |k(Gr)

where, for each i, the extension Ki of k is finite and separable and the group Gi

is isomorphic over Ki to either SL1(Ai), where Ai is a central simple algebra over
Ki, or Sp2ni

for some integer ni.

Proof. By Theorem 1.1, the group G′
k̄
, where k̄ is an algebraic closure of k, is a

semisimple simply connected group whose simple components are of type A and
C. Therefore, by [6, Theorem 26.8], the group G′ is isomorphic to a direct product

RK1|k(G1)×RK2|k2(G2)× · · · × RKr|k(Gr)
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where, for each index i, the extension Ki of k is finite and separable and the group
Gi is an absolutely simple simply connected group over Ki of type A or C. For
each index i, Gi is a direct factor of the derived subgroup of the special reductive
group GKi

. By Proposition 2.3 we get that the map βGKi
,K has trivial kernel for

every field extension K of Ki, which readily implies that the map βGi,K has trivial
kernel as well. This forces Gi to be of inner type A or split of type C, by Lemma
3.3 below, completing the proof of the proposition.

Lemma 3.3. Let G be an absolutely simple simply connected group of type A or
C over the field k. If, for every field extension K of k, the map βG,K has a trivial
kernel, then G is either of inner type A or split of type C.

Proof of Lemma 3.3. Suppose first that G is of outer type A. We will prove
that the kernel of βG,K contains at least two elements for some field extension K
of k. Observe that to prove this property we can replace G by GM for some scalar
extension M of k. By [6, §26], G is isomorphic to SU(A, σ), where A is a central
simple algebra of degree n - at least 3, otherwise SU(A, σ) is of inner type - over a
quadratic separable extension L of k equipped with an involution σ of the second
kind.

We will now reduce to the case where A is split over L. To this aim, we denote
by Y the Severi-Brauer variety of A, by X the Weil scalar restriction of Y from
L to k, and by K be the function field of X . As X is geometrically integral, the
field k is algebraically closed in K, and consequently K ⊗k L is a field. Moreover
the set Y (K ⊗k L) is not empty, as it is equal to X(K). This implies that the field
extension K⊗kL of L is a splitting field for A. Now, we observe that the group GK

is isomorphic to SU(K ⊗k A, σK), where K ⊗k A is a split central simple algebra
over K⊗k L equipped with an involution σK of the second kind. It is thus of outer
type A and satisfies moreover the property that for every field extension M of K,
the map βGK ,M has trivial kernel. Therefore, by replacing k by K and G by GK ,
we are reduced to the case where the central simple algebra A is split over L.

Then A is isomorphic to EndL(L
n) for some integer n greater or equal to three,

and the involution σ is adjoint to a nonsingular hermitian form h on Ln, by [6,
§26]. The group G is therefore isomorphic to SUL(n, h). Its center is the group
µn[L], the kernel of the norm map :

NL|k : RL|k(µn,L) µn,k

Let K be the field k(t1, . . . , tn−1) where the tis are algebraically independent vari-
ables over k.

We claim that the kernel of βG,K contains at least two elements. We have an
exact sequence of pointed sets :

H1(K,µn[L]) H1(K,G) H1(K,Gad) H2(K,µn[L])
βG,K
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in the fppf-cohomology. As µn[L] is abelian and central in G, there is a natural
action of H1(K,µn[L]) on H1(K,G), and the set of orbits for this action is pre-
cisely the kernel of βG,K . By [6, Example 29.19], the set H1(K,G) is in natural
correspondence with the set of isometry classes of nonsingular hermitian forms on
the vector space (K ⊗k L)

n with the same discriminant α as h. Moreover, by [6,
Proposition 30.13], the group H1(K,µn[L]) is the quotient of

{(x, y) ∈ K∗ × (K ⊗k L)
∗, xn = NK⊗kL|K(y)}

by the subgroup
{(NK⊗kL|K(z), z

n), z ∈ (K ⊗k L)
∗}.

Strictly speaking, the description above is given in [6, Proposition 30.13] only when
n is not divisible by the characteristic of the base field k. This comes from the fact
that the cohomology considered there is the Galois cohomology. The same proof
leads to the description in the fppf-cohomology, with no restriction on the integer
n. It is then easy to prove that the action of the class [(x, y)] on the isometry class
[h′] of the hermitian form h′ is given as follows :

[(x, y)] · [h′] = [xh′].

We will now prove that the set H1(K,G) contains the isometry class of an isotropic
form and an anisotropic form. As these two classes cannot be in the same orbit
under the action of H1(K,µn[L]), this proves the claim above.

