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ASYMPTOTIC-PRESERVING SCHEME FOR THE

FOKKER-PLANCK-LANDAU-MAXWELL SYSTEM IN THE QUASI-NEUTRAL

REGIME.

SÉBASTIEN GUISSET∗, STÉPHANE BRULL † , EMMANUEL D’HUMIÈRES ‡ , AND BRUNO DUBROCA §

Abstract. This work deals with the numerical resolution of the Fokker-Planck-Maxwell system in the quasi-neutral
regime. In this regime the stiffness of the stability constraints of classic schemes causes huge calculation times. That is why,
we introduce a new stable numerical scheme consistent with the transitional and limit models. Such schemes are called
Asymptotic-Preserving (AP) schemes in literature. This new scheme is able to handle the quasi-neutrality limit regime
without any restrictions on time and space steps. This approach can be easily applied to angular moment models by using
a moments extraction. Finally, two physically relevant numerical test cases are presented for the Asymptotic-Preserving
scheme in different regimes. The first one shows the efficiency of the Asymptotic-Preserving scheme in the quasi-neutral
regime whereas the second one on the contrary corresponds to a regime where electromagnetic effects are predominant.

Key words. Asymptotic-Preserving scheme, Fokker-Planck-Landau equation, Maxwell equations, quasi-neutral limit,
angular M1 moments model.

1. Introduction. This work deals with non-homogeneous collisional plasmas described by a kinetic
model. The plasma is considered as a mixture of electrons and ions. Each species is characterised by its
distribution function which corresponds to particles density in the phase space. In this work the Fokker-
Planck-Landau equation describes electron transport and consider binary collisions between particles
whereas Maxwell equations are used to describe the evolution of electromagnetic fields. For the sake of
simplicity, we assume that the plasma consists of electrons and one ion species considered as immobile.
This approximation is relevant due to the important mass of ions compared to the electrons mass. This
means our model is valid on time scales during which the ions motion can be neglected.

For the study of collisional processes, the two important physical scales are the mean free path and
the electron-ion collision frequency. The mean free path represents the average distance travelled by an
electron between two collisions with an ion. The electron-ion collision frequency represents the number
of electron-ion collision per unit of time. When the electronic plasma period is very small compared
to the electron-ion collisional period and the Debye length is very small compared to the mean free
path, the plasma is designated as quasi-neutral and the Maxwell-Gauss (also called Maxwell-Poisson)
and Maxwell-Ampere equations degenerate into algebric equations on collisional time scales.

Therefore to handle this type of situation a new class of methods, called Asymptotic-Preserving (AP)
methods has been developed. These methods have been introduced firstly by Shi Jin ([23]) in the context
of diffusive limits for kinetic equations. Consider a system (Sα) depending on a parameter α and (S0)
the corresponding limit system when α tends to zero. In our case α is the ratio between the Debye length
and the mean free path. A numerical scheme with time step ∆t and space step ∆x is called Asymptotic-
Preserving in the limit α tends to zero for the system (Sα) if the scheme is stable independently of
the values taken by α and if the limit scheme obtained for α = 0 is consistent with the limit problem
(S0). In this work the system (Sα) corresponds to the Fokker-Planck-Landau-Maxwell system and (S0)
corresponds to the Fokker-Planck-Landau-Maxwell system in the quasi-neutral limit. This regime has
been already studied in the context of fluid models ([8, 15]). In ([10]), the authors considered a two
fluid isentropic Euler system coupled with the Poisson equation. It is shown that the Maxwell-Poisson
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2 Asymptotic-Preserving scheme for the Fokker-Planck-Landau-Maxwell system in the quasi-neutral regime.

equation can be reformulated into an elliptic equation which does not degenerate at the quasi-neutral
limit. In ([9]), this approach is generalised to the Euler-Maxwell model with a strong magnetic field.
A kinetic model consisting in a two fluid Vlasov-Poisson system has also been investigated in ([12]). In
([14]), an Asymptotic-Preserving scheme is proposed for the Euler-Maxwell system in the quasi-neutral
regime. The Maxwell equations are reformulated to enable the computation of the electrostatic field
even in the limit regime. The development followed to express the electric field is well known in physics
([7],[2]).

The present paper deals with the construction of an Asymptotic-Preserving scheme for the Fokker-
Planck-Landau-Maxwell system in the quasi-neutral limit. The strategy adopted is similar to the one
in ([14]), nevertheless to our knowledge, it is the first time that such schemes are considered for kinetic
models with true collision operators. This fact is very important to deal with collisional plasma because
the collision frequency ν must follow the Coulombian interaction law (ν ≈ 1/|v|3). To perform realistic
simulations in plasma physics, Coulombian interactions must be used. Therefore, relaxation operators
are not relevant from a physical point of view. Moreover up to now, Asymptotic-Preserving schemes
for the quasi-neutral limit have been developed either for fluid description of plasma or for collisionless
plasmas.

Asymptotic-Preserving schemes have been recently used for numerous applications in the context of
strong magnetic fields ([13, 4]) for the gyro-fluid limit as well as in fluid mechanics for the hydrodynamic
limit ([23, 24]). Other applications can be found for example in [21, 16, 11, 5].

Kinetic descriptions are accurate but can be too numerically expensive to be used for many real
physical applications. An alternative way could be to consider a fluid description based on average
quantities. Nevertheless, macroscopic descriptions are often not accurate enough. For example, in the
context of inertial confinement fusion, the distribution functions considered can be far from equilibrium
and in this case the fluid description is not adapted. Moreover kinetic effects like non local transport
([3, 28]) or the development of some instabilities ([17]) can be important on long collisional time scales and
are not captured by fluid simulations. At the same time, kinetic codes are usually limited to short time
scales and cannot reach time scales studied by fluid simulations. It is therefore an important challenge to
describe kinetic effects using reduced kinetic codes on fluid time scales. Then angular moments models
represent intermediate models between the kinetic and fluid levels. They are less numerically expensive
than kinetic models and more accurate than fluid models. They are constructed by using an angular
moments extraction ([25, 29]) from the kinetic equations. But, there exists several moment models
whose differences come from the choice of the closure. For example, the very popular PN closure ([22])
does not ensure the positivity of the distribution function. Hence we consider in this paper a M1 moments
model ([18]) based on an entropy minimisation principle. A M1-Asymptotic-Preserving scheme is also
derived following the same method as in the kinetic case.

