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We investigate the convergence of a two-step modification of the Gauss-Newton method applying the generalized Lipschitz

condition for the first and second order derivatives. The convergence order as well as the convergence radius of the method

are studied and the uniqueness ball of solution of the nonlinear least squares problem is examined. Finally, we carry out

numerical experiments on a set of well-known test problems.
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1 Introduction

Let us consider the nonlinear least squares problem [4]:

min f(x) :=
1

2
F (x)TF (x), (1)

where F is a Fréchet differentiable operator defined on Rn with its values on Rm, m ≥ n.

For solving the problem (1), we consider a two-step modification of the Gauss-Newton method [2, 3]
{

xk+1 = xk − [F
′

(zk)
TF

′

(zk)]
−1F

′

(zk)
TF (xk),

yk+1 = xk+1 − [F
′

(zk)
TF

′

(zk)]
−1F

′

(zk)
TF (xk+1), k = 0, 1, 2, ....

(2)

where zk = (xk + yk)/2; x0 and y0 (x0 = y0) are given. In case when m = n, this method matches the method proposed

by Bartish [1] and Werner [7]. On each iteration, the method (2) computes only one value of functions F and F
′

. Because

of that, the computation cost of each iteration of the method (2) is roughly the same as of the Gauss-Newton method [4]: for

calculating yk+1, it is only necessary to perform one backward substitution, which requires O(n2) floating-point operations

(Flops), since the decomposition LLT of the matrix F
′

(zk)
TF

′

(zk), which costs O(n3/3) Flops, is computed for xk+1.

The main goal of this paper is to analyze the local convergence of the method (2). Bartish et al. [2] examined the local

convergence of the same using the classical Lipschitz condition for derivatives of the second order, but only for the problem (1)

with zero residual. Instead, we study the convergence of the above-mentioned method using the wider generalized Lipschitz

conditions [6] for derivatives of the first and second orders: such conditions use an integrable function L(u) instead of the

Lipschitz constant L. Besides that, we prove the convergence of the method (2) for the problem (1) with zero as well as non-

zero residuals. Moreover, we find both the order and the radius of convergence of the method (2) as well as the uniqueness

ball of solution of the problem (1).

2 Convergence Analysis and the Uniqueness of Solution

In this section, we investigate the convergence of the method (2) as well as examine the uniqueness of solution.

Theorem 2.1 Let F : Rn → Rm,m ≥ n, be a twice Fréchet differentiable operator in D ∈ Rn. Assume that (1) has a

solution x∗ ∈ D and a Fréchet derivative F
′

(x∗) has full column rank. Suppose that Fréchet derivatives F
′

(x) and F
′′

(x)
on B(x∗, r) = {x ∈ D : ‖x− x∗‖ < r} satisfy the Lipschitz conditions with L and N average:

‖F ′

(x)− F
′

(x∗)‖ ≤
∫ ρ(x)

0

L(u)du, ‖F ′′

(x)− F
′′

(y)‖ ≤
∫ ‖x−y‖

0

N(u)du, (3)

where x, y ∈ B(x∗, r), ρ(x) = ‖x − x∗‖, L(u) and N(u) are positive nondecreasing functions. Also, the radius r > 0
satisfies

0 <
(β/8)

∫ r

0
N(u)(r − u)2du+ βr

∫ (3/2)r

0
L(u)du+

√
2αβ2

∫ r

0
L(u)du

1− β
∫ r

0
L(u)du

≤ r.
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Then, for all x0 = y0 ∈ B(x∗, r) the sequences {xk} and {yk} generated by the method (2) are well defined, remain in

B(x∗, r) for all k ≥ 0, and converge to x∗ such that

ρ(xk+1) = ‖xk+1 − x∗‖ ≤ γρ(xk)
3 + ηρ(xk)ρ(yk) + θ[ρ(xk) + ρ(yk)]/2,

ρ(yk+1) = ‖yk+1 − x∗‖ ≤ γρ(xk+1)
3 + (η/3)(ρ(xk) + ρ(yk) + ρ(xk+1))ρ(xk+1) + θ[ρ(xk) + ρ(yk)]/2,

rk+1 = max{‖xk+1 − x∗‖, ‖yk+1 − x∗‖} ≤ qrk ≤ · · · ≤ qk+1r0,

where

0 < q =
(β/8)