First, as n is greater than 2, H1(K,G) contains the isometry class of an isotropic
hermitian form, namely the one with matrix

diag(

[

0 1
1 0

]

, 1, · · · , 1,−α).

Moreover, by Lemma 3.1 above, the hermitian form :

h′(x1, . . . , xn) = t1σ(x1)x1 + · · ·+ tn−1σ(xn−1)xn−1 + αt1 . . . tn−1σ(xn)xn

which has discriminant α, is anistropic over the field K ⊗k L.

Suppose now that G is of type C and not split. Again here, we want to see
that the kernel of βG,K contains at least two elements for some field extension K
of k. By [6, §26], G is isomorphic to Sp(A, σ), where A is a nonsplit central simple
algebra of degree 2n - at least 4, otherwise Sp(A, σ) is of type A - over k equipped
with an involution σ of symplectic type. The center of G is isomorphic to µ2. Let
K be a field extension of k. By [6, (29.22)] the kernel of βG,K is in bijection with
the conjugacy classes of involutions of symplectic type on AK .

If A is a division algebra, then by [7, Theorem 3.1], there are more than one
conjugacy classes of involutions of symplectic type on AK . From now on, we
suppose that A is not a division algebra. Let D be the division algebra Brauer
equivalent to A. It is not k, as A is nonsplit. Therefore, D carries an involution τ
of symplectic type, by [6, Theorem 3.1] and [6, Corollary 2.8], and, by Wedderburn’s

8



theorem [6, Theorem (1.1)], A is isomorphic to Mn(D) for some integer n greater
or equal to 2.

Let K be the field of fractions k(t1, · · · , tn) on n indeterminates. The algebra
DK is a division algebra, and is therefore the division algebra Brauer equivalent
to AK . Let M be a simple right AK-module, isomorphic to Dn

K - thought of as
column vectors. We will make use of the correspondence between involutions of
symplectic type on AK and hermitian forms on M , as explained in [6, Theorem
(4.2)]. We refer the reader to [6, §4] for the notion of singular hermitian form and
alternating hermitian form in characteristic 2. We define two hermitian forms h
and h′ on M in the following way :

h(x, y) = −τ(x1)y1 +
s

∑

i=2

τ(xi)yi

and

h′(x, y) =

s
∑

i=1

tiτ(xi)yi

These forms are easily seen to be nonsingular. Furthermore, if the characteristic
of k is 2, then h and h′ are alternating. Indeed, by [6, Proposition 2.6], as τ is an
involution of symplectic type on DK we know that K is contained in Symd(DK , τ),
which is enough to prove that for every x in M , the elements h(x, x) and h′(x, x)
both belong to Symd(DK , τ).

By [6, Theorem (4.2)], the hermitian forms h and h′ give rise to two involutions
τh and τh′ on AK which are both of symplectic type. If these two involutions were
conjugate, then it would exist an element u of GLn(DK) such that the hermitian
forms h′ and the hermitian form :

M ×M D (x, y) 7→ h(u(x), u(y))

are proportional by a factor in K∗. But h is isotropic, for instance, (1, 1, 0, · · · , 0)
is an isotropic element, and h is not by Lemma 3.1. This provides a contradiction,
proving that the involutions τh and τh′ are not conjugate.

Observe that every group admitting a direct factor decomposition as in Propo-
sition 3.2 occurs as the derived subgroup of a special reductive group. Indeed, a
semi-simple group

RK1|k(G1)× RK2|k(G2)× · · · ×RKr |k(Gr)

where, for each i, the extension Ki of k is finite and separable and the group Gi is
isomorphic over Ki to either SL1(Ai), where Ai is a central simple algebra over Ki,
or Sp2ni

for some integer ni, is the derived subgroup of the special reductive group

RK1|k(H1)× RK2|k(H2)× · · · ×RKr |k(Hr)

where, for each index i, Hi is equal to GL1(Ai) if Gi is isomorphic to SL1(Ai), and
Hi is equal to Gi otherwise.
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3.3 The coradical of a special reductive group

We prove now that the coradical of a special reductive group is a special torus.
The classification of special tori, due to Colliot-Thélène, will be recalled in Section
5 below.

Proposition 3.4. Let G be a special reductive algebraic group defined over k. The
coradical CG of G is a special torus.