The paper is organised as follows. Section 2 introduces the Fokker-Planck-Landau-Maxwell system
and its quasi-neutral limit. A reformulation of the Fokker-Planck-Landau-Maxwell system is presented in
the case of one dimension in space and one dimension in velocity. The model is considered with electric
fields and collision operators. Then, the method is generalised for full multi-dimensions problems with
electromagnetic fields and collision operators. Section 3 introduces in detail the numerical construction
of an Asymptotic-Preserving scheme for the reformulated system of section 2. Section 4 deals with
the construction of an Asymptotic-Preserving scheme for the M1 moments model from the kinetic one.
Finally, section 5 presents two physically relevant numerical test cases for the M1-Asymptotic-Preserving
scheme for different regimes. The first one shows the efficiency of the Asymptotic-Preserving scheme
in the collisional quasi-neutral regime whereas the second one on the contrary corresponds to a regime
where electromagnetic effects are predominant.
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2. The Fokker-Planck-Maxwell system and its quasi-neutral limit.

We firstly present the kinetic model then we introduce the quasi-neutral limit.

2.1 The Fokker-Planck-Maxwell system.

Consider a kinetic model for a plasma constituted of electrons and one ion species considered fixed.
Therefore the description is performed with a non-negative distribution function for electrons written
fe(x,v, t) with x ∈ Rn the space variable, v ∈ Rn the velocity variable, n = 1, 2 or 3 and time t ≥ 0.
The mass and the charge of the electron are respectively written me and qe. The coefficient c represents
the speed of light in vacuum. The Fokker-Planck-Maxwell system writes

∂fe
∂t

+ v.∇xfe +
q

me
(E+ v×B).∇vfe = Cee(fe, fe) + Cei(fe),(2.1)

∂E

∂t
− c2∇x ×B = − j

ε0
,(2.2)

∇x.E =
qe
ε0

(ne − ni),(2.3)

∂B

∂t
+∇x ×E = 0,(2.4)

∇x.B = 0,(2.5)

where E and B represent respectively electric and magnetic fields. Cee and Cei are the electron-
electron and electron-ion collision operators. The expression of Cee and Cei are given by

Cee(fe, fe) = νeedivv

(

∫

v′∈Rn

S(v− v′)[∇vfe(v)fe(v
′)− fe(v)∇vfe(v

′)]dv′
)

,(2.6)

Cei(fe) = νeidivv

[

S(v)∇vfe(v)
]

,(2.7)

where

S(u) =
1

|u|3 (|u|
2Id− u⊗ u)(2.8)

is the Landau tensor and Id is the unit tensor. The parameters νee and νei are positive physical
constants.

The ionic and electronic densities ni and ne write

ni(x, t) =

∫

Rn

fi(x,v, t)dv, ne(x, t) =

∫

Rn

fe(x,v, t)dv.(2.9)

The electronic current j is given by

j(x, t) = qe

∫

Rn

fe(x,v, t)vdv.(2.10)
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2.2 Properties of the collision operators.

The electron-electron collision operator satisfies mass, momentum and energy conservation properties

∫

Rn

Cee(fe, fe)





1
v

v2



 dv = 0,(2.11)

while the electron-ion collision operator satisfies only mass and energy conservation

∫

Rn

Cei(fe)

(

1
v2

)

dv = 0.(2.12)

They both dissipate the entropy i.e.

∫

Rn

Cei(fe) log fe dv ≤ 0,

∫

Rn

Cee(fe, fe) log fe dv ≤ 0,(2.13)

which implies that the Boltzmann entropy

H(fe) =

∫

Rn

(fe logfe − fe)dv(2.14)

is a Lyapunov function for the equation (2.1).

Properties.

(i) The equilibrium states of the electron-ion collision operator Cei

(

i.e. Cei(fe) = 0
)

are given by

the set of isotropic functions fe(v) = fe(|v|).

(ii) The equilibrium states of the electron-electron collision operator Cee

(

i.e. Cee(fe, fe) = 0
)

are

given by the Maxwellian distribution functions

fe(v) = ne (
me

2πkBT
)3/2 exp

(

− me(v− u)2

2kBT

)

,(2.15)

where kB is the Boltzmann constant, ne is the electronic density, T is the temperature and u repre-
sents the mean velocity.

(iii) The equilibrium states for both collision operators
(

i.e. Cee(fe, fe)+Cei(fe) = 0
)

are given by

the isotropic Maxwellian distribution function

fe(v) = ne (
me

2πkBT
)3/2 exp

(

− mev
2

2kBT

)

.(2.16)
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2.3 Scaling for the analysis of collisional processes.

For the analysis of collisional processes three important parameters are introduced: the mean free
path λei which represents the average distance travelled by an electron between two collisions, the thermal
velocity vth and the electron-ion collision frequency νei given by

vth =

√

kBT

me
, νe,i =

vth
λe,i

.(2.17)

These parameters enable us to scale time, space and speed

t̃ = νe,it, x̃ = x/λe,i, ṽ = v/vth.(2.18)

In the same way, we scale the electric field, the magnetic field and the distribution function

Ẽ =
eE

mevthνe,i
, B̃ =

eB

meνe,i
, f̃ = fe

v3th
n0

.(2.19)

n0 is the initial electronic density.

With these dimensionless quantities the system (2.1) becomes the following system where we have
omitted the tildes















































































∂f

∂t
+ v.∇xf −∇v.((E+ v×B)f) =

1

Z
Ce,e(f, f) + Ce,i(f) ,

∂E

∂t
− 1

β2
∇x ×B = − j

α2
,

∂B

∂t
+∇x ×E = 0,

∇x.E =
1

α2
(1− n),

∇x.B = 0,

(2.20)

where α =
νe,i

ωpe
, ωpe represents the electronic plasma frequency, β = vth/c, n = ne/n0 and Z the

charge of the ions. In this work Z is taken equal to 1.

The dimensionless collision operators Cee(f, f) and Cei(f) write like in (2.6) for νee = νei = 1.