∫ ρ(x0)

0
N(u)(ρ(x0)− u)2du+ βρ(x0)

∫ (3/2)ρ(x0)

0
L(u)du+

√
2αβ2

∫ ρ(x0)

0
L(u)du

ρ(x0)
(

1− β
∫ ρ(x0)

0
L(u)du

) < 1,

γ =
β
∫ ρ(x0)

0
N(u)(ρ(x0)− u)2du

8ρ(x0)3
(

1− β
∫ ρ(x0)

0
L(u)du

) , η =
β
∫ (3/2)ρ(x0)

0
L(u)du

ρ(x0)
(

1− β
∫ ρ(x0)

0
L(u)du

) , θ =

√
2αβ2

∫ ρ(x0)

0
L(u)du

ρ(x0)
(

1− β
∫ ρ(x0)

0
L(u)du

) ,

α = ‖F (x∗)‖, β = ‖(F ′(x∗)
TF ′(x∗))

−1F ′(x∗)
T ‖. (4)

Corollary 2.2 Order of convergence of the iterative process (2) in case of zero residual is equal 1 +
√
2.

Theorem 2.3 Suppose x∗ satisfies (1) and F
′

(x∗) has full rank. Besides that, F (x) has a continuous derivative F
′

(x) in

B(x∗, r) that satisfies the Lipschitz condition with L average (3). Let r > 0 satisfies

β

∫ r

0

L(u)(r − u)du+ αβ0

∫ r

0

L(u)du ≤ r,

where α and β are defined in (4) and β0 = ‖[F ′

(x∗)
TF

′

(x∗)]
−1‖. Then, x∗ is a unique solution of the problem (1) in

B(x∗, r).

3 Numerical Results

We carried out a set experiments on widely used test problems and compared the number of iterations under which the Gauss-

Newton method, the Secant method [5], and the method (2) converge to solution. We used the same initial points for all

methods, but different stopping criteria such as ‖F ′T (xk)F (xk)‖ ≤ ε or ‖AT
k F (xk)‖ ≤ ε; the later is applied when the

method utilizes the divided differences. In Table 1 we present the amount of iterations spent by each methods to compute an

approximation to the solution of the examples from [5] with the accuracy ε = 10−8.

Table 1: The number of iterations to solution.

Example Gauss-Newton method Secant method [5] Method (2)

Rosenbrock function 3 3 2

Kowalik-Osborne function 10 17 10

Box-3D function 6 8 5

Gnedenko-Veibull distribution 6 8 4

Freidenstein-Ross function 44 19 8

Wood function 51 74 49

To conclude, the method (2) is not only more efficient than the Gauss-Newton and Secant methods in terms of the conver-

gence order, but also in terms of the amount of iterations to solution on a variety of tests. Furthermore, the method (2) has

promising characteristics for parallelization, which we plan to utilize for constructing and developing new parallel methods

for solving the problem (1).

Acknowledgements This work undertaken (partially) in the framework of CALSIMLAB is supported by the public grant ANR-11-

LABX-0037-01 overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (reference:

ANR-11-IDEX-0004-02).

References

[1] M. Ia. Bartish. Dopov. AN URSR. Ser. A., 30:387–391, 1968.
[2] M. Ia. Bartish and A. I. Chypurko. Visnyk of Lviv Univ. Ser. Appl. Math. and Infor., 1:3–7, 1999.
[3] M. Ia. Bartish, A. I. Chypurko, and S. M. Shakhno. Visnyk of Lviv Univ. Ser. Mech. Math., 42:35–38, 1995.
[4] J. M. Dennis and R. B. Schnabel. Prentice-Hall, New York, 1983.
[5] S. M. Shakhno and O. P. Gnatyshyn. Applied Mathematics and Computation, 161:253–264, 2005.
[6] X. Wang. IMA Journal of Numerical Analysis, 20:123–134, 2000.
[7] W. Werner. Numer. Math., 32:333–342, 1979.

Copyright line will be provided by the publisher


	Introduction
	Convergence Analysis and the Uniqueness of Solution
	Numerical Results
	References