Proof. We say that a reductive algebraic group G defined over a field - which is
not necessarily k - satisfies property (P ) if, for every field extension K of the field
of definition of G and every non trivial element x in H2(K,ZG), there exists a
field extension L of K such that xL is not trivial in H2(L,ZG) and belongs to
the image of βG,L. We will prove as a consequence of Lemma 3.5 below that the
derived subgroup G′ of G - and more generally any group admitting a direct factor
decomposition as in Proposition 3.2 - satisfies property (P ).

Before proving this fact let us show how it implies the proposition. The coradical
CG of G is equal to the quotient ZG/ZG′. Suppose that CG is not special. There
exists a field extension K of k and a nontrivial element x in H1(K,CG). By
Proposition 2.3, the image of x in H2(K,ZG′) - still denoted x - is nonzero, and
is mapped to zero in H2(K,ZG). As the group G′ satisfies property (P ), we can
even assume, after possibly extending scalars, that there exists y in H1(K, (G′)ad)
such that x = βG′,K(y). We get that y is not trivial and is in the kernel of βG,K , a
contradiction to Proposition 2.2.

Now, the fact that any group admitting a direct factor decomposition as in
Proposition 3.2 satisfies property (P ) is a direct consequence of Lemma 3.5 below.
In this lemma, we say that that a set of reductive algebraic groups - not necessarily
defined over the same base field - is stable under Weil scalar restriction if for every
field k, for every finite separable field extension K of k and for every reductive
algebraic group G defined over K in the set the group RK|k(G) belongs to the set
as well.

Lemma 3.5. The set of reductive algebraic groups satisfying property (P ) :

(1) contains SL1(A) for every central simple algebra A over a field k.

(2) contains Sp2n, for every integer n and every field k.

(3) is stable under finite direct products.

(4) is stable under Weil scalar restrictions.

Proof of Lemma 3.5. Let k be a field and A a central simple algebra over k.
The center of SL1(A) is µn, where n is the degree of A. Let K be a field extension
of k and x a nontrivial element of H2(K,µn). The element x is the Brauer class of
a central simple algebra B over K of period d dividing n, d being greater than 1.
By the Schofield-Van den Bergh index reduction formula [11, Theorem 2.5], there
exists a field extension L of K such that BL is a central simple algebra over L of
index d. This proves that the class xL is not trivial in H2(L, µn) because d is not
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1, and belongs to the image of βSL1(A),L, this image being precisely the classes of
index dividing n. We have proved (1).

The proof of (2) is similar. Let k be a field and n an integer. The center of
Sp2n is µ2. Let K be a field extension of k and x a nontrivial element of H2(K,µ2).
The element x is the Brauer class of a central simple algebra B over K of period 2.
Applying the index reduction formula once again, there exists a field extension L
of K such that BL is a central simple algebra over L of index 2. This proves that
the class xL is not trivial in H2(L, µ2), and belongs to the image of βSp2n,L

, this
image being precisely the classes of index dividing 2n.

Let k be a field. We will now prove that if G1 and G2 are reductive algebraic
groups both satisfying property (P ), then the direct product G1 × G2 satisfies
property (P ) as well. Let K be a field extension of k and x be a nontrivial element
of

H2(K,ZG1×G2
) = H2(K,ZG1

)×H2(K,ZG2
).

We write x = (x1, x2). As G1 satisfies property (P ), there exists a field extension
L1 of K such that (x1)L1

is not trivial and belongs to the image of βG1,L1
. If (x2)L1

is trivial then we are done. Otherwise, as G2 satisfies property (P ), there exists a
field extension L2 of L1 such that (x2)L2

is not trivial and belongs to the image of
βG2,L2

. As (x1)L2
belongs to the image of βG1,L2

, we see that xL2
is not trivial and

belongs to the image of βG1×G2,L2
. This completes the proof of (3).

Let k be a field, M a finite separable field extension of k, and let G be reductive
algebraic group over M which satisfies property (P ). We will now prove that the
group RM |k(G) satisfies property (P ) as well. We denote by d the degree of the
field extension M of k. Let K be a field extension of k. We can write

K ⊗k M = K1 × · · · ×Ks

where the Kis are finite separable extensions of K and M . Let x a nontrivial
element in

H2(K,ZRM|k(G)) = H2(K1, ZG)× · · · ×H1(Ks, ZG).