6 Asymptotic-Preserving scheme for the Fokker-Planck-Landau-Maxwell system in the quasi-neutral regime.

2.4 The electrostatic case.

In the electrostatic case with only one dimension for space (x ∈ R) and one for velocity (v ∈ R), the
system (2.20) can be written in the following form



















∂f

∂t
+ v∂xf − E∂vf = Ce,e(f, f) + Ce,i(f),

∂E

∂t
= − j

α2
,

(2.21)

where Maxwell-Poisson has to be satisfied at initial time.

Remark 1. Notice that the fourth equation of the system (2.20) called Maxwell-Gauss equation (or
Poisson equation) is not used. Indeed, the second equation of (2.20) called Maxwell-Ampere equation
and Poisson equation are equivalent if Poisson equation is verified at initial time.

The limit system (S0) is obtained when the parameter α tends to 0 and corresponds to the quasi-
neutral limit. It can be written in the form











∂f

∂t
+ v∂xf − E∂vf = Ce,e(f, f) + Ce,i(f),

j = 0,

(2.22)

with n = 1 at initial time.

When α tends to zero the Maxwell-Poisson equation degenerates into the algebric equation n = 1.
This condition has to be satisfied at initial time.

When α is equal to zero we lose the possibility to obtain the electric field from the Maxwell-Ampere
equation on collisional time scale. The limit is a singular limit, because the Maxwell-Ampere equation
degenerates into an algebric equation.

2.5 Reformulation of the Maxwell-Ampere equation in the simplified case.

The aim of this part is to provide a reformulation of the Maxwell-Ampere equation that is equivalent
and contains explicitly the quasi-neutral limit as a particular case when α = 0 for the electrostatic case
with only one dimension for space and one for the velocity.
Multiplying the first equation of (2.21) by v, integrating in velocity and using the definition of the
dimensionless current

j = −
∫

R

fvdv,(2.23)

we obtain

−∂j

∂t
+ ∂x(

∫

R

v2fdv)− E

∫

R

v∂vfdv =

∫

R

Ce,ivdv.(2.24)
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In (2.11) we have seen that the calculus of
∫

R
vCe,e(f, f)dv gives 0. It is important to notice that it

is not the case for the electron-ion collision operator (2.12).

The derivation in time of the Maxwell-Ampere equation in the electrostatic case leads to

∂j

∂t
= −α2 ∂

2E

∂t2
.(2.25)

By using (2.24), we get

α2 ∂
2E

∂t2
− E

∫

R

v∂vfdv = −∂x(

∫

R

v2f)dv +

∫

R

Ce,ivdv.(2.26)

As

E

∫

R

v∂vf dv = −neE,(2.27)

the equation (2.26) becomes

α2 ∂
2E

∂t2
+ neE = −∂x(

∫

R

v2f)dv +

∫

R

Ce,ivdv.(2.28)

When the parameter α tends to 0, we find the limit problem

neE = −∂x(

∫

R

v2fdv) +

∫

R

Ce,ivdv.(2.29)

So the electrostatic field writes

E =
−∂x(

∫

R
v2fdv) +

∫

R
Ce,ivdv

ne
.(2.30)

In this part we have shown that the Fokker-Planck-Maxwell system (2.21) is equivalent to the
Fokker-Planck-Maxwell reformulated system











∂f

∂t
+ ∂x(vf)− ∂v(Ef) = Ce,e(f, f) + Ce,i(f) ,

α2 ∂
2E

∂t2
+ neE = −∂x(

∫

R

v2f)dv +

∫

R

Ce,ivdv,
(2.31)

where Maxwell-Poisson has to be satisfied at initial time.

The limit system when α → 0 is the following one
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∂f

∂t
+ ∂x(vf)− ∂v(Ef) = Ce,e(f, f) + Ce,i(f) ,

E =
−∂x(

∫

R
v2fdv) +

∫

R
Ce,ivdv

ne
,

(2.32)

where n = 1 and j = 0 at initial time.

The second equation of (2.21) imposes j = 0 when α = 0. This condition has to be satisfied at initial
time.

2.6 Reformulation of the Maxwell-Ampere equation in the general case.

In this part, we generalise the method of the previous part to a non-homogeneous collisional plasma
with magnetic field in multi-dimensions.

Multiplying this first equation of (2.20) by −v, integrating in velocity and using the definition of the
dimensionless current (2.23) we get

−∂j

∂t
+ divx(

∫

Rn

v⊗ vfdv)−
∫

Rn

v(E+ v×B).∇vfdv =

∫

Rn

Ce,i(f)vdv.(2.33)

As
∫

Rn

(v×B).∇vf vdv = j×B,(2.34)

the same development as in the electrostatic case is performed.

The derivation in time of the Ampere-Maxwell equation in the general case leads to

∂j

∂t
= −α2 ∂

2E

∂t2
+

α2

β2

[

∇x × ∂B

∂t

]

.(2.35)

Finally the following form is obtained

α2 ∂
2E

∂t2
+ neE− j×B = −divx(

∫

Rn

v⊗ vfdv) +
α2

β2

[

∇x × ∂B

∂t

]

+

∫

Rn

Ce,i(f)vdv.(2.36)

When α tends to 0 in (2.36) we find the limit problem

neE = −divx(

∫

Rn

v⊗ vfdv) +

∫

Rn

Ce,i(f)vdv + j×B.(2.37)

So the electrostatic field writes
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E =
−divx(

∫

Rn v⊗ vfdv) +
∫

Rn Ce,i(f)vdv + j×B

ne
.(2.38)

In this part we have shown that the Fokker-Planck-Maxwell system (2.20) is equivalent to the
Fokker-Planck-Maxwell reformulated system











































∂f

∂t
+ v.∇xf − (E+ v×B).∇vf = Ce,e(f, f) + Ce,i(f) ,

α2 ∂
2E

∂t2
+ neE− j×B = −divx(

∫

Rn

v⊗ vfdv) +
α2

β2

[

∇x × ∂B

∂t

]

+

∫

Rn

Ce,i(f)vdv,

∂B

∂t
+∇x ×E = 0,

(2.39)

where Maxwell-Poisson and Maxwell-Thomson have to be satisfied at initial time.

