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We investigate convergence of the two-step modification of Gauss-Newton method applying the generalized Lipschitz con-

dition for the first and second order derivatives. The convergence order as well as the convergence radius of the method are

studied and the uniqueness ball of solution of the nonlinear least squares problem is proved. Finally, we carry out numerical

experiments on a set of well-known functions.
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1 Introduction

Let us consider the nonlinear least squares problem:

min f(x) :=
1

2
F (x)TF (x), (1)

where F is a Fréchet differentiable operator defined on Rn with its values on Rm, m ≥ n.

For solving the problem (1), we consider a two-step modification of the Gauss-Newton method

{

xn+1 = xn − [F
′

(zn)
TF

′

(zn)]
−1F

′

(zn)
TF (xn),

yn+1 = xn+1 − [F
′

(zn)
TF

′

(zn)]
−1F

′

(zn)
TF (xn+1), n = 0, 1, 2, ....

(2)

where zn = (xn + yn)/2; x0 = y0 are given. This method was initially proposed, but in a different form, by Bartish et al. [2].

The advantage of the method is that it uses only one inverse over two function evaluations.

The main focus of our study is to analyze the convergence of the method (2). The local convergence of the same was

examined in [1] using the classical Lipschitz condition for the second order derivatives. Instead, we study the convergence

of the above-mentioned method using the Lipschitz condition with L average [4] for derivatives; such conditions are called

the generalized Lipschitz conditions, where L is not a constant, but an integrable function. The convergence analysis of the

method (2) using the Lipschitz condition with L average provides the following advantages over the corresponding results

in [1]: weaker convergence conditions, finer estimates on the distances involved, and larger radius of convergence.

2 Convergence Analysis and the Uniqueness of Solution

In this section, we investigate the convergence and the radius of convergence of the method (2) as well as prove the uniqueness

of solution.

Theorem 2.1 Let F : Rn → Rm,m ≥ n, be a Fréchet differentiable operator in D ∈ Rn Assume that (1) has a solution

x∗ in B(x∗, r) = {x ∈ D : ‖x − x∗‖ < r} and there exists a Fréchet derivative F
′

(x∗) that has full column rank. Suppose

that F (x) has Fréchet derivatives F
′

(x) and F
′′

(x) on B(x∗, r) that satisfy the Lipschitz condition with L and N average:

‖F ′

(x)− F
′

(x∗)‖ ≤
∫ ρ(x)

0

L(u)du, ‖F ′′

(x)− F
′′

(y)‖ ≤
∫ ‖x−y‖

0

N(u)du,

where x, y ∈ B(x∗, r), ρ(x) = ‖x− x∗‖; L(u) and N(u) are nondecreasing functions. Also, the radius r > 0 satisfies

β
∫ r

0
L(u)du

1− β
∫ 2r

0
L(u)du

+

√
2αβ2

∫ 2r

0
L(u)du

r(1− β
∫ 2r

0
L(u)du)

≤ 1.

∗ Corresponding author: e-mail: roman.iakymchuk@lip6.fr, Phone: +33 (0)1 44 27 87 73
∗∗ e-mail: s shakhno@franko.lviv.ua, Phone: +38(0)3 22 39 43 91

Copyright line will be provided by the publisher



PAMM header will be provided by the publisher 2

Then, for all x0 = y0 ∈ B(x∗, r) the sequences {xk} and {yk} generated by the method (2) are well defined, remain in

B(x∗, r) for all k ≥ 0, and converge to x∗ such that

ρ(xk+1) = ‖xk+1 − x∗‖ ≤ γρ(xk)
3 + ηρ(xk)ρ(yk) + θ[ρ(xk) + ρ(yk)]/2;

ρ(yk+1) = ‖yk+1 − x∗‖ ≤ γρ(xk+1)
3 + ζρ(xk+1)(ρ(xk) + ρ(yk) + ρ(xk+1)) + θ[ρ(xk) + ρ(yk)]/2;

rk+1 = max{‖xk+1 − x∗‖, ‖yk+1 − x∗‖} ≤ qrk ≤ · · · ≤ qk+1r0, q = max{γr2 + ηr + θ, γr2 + 3ζr + θ} < 1,

where

γ =
β
∫ ρ(x0)

0
N(u)(ρ(x0)− u)2du

8
(

1− β
∫ ρ(x0)

0
L(u)du

)

ρ(x0)3
; η =

β
∫ ρ(y0)/2

0
L(u)du

(

1− β
∫ ρ(x0)

0
L(u)du

)

ρ(y0)/2
; ζ =

β
∫ z0
0

L(u)du
(

1− β
∫ ρ(x0)

0
L(u)du

)

2z0
;

θ =

√
2αβ2

∫ ρ(x0)

0
L(u)du

(

1− β
∫ ρ(x0)

0
L(u)du

)

ρ(x0)
; z0 = (2ρ(x0) + ρ(x1))/2, α = ‖F (x∗)‖, β = ‖(F ′(x∗)

TF ′(x∗))
−1F ′(x∗)

T ‖.

Corollary 2.2 Order of convergence of the iterative process (2) in case of zero residual is equal 1 +
√
2.

Theorem 2.3 Suppose x∗ satisfies (1), F (x) has a continuous derivative F
′

(x) in B(x∗, r). Besides that, F
′

(x∗) has full

rank and F
′

(x) satisfies Lipschitz condition with L average:

‖F ′

(x)− F
′

(x∗)‖ ≤
∫ ρ(x)

0

L(u)du,

where x ∈ B(x∗, r), ρ(x) = ‖x− x∗‖, and L(u) is a nondecreasing function. Let r > 0 satisfies

β

∫ r

0

L(u)(r − u)du+ αβ0

∫ r

0

L(u)du ≤ r,

where α and β are defined in (3) and β0 = ‖[F ′

(x∗)
TF

′

(x∗)]
−1‖. Then x∗ is a unique solution of the problem (1) in B(x∗, r).

3 Numerical Results

We carried out a set of well-known tests, comparing the number of iterations under which Gauss-Newton method and its

one-step modification converge to the exact solution, see Tab. 1. We used the same initial points for all methods but different

stopping conditions such as ‖F ′T (xk)F (xk)‖ ≤ 10−8 or ‖AT
k F (xk)‖ ≤ 10−8, when the divided differences were applied. To

conclude, the considered method (2) is efficient as it does not use analytically given derivatives, but rather an approximation of

the Jacobian with the divided differences of the first order; the latter does not require additional computations to be performed.

Table 1: The number of iterations to solution.

Example Gauss-Newton m-d Secant m-d [3] Two-step Gauss-Newton m-d

Rosenbrock func. 3 3 2

Kowalik-Osborne func. 10 17 10

Box-3D func. 6 8 5

Gnedenko-Veibull dist. 6 8 4

Freidenstein-Ross func. 44 19 8

Wood func. 51 74 49
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