We write x = (x1, . . . , xs), and we define dx to be the sum of the degrees of the Kis
over k such that xi belongs to the image of βG,Ki

. The integer dx is obviously less
than or equal to d. We prove the desired conclusion by a decreasing induction on
dx, the case where dx is equal to d being obvious. Suppose that dx is strictly less
than d. After permuting the Kis, we can assume for example that x1 is not in the
image of βG,K1

. In particular, x1 is not trivial. As G satisfies property (P ), there
exists a field extension L1 of K1 such that (x1)L1

is not trivial and belongs to the
image of βG,L1

. One then easily proves that xL1
is not trivial and dxL1

is strictly
greater than dx. By the induction hypothesis there is a field extension L of L1 such
that xL is not trivial and belongs to the image of βG,L, completing the proof of (4).

We make now the observation that the radical of a special reductive group does
not need to be special. Suppose that K is a separable quadratic extension of k.
Recall that the torus R1

K|k(Gm) is defined as the kernel of the norm map from
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RK|k(Gm) to Gm. We denote by R the direct product R1
K|k(Gm) × Gm. There is

an exact sequence of algebraic tori :

1 µ2 R RK|k(Gm) 1
ϕ

corresponding to the following exact sequence of Γ-modules, where Γ is the Galois
group of K over k :

0 Z2 Z2 Z/2Z 0

(x, y) (x− y, x+ y)

(x, y) [x+ y]

Here the nontrivial element of Γ acts on Z2 on the left by permuting the coordinates,
on Z2 in the center by multiplying the first coordinate by −1 and the second by 1,
and on Z/2Z as the identity. We define G to be the quotient :

(SL2×R)/µ2,

where µ2 is embedded diagonally in SL2 and in R by using the morphism ϕ above.
It is readily seen that the derived group of G is SL2 and its coradical is RK|k(Gm).
An easy argument then shows that G is special, see for instance Proposition 4.6
below. However, the radical of G is equal to R = R1

K|k(Gm)×Gm and is therefore
not special, as it can be seen directly or from the classification of special tori recalled
in Theorem 5.1 below.

4 Classification results

We start by classifying special reductive groups over the field k in Theorem 4.1
below. This classification is obtained as a straightforward consequence of the results
from Sections 2 and 3. However, conditions (1) and (2) in Theorem 4.1 are very
explicit, unlike condition (3). Under the additional assumption that the group G
is semisimple, reductive of inner type or quasisplit, we will make condition (3)
explicit as well, providing an explicit classification in these cases.

Theorem 4.1. Let G be a reductive algebraic group over k. Then G is special if
and only if the following three conditions hold :

(1) The derived subgroup of G is isomorphic to

RK1|k(G1)× RK2|k(G2)× · · · ×RKr |k(Gr)

where, for each i, the extension Ki of k is finite and separable and the group Gi

is isomorphic over Ki to either SL1(Ai), where Ai is a central simple algebra
over Ki, or Sp2ni

for some integer ni.

(2) The coradical CG of G is a special torus.

12



(3) For every field extension K of k, we have

Im(αG′,K) + Ker(H1(K,ZG′) → H1(K,ZG)) = H1(K,ZG′).

Proof. If G is special, then (1) is satisfied by Proposition 3.2, (2) by Proposition
3.4 and (3) by Proposition 2.4. Suppose now that G satisfies the three conditions.
By (1) it is easily seen that for every field extension K of k, the map βG′,K has
trivial kernel. Together with (2) and (3), it implies that G is special, by Proposition
2.4.

4.1 The classification of special semisimple groups

We provide now the classification of special semisimple groups over the field k.

Proposition 4.2. Let G be a semisimple algebraic group over k. Then G is special
if and only if it is isomorphic to

RK1|k(G1)×RK2|k2(G2)× · · · × RKr|k(Gr)

where, for each i, the extension Ki of k is finite and separable and the group Gi is
isomorphic over Ki to SLni

or Sp2ni
for some integer ni.

Proof. The “if part” of the proposition follows directly from Schapiro’s lemma and
the fact that the split groups SLn and Sp2n are special for every integer n. For the
“only if part”, we use Proposition 3.2. As G is its own derived subgroup, we find
that G is isomorphic to

RK1|k(G1)× RK2|k(G2)× · · · ×RKr |k(Gr)

where, for each i, the extension Ki of k is finite and separable and the group Gi

is isomorphic over Ki to either SL1(Ai), where Ai is a central simple algebra over
Ki, or Sp2ni

for some integer ni. Now, for every index i, Gi is a direct factor of
GKi

, and, as such, is a special group. If Gi is isomorphic over Ki to SL1(Ai) then
Lemma 4.3 below shows that Ai is split, completing the proof of the proposition.

Lemma 4.3. Let A be a central simple algebra over the field k. If SL1(A) is a
special group, then A is split.