Remark 3. The fifth equation of the system (2.20) called Maxwell-Thomson equation is not used.
Indeed the third and fifth equation of (2.20) called Maxwell-Faraday equation and Maxwell-Thomson
equation are equivalent if Maxwell-Thomson equation is verified at initial time.

The limit system of (2.39) when α → 0 is the following one























∂f

∂t
+ v.∇xf − (E+ v×B).∇vf = Ce,e(f, f) + Ce,i(f) ,

neE− j×B = −divx(

∫

Rn

v⊗ vfdv) +

∫

Rn

Ce,ivdv ,

∂B

∂t
+∇x ×E = 0 ,

(2.40)

where n = 1 and j = 0 have to be satisfied at initial time.

The second equation of (2.40) is called the Generalised Ohm’s law.

3. Discrete model.

3.1 Limitation of the classical numerical scheme.

A classical numerical scheme for the Maxwell-Ampere equation in the collisional regime writes

En+1
i = En

i − jni ∆t

α2
.(3.1)

The stability of this scheme depends directly on the parameter α. So, when α tends to 0, (3.1) can
not be used to calculate the new electric field En+1

i .
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The aim of the following part is to establish a numerical scheme which contains explicitly the quasi-
neutral case when α = 0. In this way, a new numerical scheme is developed for the reformulated
Maxwell-Ampere equation.

3.2 Construction of an Asymptotic-Preserving Maxwell-Ampere numerical scheme.

In this part the construction of an Asymptotic-Preserving scheme for the Maxwell-Ampere reformu-
lated equation is explained. In this first part the numerical scheme is constructed in the simplified case of
an homogeneous collisionless plasma. The next part extends the method to the general non-homogeneous
collisional case.

3.3 Simplified case of a homogeneous collisionless plasma.

Let us define the primal mesh M for the velocity variable v, decomposed into a family of rectangles
Mp+ 1

2
=]vp−1, vp[ ∀p ∈ {−pf , pf} where vp = p∆v and p ∈ N represents the number of points which

discretize the velocity domain. ∆v represents the energy discretisation step, which is fixed. Denote by
D its associated dual mesh consisting of cells Dj =]vp− 1

2
, vp+ 1

2
[ where vp− 1

2
= (p − 1

2
)∆v. In the same

way, a primal mesh N is defined for the space variable x, decomposed into a family of rectangles Ni+ 1
2
=

]xi−1, xi[ ∀i ∈ {1, lf} where xi = i∆x and i ∈ N represents the number of points which discretize the
space domain. ∆x represents the space discretisation step, which is fixed. We denote by E its associated
dual mesh consisting of cells Ei =]xi− 1

2
, xi+ 1

2
[ where xi− 1

2
= (i− 1

2
)∆x. Let hi,p (resp. hi+ 1

2
,p+ 1

2
) be an

approximation of h(xi, vp) (resp h(xi+ 1
2
, vp+ 1

2
)) for all distribution function h. Concerning the boundary

conditions the velocity grid is chosen large enough to have fi,pf = fi,pf = 0 ∀i ∈ {1; lf}. It is considered
that there are no particles with such velocities.

The numerical scheme for the kinetic equation is chosen in the following conservative form

fn+1
i,p − fn

i,p

∆t
−

(En+1fn)i,p+ 1
2
− (En+1fn)i,p− 1

2

∆v
= 0,(3.2)

where the computation of the fluxes is given by

(En+1fn)i,p+ 1
2
= En+1

i (
fn
i,p + fn

i,p+1

2
)− |En+1

i |
2

(fn
i,p+1 − fn

i,p).(3.3)

Multiplying equation (3.2) by −vp∆v and summing in p leads to

−∑

p vpf
n+1
i,p ∆v +

∑

p vpf
n
i,p∆v

∆t
+
∑

p

vp[(E
n+1fn)i,p+ 1

2
− (En+1fn)i,p− 1

2
] = 0.(3.4)

Then using the discrete definition of the current

ji = −
∑

p

vpfi,p∆v,(3.5)
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we get

jn+1
i − jni

∆t
+
∑

p

vp[(E
n+1fn)i,p+ 1

2
− (En+1fn)i,p− 1

2
] = 0.(3.6)

A discrete integration by part gives

jn+1
i − jni

∆t
+
∑

p

(vp − vp+1)[(E
n+1fn)i,p+ 1

2
] = 0.(3.7)

By noticing that vp − vp+1 = −∆v, (3.7) becomes

jn+1
i − jni

∆t
−∆v

∑

p

[(En+1fn)i,p+ 1
2
] = 0.(3.8)

Using the expression (3.3) for the flux, (3.8) writes

jn+1
i − jni

∆t
−∆v

∑

p

[

En+1
i (

fn
i,p + fn

i,p+1

2
)− |En+1

i |
2

(fn
i,p+1 − fn

i,p)
]

= 0.(3.9)

Remark 3. It is important to notice that

∑

p

|En+1
i |
2

(fn
i,p+1 − fn

i,p) =
|En+1

i |
2

∑

p

(fn
i,p+1 − fn

i,p) = 0.(3.10)

Therefore, no linearisation nor approximation is required to compute En+1
i from (3.9).

Using (3.10), (3.9) becomes

jn+1
i − jni

∆t
−∆vEn+1

i

∑

p

(
fn
i,p + fn

i,p+1

2
) = 0.(3.11)

The following scheme for the Maxwell-Ampere equation is used

En+1
i − En

i

∆t
= −jn+1

i

α2
.(3.12)

Contrarily to the classical scheme (3.1) the current j in (3.12) is chosen implicit.

So from (3.11), it comes that
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−α2E
n+1
i − 2En

i + En−1
i

∆t2
−∆vEn+1

i

∑

p

(
fn
i,p + fn

i,p+1

2
) = 0,(3.13)

which is the numerical scheme for the reformulated Maxwell-Ampere equation in the simplified case
of a homogeneous collisionless plasma.

By letting α to 0 in (3.13) we recover

En+1
i = 0.(3.14)

3.4 Generalisation to a non-homogeneous collisional plasma.

In this part the method is generalised to the case of a non-homogeneous collisional plasma. An
Asymptotic-Preserving scheme is constructed for the second equation of (2.31).

By using a conservative discretisation for the Fokker-Planck equation we obtain

fn+1
i,p − fn

i,p

∆t
+

(vfn)i+ 1
2
,p − (vfn)i− 1

2
,p

∆x
−

(En+1fn)i,p+ 1
2
− (En+1fn)i,p− 1

2

∆v
= Cn

ee,i + Cn
ei,i,(3.15)

where

Cn
ei,i =

1

∆v

[

Sp+ 1
2

fn
i,p+1 − fn

i,p

∆v
− Sp− 1

2

fn
i,p − fn

i,p−1

∆v

]

(3.16)

and

Sp+ 1
2
= S(

vp + vp+1

∆v
).(3.17)

The expression of S is given in (2.8). The numerical scheme for the operator Cee,i is not given,
because using (2.11) this term cancels in the calculation.

Using upwind fluxes, (3.15) leads to

fn+1
i,p − fn

i,p

∆t
+
vp

[

fn
i+1,p − fn

i−1,p

]

− |vp|
[

fn
i+1,p − 2fn

i,p + fn
i−1,p

]

2∆x

−
En+1

i

[

fn
i,p+1 − fn

i,p−1

]

− |En+1
i |

[

fn
i,p+1 − 2fn

i,p + fn
i,p−1

]

2∆v
= Cn

ee,i + Cn
ei,i.
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Multiplying the previous equation by −vp∆v and summing in p leads to

−∑

p vpf
n+1
i,p ∆v +

∑

p vpf
n
i,p∆v

∆t
− ∆v

2∆x

∑

p

[

v2p

(

fn
i+1,p − fn

i−1,p

)

− vp|vp|
(

fn
i+1,p − 2fn

i,p + fn
i−1,p

)]

+
1

2

∑

p

[

vpE
n+1
i

(

fn
i,p+1 − fn

i,p−1

)

− |En+1
i |vp

(

fn
i,p+1 − 2fn

i,p + fn
i,p−1

)]

(3.18)

= −
∑

p

Cn
ei,ivp∆v.

Using (3.5), the computation of the previous equation leads to

jn+1
i − jni

∆t
− ∆v

2∆x

∑

p

[

v2p

(

fn
i+1,p − fn

i−1,p

)

− vp|vp|
(

fn
i+1,p − 2fn

i,p + fn
i−1,p

)]

+
1

2

∑

p

[

vpE
n+1
i

(

fn
i,p+1 − fn

i,p−1

)

− |En+1
i |vp

(

fn
i,p+1 − 2fn

1,i,p + fn
i,p−1

)]

(3.19)

= −
∑

p

Cn
ei,ivp∆v.

By using (3.12), we get

−α2E
n+1
i − 2En

i + En−1
i

∆t2
− ∆v

2∆x

∑

p

[

v2p

(

fn
i+1,p − fn

i−1,p

)

− vp|vp|
(

fn
i+1,p − 2fn

i,p + fn
i−1,p

)]

+
1

2

∑

p

[

vpE
n+1
i

(

fn
i,p+1 − fn

i,p−1

)

− |En+1
i |vp

(

fn
i,p+1 − 2fn

1,i,p + fn
i,p−1

)]

(3.20)

= −
∑

p

Cn
ei,ivp∆v.

Moreover

∑

p

|En+1
i |vp

(

fn
i,p+1 − 2fn

i,p + fn
i,p−1

)

= 0.(3.21)

Indeed a discrete integration by part gives

∑

p

|En+1
i |vp

(

fn
i,p+1 − 2fn

i,p + fn
i,p−1

)

= |En+1
i |

[

∑

p

vp(f
n
i,p+1 − fn

i,p)−
∑

p

vp+1(f
n
i,p+1 − fn

i,p)
]

,

= |En+1
i |

[

∑

p

(vp − vp+1)(f
n
i,p+1 − fn

i,p)
]

,

= −|En+1
i |∆v

[

∑

p

(fn
i,p+1 − fn

i,p)
]

,

= 0.

Finally, the Asymptotic-Preserving scheme for the second equation of (2.31) writes
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−α2E
n+1
i − 2En

i + En−1
i

∆t2
− ∆v

2∆x

∑

p

[

v2p

(

fn
i+1,p − fn

i−1,p

)

− vp|vp|
(

fn
i+1,p − 2fn

i,p + fn
i−1,p

)]

+
En+1

i

2

∑

p

vp

(

fn
i,p+1 − fn

i,p−1

)

= −
∑

p

Cn
ei,ivp∆v.

In the limit case when α tends to zero, the scheme becomes

En+1
i =

∆v
∆x

∑

p

[

v2p

(

fn
i+1,p − fn

i−1,p

)

− vp|vp|
(

fn
i+1,p − 2fn

i,p + fn
i−1,p

)]

− 2
∑

p C
n
ei,ivp∆v

∑

p vp

(

fn
i,p+1 − fn

i,p−1

) .(3.22)

In the case of an homogeneous collisionless plasma the expression (3.14) is recovered.

3.5 Generalisation to an non-homogeneous collisional plasma with electromagnetic fields.

In this part we derive the numerical scheme for the reformulated Maxwell-Ampere equation in the
simplified case of 1 dimension in space and 3 dimensions in velocity. The scheme can be extended to the
case of 3 dimensions in space. We consider a cartesian case with an electric and a magnetic field of the
form

E = (Ex(t, x, y), Ey(t, x, y), 0), B = (0, 0, Bz(t, x, y)).(3.23)

Following the same method as for the electrostatic case, we derive the following numerical scheme
for the reformulated Maxwell-Ampere equation

−α2
En+1

x,l − 2En
x,l + En−1

x,l

∆t2
−∆vx∆vy∆vz

∑

i,j,k

(

En+1

x,l + j∆vyB
n+1

z,l

)

fn
l,i,j,p

−∆v2x∆vz
∑

i,j,k

vx,i

(

En+1

y,l − i∆vxB
n+1

z,l

)

fn
l,i,j,p

= −
∑

i,j,k

Cn
ei,ivx,i∆vx∆vy∆vz +

∆vx∆vy∆vz
2∆x

∑

i,j,k

[

v2x,i

(

fn
l+1,i,j,k − fn

l−1,i,j,k

)

−vx,i|vx,i|
(

fn
l+1,j,k,p − 2fn

l,i,j,k + fn
l−1,i,j,k

)]