This result is part of the folklore, see for example [4, Chapter 2, Exercise 6]. We
sketch a proof for the convenience of the reader. Let k((t)) be the field of formal
Laurent series. By [6, Corollary 29.4] we know that the set H1(k((t)), SL1(A)) is
naturally identified with the cokernel of the reduced norm :

Nrd : (k((t))⊗k A)
∗ k((t))∗

We claim that the class [t] of t in H1(k((t)), SL1(A)) is not trivial if A is not split,
proving that SL1(A) is not special in that case.
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To see this, we will prove below that the image of the composite :

v ◦ Nrd : (k((t))⊗k A)
∗ k((t))∗ Z

where v is the valuation given by t, is the ideal spanned by the index ind(A) of A.
Let us first show how it implies the result. If A is not split, then the index of A is
not 1, and we see that t, whose valuation is 1, is not in the image of Nrd, proving
that the class [t] in H1(k((t)), SL1(A)) is not trivial.

We now prove the result above. Let D be the division algebra over k which is
Brauer equivalent to A. Observe that the valuation v extends to k((t))⊗k D, the
valuation of

drt
r + dr+1t

r+1 + · · ·

being r if dr is not zero. This implies actually that the k((t))-algebra k((t))⊗kD is
a division algebra, and is thus the division algebra Brauer-equivalent to k((t))⊗kA.
By [4, Corollary 2.8.10], the image in k((t))∗ of the reduced norms from (k((t))⊗k

A)∗ and (k((t))⊗k D)∗ are the same. Therefore, in order to prove the result above,
we can replace A by D. By extending the scalars to ks((t)) - which is contained in
a separable closure of k((t)) - where the reduced norm becomes the determinant,
we see that the valuation of the reduced norm of

drt
r + dr+1t

r+1 + · · ·

where dr is not zero, is r dimk D, which is equal to r ind(A). This completes the
proof of the result above.

4.2 The classification of special reductive groups of inner

type

The split form of a reductive algebraic group G defined over k is the unique
Chevalley group Gsplit over k which is isomorphic to G over the algebraic closure k̄
of k. The existence and uniqueness of the split form is guaranteed by Chevalley’s
classification of split reductive groups, see for instance [15], and the fact that every
reductive group is split over an algebraically closed field.

A reductive algebraic group G is called of inner type if it is an inner form of
its split form, that is, if it is obtained by twisting Gsplit by a cocycle with values
in the group of inner automorphisms of Gsplit, see for instance [6, §31]. If G is a
reductive group of inner type, then :

ZG = ZGsplit
, ZG′ = Z(Gsplit)′ and RG = RGsplit

.

Consequently, we see that ZG and ZG′ are split diagonalizable groups and RG is a
split torus. We provide now the classification of special reductive algebraic groups
which are of inner type.
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Proposition 4.4. Let G be a reductive algebraic group over k of inner type. The
intersection R′

G of RG with ZG′ is a finite split diagonalizable group. We fix an
isomorphism:

R′
G ≃ µm1

× · · · × µmq

for some integers mj. Then G is special if and only if the following two conditions
are satisfied :

(1) The derived subgroup G′ of G is isomorphic to a direct product :

G1 × · · · ×Gs × · · · ×Gr (∗)

where, for each index i from 1 to s, the group Gi is equal to SL1(Ai), with Ai

a nonsplit central simple algebra of degree ni and index di over k, and, for i
from s+ 1 to r, the group Gi is equal to either SLni

or Sp2ni
for some integer

ni.

(2) The projection onto the first s factors in the direct product decomposition (∗)
leads to a morphism :

R′
G ≃ µm1

× · · · × µmq
→ ZG1×···×Gs

= µn1
× · · · × µns

(x1, . . . , xq) 7→ (x
a1,1
1 · · ·xa1,q

q , . . . , x
as,1
1 · · ·xas,q

q )

for some integers ai,js. We set bi,j =
ai,jni

mj
. Then the rows of the following

matrix :








d1 0 . . . 0 b1,1 . . . b1,q
0 d2 . . . 0 b2,1 . . . b2,q
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . ds bs,1 . . . bs,q









span a saturated sublattice of Zs+q.

Proof. First we prove that if G is special then it satisfies (1). As G is of inner type,
it is obtained by twisting the split form Gsplit of G by a cocycle whose class is in
H1(k, (Gsplit)ad). As the last set is equal to H1(k, (G′

split)ad), and the group G′
split

is a direct product of split absolutely simple simply connected groups - because it
is the derived subgroup of the special split reductive group Gsplit - we see that G′,
which is obtained from G′

split by the same twisting procedure, is a direct product
of absolutely simple simply connected groups of type A and C. By Proposition 3.2,
the factors are either of inner type A or split of type C, proving that G satisfies
(1).

We suppose now that G satisfies (1), and we claim that G is special if and only
if it satisfies (2). It is readily seen that G satisfies the first assertion of Theorem
4.1, and also the second, as the coradical of G is a split torus - it is the coradical of
the split form Gsplit of G. Therefore to prove the claim, it suffices to show that (2)
is satisfied if and only if the third assertion of Theorem 4.1 is satisfied. In order to
do this, we first identify the kernel of the following morphism :

H1(K,ZG′) → H1(K,ZG).
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There is an isomorphism from the group ZG to RG × (ZG′/R′
G) such that the

projection of the subgroup ZG′ on the second factor is the natural projection from
ZG′ onto ZG′/R′

G. This follows from the fact that the inclusion of G′ into G
provides an isomorphism from G′/R′

G to G/RG, and therefore an isomorphism
from the center ZG′/R′

G of the first group to the center ZG/RG of the second
group, together with the fact that ZG is a split diagonalizable group and RG is a
split torus, implying that the exact sequence

1 RG ZG ZG/RG 1

splits. Let K be a field extension of k. By using the isomorphism above and
Hilbert’s theorem 90 the set H1(K,ZG) is identified with H1(K,ZG′/R′

G) and the
morphism from H1(K,ZG′) to H1(K,ZG) induced by the inclusion with the mor-
phism:

H1(K,ZG′) H1(K,ZG′/R′
G)

given by the projection from ZG′ to ZG′/R′
G. This proves the following equality

Ker(H1(K,ZG′) → H1(K,ZG)) = Im(H1(K,R′
G) → H1(K,ZG′)).

Observe now that the map αG′,K is the direct product of the maps αGi,K , where i
ranges from 1 to r. As the group Gi is special for i between s + 1 and r we know
by Proposition 2.2 that αGi,K is surjective. As a consequence, the third assertion
in Theorem 4.1 is satisfied by the group G if and only if

Im(αG1×···×Gs,K) + Im(H1(K,R′
G) → H1(K,ZG1×···×Gs

)) = H1(K,ZG1×···×Gs
)

where the morphism

H1(K,R′
G) → H1(K,ZG1×···×Gs

)

is induced by the composite ϕ of the inclusion of R′
G in ZG′ followed by the pro-

jection on ZG1×···×Gs
. The morphism ϕ has the following explicit description :

ϕ : µm1
× · · · × µmq

→ µn1
× · · · × µnr

(x1, . . . , xq) 7→ (x
a1,1
1 · · ·xa1,q

q , . . . , x
ar,1
1 · · ·xar,q

q )

Its corresponding morphism in fppf cohomology is given by:

K∗/(K∗)(m1) × · · · ×K∗/(K∗)(mq) → K∗/(K∗)(n1) × · · · ×K∗/(K∗)(ns)

([x1], . . . , [xq]) 7→ ([x
b1,1
1 · · ·xb1,q

q ], . . . , [x
bs,1
1 · · ·xbs,q

q ])

where bi,j =
ai,jni

mj
, and (K∗)(n) denotes the group of nth power of elements of K∗.

Furthermore, for each index i from 1 to s, the map αGi,K :

PSL1(Ai)(K) = (Ai)
∗
K/K

∗ H1(K,µni
) = K∗/(K∗)(ni)

maps the class of an element g of (Ai)
∗
K to the class of its reduced norm. Therefore,

Lemma 4.5 below completes the proof of the proposition.
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Lemma 4.5. The following conditions are equivalent :

(1) the rows of the following matrix :









d1 0 . . . 0 b1,1 . . . b1,q
0 d2 . . . 0 b2,1 . . . b2,q
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . ds bs,1 . . . bs,q









span a saturated sublattice of Zs+q.

(2) for every field extension K of k, the map :

γK :
s
∏

i=1

Nrd((Ai)
∗
K)× (K∗)q → (K∗)r

(y1, . . . , ys, x1, . . . , xq) 7→ (x
b1,1
1 · · ·xb1,q

q y1, . . . , x
br,1
1 · · ·xbr,q

q ys)

is surjective.