,

−α2
En+1

y,l − 2En
y,l + En−1

y,l

∆t2
−∆v2y∆vz

∑

i,j,k

(

En+1

x,l + j∆vyB
n+1

z,l

)

fn
l,i,j,p

−∆vx∆vy∆vz
∑

i,j,k

vx,i

(

En+1

y,l − i∆vxB
n+1

z,l

)

fn
l,i,j,p
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= −
∑

i,j,k

Cn
ei,ivy,i∆vx∆vy∆vz +

α2

β2∆t

[Bn+1

z,l+1
−Bn+1

z,l−1

2∆x
−

Bn
z,l+1 −Bn

z,l−1

2∆x

]

+
∆vx∆vy∆vz

2∆x

∑

i,j,k

[

vy,ivx,i

(

fn
l+1,i,j,k − fn

l−1,i,j,k

)

−vy,i|vx,i|
(

fn
l+1,i,j,k − 2fn

l,i,j,k + fn
l−1,i,j,k

)]

,

where l is the index for space, i the index for the first coordinate in speed, j for the second and k for
the third. Also ∆t, ∆x, ∆vx, ∆vy, ∆vz are respectively the time step, the space step, the velocity step
in the first, second and third dimension. In this case there are two equations, we notice they are coupled.

4. The Asymptotic-Preserving scheme for the M1-Maxwell moment model.

This part is devoted to the derivation of an Asymptotic-Preserving scheme for the M1 model associ-
ated to the system (2.20). For the sake of clarity, we firstly recall the derivation of the M1 model that is
performed in ([26, 27]) and next we present the numerical scheme.

4.1 Moment models.

If S2 is the unit sphere, ~Ω = ~v
|v| represents the direction of propagation of the particle and µ = Ωx =

cos θ, θ ∈ [0, π]. In this part, we choose a one dimensional direction of propagation, i.e we take µ ∈ [−1, 1]

as the direction of propagation instead of ~Ω. By setting, ζ = |v| the distribution function f writes in
spherical coordinates f(µ, ζ, x). Hence the three first angular moments of the distribution function are
given by

f0(ζ) = ζ2
∫ 1

−1

f(µ, ζ)dµ, f1(ζ) = ζ2
∫ 1

−1

f(µ, ζ)µdµ, f2(ζ) = ζ2
∫ 1

−1

f(µ, ζ)µ2dµ.(4.1)

For moments model one fundamental point is the definition of the closure which guarantees that the
highest moment writes as a function of the previous ones. This closure corresponds to an approximation
of the distribution function from which the moments system is constructed. In the present paper the M1

model closure is obtained from an entropy minimisation principle.

4.2 Closure for the M1 moment model.

In order to close the problem we need to define f2 as a function of f0 and f1. For the M1 model,
the construction of the closure is based on an entropy minimum principle ([25, 29]). Indeed the closure
is obtained by solving

min
g≥0

{ H(g) / ∀ζ ∈ R
+,

∫ 1

−1

g(µ, ζ)dµ = f0(ζ),

∫ 1

−1

g(µ, ζ)µdµ = f1(ζ) },(4.2)
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where H(g) is the Boltzmann entropy defined in (2.14).

The entropy minimum principle implies that the solution of (4.2) writes ([19, 27])

f(µ, ζ) = ρ(ζ)exp(−µ a1(ζ)),(4.3)

where ρ(ζ) is a positive scalar, and a1(ζ) a real valued scalar.

Referring to [18], f2 writes

f2 = χ(f0, f1)f0 with χ =
|a1|2 − 2|a1|coth(|a1|) + 2

|a1|2
.

4.3 Collision operators.

Moments extraction of the electron-electron collision operator (2.6) is complicated due to its nonlin-
earity. That is why, it is often simplified by considering only the isotropic part of the distribution function
([6]). Nevertheless, it has been shown ([26]) that this simplification does not preserve the realisibility
domain which guarantees that the solution of the moments system can be expressed as the moments of
a nonnegative distribution function. Consequently, the collisional operators that are used ([27, 26]), are
constructed according to a linearisation around the equilibrium state of Cei. So Cee is approached by
Qee which correspond to its linearisation around the isotropic part of the distribution function Qee.

Hence, Qee writes

Qe,e(f) =
1

ζ2
∂ζ

(

ζ

∫ +∞

0

J̃(ζ, ζ ′)
[

F 0(ζ ′)
1

ζ
∂ζf(ζ)− f(ζ)

1

ζ ′
∂ζ′F 0(ζ ′)

]

ζ ′2dζ ′
)

,(4.4)

with

J̃(ζ, ζ ′) =
2

3
inf(

1

ζ3
,
1

ζ ′3
)ζ ′2ζ2.(4.5)

For the electron-ion operator, no approximation is performed because this operator is already linear.
In the following Qe,i will replace Ce,i to be consistent with the notation (4.4) of Qe,e.

Qei(f) =
1

ζ3
∂

∂µ

(

(1− µ2)
∂f

∂µ

)

.(4.6)

4.4 The M1 moment model.

The angular integration ([27]) leads to







∂tf0 +∇x.(ζf1)− ∂ζ(Ef1) = Q0(f0),

∂tf1 +∇x.(ζf2)− ∂ζ(Ef2) + E
(f0 − f2)

ζ
= Q1(f1) +Q0(f1),

(4.7)
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where the collisional operators Q0 and Q1 are given by

Q0(f0) =
2

3
∂ζ

(

ζ2A(ζ)∂ζ(
f0
ζ2

)− ζB(ζ)f0

)

,(4.8)

Q1(f1) = −2f1
ζ3

.(4.9)

The coefficients A(ζ) and B(ζ) write

A(ζ) =

∫ ∞

0

min(
1

ζ3
,
1

ω3
)ω2f0(ω)dω,(4.10)

B(ζ) =

∫ ∞

0

min(
1

ζ3
,
1

ω3
)ω3∂ω(

f0(ω)

ω2
)dω.(4.11)

4.5 A numerical scheme for the M1 model.

In this part the reformulation of the Maxwell-Ampere equation for the M1 model is detailed. Con-
sidering a conservative scheme for the second equation of (4.7) we write

fn+1
1,i,p − fn

1,i,p

∆t
+
(ζfn

2 )i+ 1
2
,p − (ζfn

2 )i− 1
2
,p

∆x
−

(En+1fn+1
2 )i,p+ 1

2
− (En+1fn+1

2 )i,p− 1
2

∆ζ
(4.12)

+
En+1

ζp
(fn+1

0,i,p − fn+1
2,i,p) = Qn

1,i,p +Qn
0,i,p.

The discrete collision operators involved in (4.12) are respectively given by

Qn
1,i,p =−

2fn
1,i,p

ζ3p
,

Qn
0,i,p =

2

3∆ζp

[

(ζ2p+ 1
2

A(ζp+ 1
2
)

1

∆ζp+ 1
2

(fn
1,i,p+1

ζ2p+1

−
fn
1,i,p

ζ2p

)

− ζp+ 1
2
B(ζp+ 1

2
)fn

1,i,p+ 1
2

)

−(ζ2p− 1
2

A(ζp− 1
2
)

1

∆ζp− 1
2

(fn
1,i,p

ζ2p
−

fn
1,i,p−1

ζ2p−1

)

− ζp− 1
2
B(ζp− 1

2
)fn

1,i,p− 1
2

)
]

.

Using a HLL scheme for the fluxes in (4.12), it holds that

fn+1
1,i,p − fn

1,i,p

∆t
+

ζp

[

fn
2,i+1,p − fn

2,i−1,p

]

− |ζp|
[

fn
1,i+1,p − 2fn

1,i,p + fn
1,i−1,p

]

2∆x

−
En+1

i

[

fn
2,i,p+1 − fn

2,i,p−1

]

− |En+1
i |

[

fn
1,i,p+1 − 2fn

1,i,p + fn
1,i,p−1

]

2∆ζ
(4.13)

+
En+1

i

ζp
(fn

0,i,p − fn
2,i,p) = Qn

1,i,p +Qn
0,i,p.
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Multiplying the previous equation by −ζp∆ζ and summing in p leads to

−∑

p ζpf
n+1
1,i ∆ζ +

∑

p ζpf
n
1,i∆ζ

∆t
−

∆ζ

2∆x

∑

p

[

ζ2p

(

fn
2,i+1,p − fn

2,i−1,p

)

− ζ2p

(

fn
1,i+1,p − 2fn

1,i,p + fn
1,i−1,p

)]

+(4.14)

1

2

∑

p

[

ζpE
n+1
i

(

fn
2,i,p+1 − fn

2,i,p−1

)

− |En+1
i |ζp

(

fn
1,i,p+1 − 2fn

1,i,p + fn
1,i,p−1

)]

−
∑

p

En+1
i (fn

0,i,p − fn
2,i,p)∆ζ = −

∑

p

ζpQ
n
1,i,p∆ζ.

Here again, the term containing the electron-electron collision operator cancels.

We use the definition of the dimensionless current j

j = −
∫

R+

f1ζdζ,(4.15)

which can be written on the discrete form

jni = −
∑

p

fn
1,i,pζp∆ζ.(4.16)

Therefore the scheme (4.14) becomes

jn+1
i − jni

∆t
− ∆ζ

2∆x

∑

p

[

ζ2p

(

fn
2,i+1,p − fn

2,i−1,p

)

− ζ2p

(

fn
1,i+1,p − 2fn

1,i,p + fn
1,i−1,p

)]

+
1

2

∑

p

[

ζpE
n+1
i

(

fn
2,i,p+1 − fn

2,i,p−1

)

− |En+1
i |ζp

(

fn
1,i,p+1 − 2fn

1,i,p + fn
1,i,p−1

)]

(4.17)

−
∑

p

En+1
i (fn

0,i,p − fn
2,i,p)∆ζ = −

∑

p

ζpQ
n
1,i,p∆ζ.

Using the scheme (3.12), the expression (4.17) becomes

−α2E
n+1
i − 2En

i + En−1
i

∆t2
− ∆ζ

2∆x

∑

p

[

ζ2p

(

fn
2,i+1,p − fn

2,i−1,p

)

− ζ2p

(

fn
1,i+1,p − 2fn

1,i,p + fn
1,i−1,p

)]

+
1

2

∑

p

[

ζpE
n+1
i

(

fn
2,i,p+1 − fn

2,i,p−1

)

− |En+1
i |ζp

(

fn
1,i,p+1 − 2fn

1,i,p + fn
1,i,p−1

)]

(4.18)

−En+1
i

∑

p

(fn
0,i,p − fn

2,i,p)∆ζ = −
∑

p

ζpQ
n
1,i,p∆ζ.

Like for the kinetic scheme in (3.21), it holds that

∑

p

|En+1
i |ζp

(

fn
1,i,p+1 − 2fn

1,i,p + fn
1,i,p−1

)

= 0.(4.19)
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Therefore the final scheme obtained reads

En+1
i =

−α2
(2En

i − En−1
i )

∆t2
+ β1(f

n
0,i, f

n
1,i)

− α2

∆t2
+ β2(f

n
0,i, f

n
1,i)

,(4.20)

where the coefficients β1 and β2 are given by

β1 =
∆ζ

2∆x

∑

p

[

ζ2p

(

fn
2,i+1,p − fn

2,i−1,p

)

− ζ2p

(

fn
1,i+1,p − 2fn

1,i,p + fn
1,i−1,p

)]

−
∑

p

ζpQ
n
1,i,p∆ζ,(4.21)

β2 =
1

2

∑

p

[

ζp

(

fn
2,i,p+1 − fn

2,i,p−1

)]

−
∑

p

(fn
0,p,i − fn

2,p,i)∆ζ.(4.22)

Remark 5. The stability of this new scheme does not depend on the parameter α. So, the electro-
static field can be obtained even if α becomes equal to zero.

Remark 6. Following the same procedure as for the Fokker-Planck-Maxwell system, this reformu-
lation can be generalised for multi-dimension problems with magnetic fields.

5. Numerical test cases.

This section presents two physically relevant numerical experiments where opposite regimes are con-
sidered. The first one studies the relaxation of a localised temperature profile in the quasi-neutral regime,
in this regime collisions between particles are predominant. The second one studies the two beams inter-
action, in this case electrostatic effects are predominant. These numerical experiments show the efficiency
of the new scheme for different regimes.