Proof of Lemma 4.5. Suppose that (1) hold. Let M be the matrix in (1). First,
as the rows of M are linearly independent, the morphism of algebraic tori :

G
q+s
m → G

s
m

(y1, . . . , ys, x1, . . . , xq) 7→ (x
b1,1
1 · · ·xb1,q

q yd11 , . . . , x
bs,1
1 · · ·xbs,q

q ydss )

is surjective. Its kernel is precisely the subtorus of Gs+q
m whose character lattice is

the quotient of Zs+q by the rows of M . By assumption this kernel is therefore a
split torus. By Hilbert’s theorem 90, for every field extension K of k, the map :

(K∗)s+q → (K∗)s

(y1, . . . , ys, x1, . . . , xq) 7→ (x
b1,1
1 · · ·xb1,q

q yd11 , . . . , x
bs,1
1 · · ·xbs,q

q ydss )

induced on the K-points is surjective. As for each index i between 1 and s the
subgroup Nrd((Ai)

∗
K) of K

∗ contains (K∗)(di), we see that the map γK is surjective.

Suppose now that (1) fails. There exists a primitive element (c1, . . . , cs) of Z
s

such that the element

s
∑

i=1

ci(0, . . . , di, . . . , 0, bi,1, . . . , bi,q)

is divisible, say by d, in Zs+q. Let K be the field of Laurent series k((t)) and v the
valuation defined by t. As the element (c1, . . . , cs) is primitive, the map

(K∗)s → K∗

(z1, . . . , zs) 7→ zc11 . . . zcss
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is surjective. We claim now that if (z1, . . . , zs) belongs to the image of γK then the
valuation of zc11 . . . zcss is divisible by d, proving that γK is not surjective.

To prove the claim, let :

(y1, . . . , ys, x1, . . . , xq) ∈

s
∏

i=1

Nrd((Ai)
∗
K)× (K∗)q,

and
(z1, . . . , zs) = γK(y1, . . . , ys, x1, . . . , xq).

We have :
zc11 . . . zcss = yc11 . . . ycss x

∑s
i=1 cibi,1

1 . . . x
∑s

i=1 cibi,q
q .

For every i from 1 to s the integer v(yi) is divisible by di, as yi is a reduced norm of
the central simple algebra (Ai)K over K and the index of Ai over k is di. Therefore
v(ycii ) is divisible by cidi , hence by d. Moreover, for every index j between 1 and
q, the sum

∑s

i=1 cibi,j is also divisible by d, completing the proof of the claim.

Here is an example of a situtation where condition (2) in Proposition 4.4 is
easy to work out. Suppose that the group R′

G decomposes along the direct factor
decomposition (∗) in (1). That is,

R′
G ≃ µm1

× · · · × µmr

where, for each index i, µmi
is a subgroup of ZGi

. In this setting, condition (2) in
Proposition 4.4 is equivalent to the fact that for every i from 1 to s the integers di
and ni

mi
are relatively prime.

4.3 The classification of special quasisplit groups

Recall that a reductive group G over a field k is called quasisplit if it possesses
a Borel subgroup defined over k, see for instance [13, III, 2.2], or, in other words,
if the variety of Borel subgroups of G has a rational point. We show now that
a quasisplit group is special if and only if its derived subgroup and coradical are
special.

Proposition 4.6. Let G be a reductive algebraic group over k. Then G is quasisplit
and special if and only if there exists an exact sequence of algebraic groups :

1 D G C 1

where D is isomorphic to a direct product :

RK1|k(G1)× RK2|k(G2)× · · · ×RKr |k(Gr)

where, for every index i, Ki is a finite separable extension of k, Gi is equal to either
SLni

or Sp2ni
for some integer ni, and the group C is a special torus over k. In

that case, D is the derived subgroup of G and C is the coradical of G.
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Proof. If such an exact sequence exists, then, as D and C are special, it follows
readily from the derived exact sequence of pointed sets in fppf-cohomology that
G is special as well. Moreover, as C is commutative, the derived subgroup G′ is
contained in D. Now, as D is semisimple, it is equal to its own derived subgroup,
and is in particular contained in G′. Finally, we see that D is equal to G′, and the
fact that C is the coradical of G follows readily. Now, as G and G′ share the same
variety of Borel subgroups, and G′ is quasisplit, we see that G is quasisplit as well.

Suppose now that G is quasisplit and special. By the same argument as above,
the derived subgroup G′ is quasisplit. Moreover, by Proposition 3.2, G′ is isomor-
phic to

RK1|k(G1)× RK2|k(G2)× · · · ×RKr |k(Gr)

where, for each index i, the extension Ki of k is finite and separable and the group
Gi is isomorphic over Ki to either SL1(Ai), where Ai is a central simple algebra
over Ki, or Sp2ni

for some integer ni. For each index i such that Gi is isomorphic
to SL1(Ai), we see that SL1(Ai) is a direct factor of GKi

. As GKi
is quasisplit, this

forces SL1(Ai) to be quasisplit as well, implying that Ai is split. By Proposition 3.4,
the coradical of G is special. We thus have an exact sequence as in the proposition,
with D the derived subgroup G′ of G and C the coradical CG.

Let G be an arbitrary reductive group over the field k. There is a unique inner
form of G that is quasisplit, called the quasisplit form Gqsplit of G, see for instance
[15]. In the following proposition, we prove that the quasisplit form of G is special
if G is special. This is very reasonable, as we expect Gqsplit to be less “twisted”
than G.

Proposition 4.7. Let G be a special reductive group over k. The quasisplit form
of G is special as well.

Proof. The groups G and Gqsplit share the same coradical, and (Gqsplit)
′ is the

quasisplit form of G′. Therefore, by Proposition 3.2 and 3.4, the derived subgroup
and coradical of Gqsplit are special, proving that Gqsplit is special.

5 Special tori

In this section we give the classification of special tori after Colliot-Thélène. This
classification is implicitely contained in [3] and explicitely given in the first version
of [1] on the ArXiv but not in the published version. For this reason we thought
that it would be a good idea to include it in the present paper. We actually
reproduce the proof from [1]. The relevance of the classification of special tori for
our problem of classifying reductive groups is twofold : firstly, tori are reductive
groups and secondly, by Proposition 3.4, the coradical of a special reductive group
is a special torus.

Let k be a base field, ks a fixed separable closure and Γ the absolute Galois
group Gal(ks|k) of k. A continuous Γ-module is called a permutation Γ-module
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if it is a free Z-module possessing a basis which is permuted by the action of Γ. A
continuous Γ-module is called invertible if it is a direct factor of a permutation
Γ-module.

Theorem 5.1 (Colliot-Thélène). Let T be a torus defined over a field k. The torus
T is special if and only if the character lattice of Tks is invertible.

Proof. If the character lattice of Tks is invertible, then T is a direct factor of a
finite product of tori of type RK|k(Gm,K), where K is a finite separable extension
of k and Gm,K is the multiplicative group over K. By Hilbert’s theorem 90 and
Schapiro’s lemma, it follows that T is special.

Conversely, assume that T is special. Let K be a finite separable field extension
of k. By Lemma 5.2 below,

H1(K((t)), T ) ≃ H1(K, T )⊕H1(K,N)

where N is the cocharacter lattice of Tks and K((t)) is the field of formal Laurent
series over K. Since the torus T is special, we see that H1(K,N) is trivial. As
this property holds for every finite separable field extension K of k, it means that
the torus T is flasque. By [3, Proposition 7.4] a flasque torus is special if and only
if the character lattice of Tks is invertible, which completes the proof, modulo the
following lemma :

Lemma 5.2. For any torus over the field k, there is an isomorphism :

H1(k((t)), T ) ≃ H1(k, T )⊕H1(k,N)

where N is the cocharacter lattice of Tks.

Proof of Lemma 5.2. Set K = k((t)). Let L be the union of the field k′((t)) for
all finite extensions of k inside ks. Then the Galois group Gal(L|K) is equal to Γ.
We have the inflation-restriction exact sequence, see for example [13, I.2.6(b)]:

1 H1(Γ, T (L)) H1(K, T ) H1(L, T ) 1

The torus T is split over L, hence, by Hilbert’s theorem 90, we see that the sets
H1(Γ, T (L)) and H1(K, T ) are equal. By [2, Lemma 5.17(3)], we have

H1(Γ, T (L)) ≃ H1(Γ, T (ks[t, t
−1])).

Now, we write :

T (ks[t, t
−1]) = N ⊗Z ks[t, t

−1]∗ = N ⊗Z (k∗
s ⊕ Z) = T (ks)⊕N

because T splits over ks and ks[t, t
−1]∗ is equal to k∗

s ⊕ Z. Finally, we obtain :

H1(K, T ) ≃ H1(Γ, T (L)) ≃ H1(Γ, T (ks[t, t
−1])) ≃

H1(Γ, T (ks))⊕H1(Γ,⊕N) ≃ H1(k, T )⊕H1(k,⊕N).
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