5.1 Hot spot relaxation.

We study the relaxation of a localised temperature profile. This phenomenon investigated by Batishchev
([1],[3]) corresponds physically to the heating of a plasma during a short time and to the relaxation phe-
nomenon which follows.
The important temperature gradients due to the localised heating induce a non-local heat transport.
Here, we consider the collisional regime. This configuration is particularly interesting because it enables
to study the coupling of the M1 model with the Maxwell-Ampere Asymptotic-Preserving scheme.

Initially the distribution function for electrons is a Maxwellian with a Gaussian temperature profile

Te(x, t = 0) = T0 + T1 exp(−
x2

D2
),(5.1)
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with T0 = 1Kev, T1 = 4Kev and D = 8, 44λei. There is no electric field at the initial time. Here
we choose specular reflection conditions for boundary conditions. The space scale goes from −80λei to
80λei. The energy space scale goes from 0 to 50vth.

The following plots show the evolution of the temperature and electric field profiles until 30 τei.
Then at t = 2 τei, we observe that the temperature profile starts to relax to a colder temperature and the
electric field which is proportional to the gradient of temperature also decreases. The numerical scheme
represents the good behaviour of the hot spot relaxation phenomenon.
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Figure 1. Representation of the temperature and electric field as function of space for different times.

The results of our M1-Asymptotic-Preserving scheme (M1-AP) have been compared with the ones
obtained by a kinetic code ([28]). On the following plots, the temperature and the electrostatic field
profiles are represented as function of space for different times. The (M1-AP) results are given in green
while the kinetic results are in red. Both results show a good agreement. Small differences are observed
concerning the amplitude of the temperature and the electric field. The relaxation phenomenon observed
with the (M1-AP) code is faster than the one with the kinetic code.
It is interesting to notice that there is a large calculation time difference. The simulation with the kinetic
code requires the use of 50 processes during several days while the (M1-AP) code only needs few minutes
with one process.

Thanks to the rapidity of the M1 Asymptotic-Preserving code a mesh convergence study has been
performed. With 500 points for the space grid and 80 points for the energy grid the results are converged.
The time step used is ∆t = 10−3 τei in order to respect classical stability conditions.
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Figure 2. Comparison of the temperature and electric field for a kinetic code and the M1

Asymptotic-Preserving scheme.

Remark 7. In this case the parameter α which represents the ratio between the electron-ion collision
frequency and electronic plasma frequency is equal to 4.10−4. In order to avoid a severe constraint on
the time step we use the new M1-Asymptotic-Preserving scheme. With the same CFL conditions, the
classic Maxwell-Ampere numerical scheme breaks down from the very first iterations.

Remark 8. It is important to notice that the Asymptotic-Preserving scheme is stable even in the
case α = 0.

5.2 Two electron beams interaction.

In this part we study the interaction between two electron beams. This collisionless test case enables
us to study the regime where electrostatic effects are predominant. Therefore for this test case we have
Cee = Cei = 0.

Consider two electron beams propagating at velocity v0 and v1. The dispersion relation is given by

1− 1

(ω − kv0)2
− 1

(ω − kv1)2
= 0,(5.2)

where v0 and v1 denote the beams velocities.

This configuration can lead to electrostatic instabilities. Indeed, the solutions of the form Aeiωt+ikx

are unstable when ωI the imaginary part of ω is strictly positive. In the case v0 = −v1 we can show that
the solution is stable if kv0 ≥

√
2.

This test is problematic for the M1 model. Indeed, if we consider two electron beams propagating
with opposite velocities the distribution function is well defined. Nevertheless, the M1 model considers
only the angular moments f0 and f1. For the calculus of f1 the two populations contributions cancel
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and we get f1 = 0. The M1 model sees an isotropic configuration which is not the case. To overcome
this problem we use the superposition principle that is valid because the model is linear. Two particle
populations (one per beam) are considered. For each time step the M1 problem is solved for the first
population then for the second one. Hence the Maxwell equations are solved taking into account the two
distribution functions.

In the case of two streams propagating with opposite velocities vd and −vd, the initial conditions are

f(x, v, t = 0) = 0.5[1 +Acos(kx)Mvd
(v) + (1−Acos(kx))M−vd

(v)],(5.3)

with

M±vd
(v) = ne(

me

2πkBTe
)3/2exp

(−me(v ∓ vd)
2

2kBTe

)

.(5.4)

The parameter A is introduced to perturb the initial condition in order to enable the development
of the electrostatic instability. The energy scales goes from 0 to 12 vth and the space scale from 0 to 25
ωpe. With 100 points for the space grid and 128 points for the energy grid the results are converged. On
the following plots the distribution function is represented in the phase space for the initial time and the
final time t = 30 plasma periods. In this example vd = 4, A = 0.001 and periodical boundary conditions
are used. On the second plot the interaction between the two streams is observed.

v/vth

x/τpe x/τpe

Figure 3. Distribution function as function of space and velocity at initial time (left) and after 30
plasma periods (right).

Our results have been compared with a kinetic code ([20]). On Figure 4, the evolution of the elec-
trostatic energy is represented as a function of time for the (M1-AP) code in green and for a kinetic code
in red. The first plot shows the results for A=0.001 and the second one for A=0.1.
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In the case of small perturbations (A=0.001), the M1 model and the kinetic code give analogous
results. In the case of strong perturbations (A=0.1), the (M1-AP) code and the kinetic code show some
differences after a long time. In the case of a strong perturbation, a non-linear regime is obtained and it
is well-known that the M1 model is not accurate enough ([18]).
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Figure 4. Temporal evolution of the electrostatic energy in the linear regime (top) and in the non-linear
regime (bottom).

This numerical experiment shows the good behaviour of the (M1-AP) scheme in a regime where
electrostatic effects are predominant.

6. Conclusion.

In this work, we have constructed an Asymptotic-Preserving scheme for the full Fokker-Planck-
Landau-Maxwell system which handles the quasi-neutral limit without any contraction of time and space
steps. Remark that this model is considered with the real collisional operators. This fact is important
in plasma physics because the model is relevant for Coulombian interactions. We have first established a
reformulated Fokker-Planck-Landau-Maxwell system then used it to construct the Asymptotic-Preserving
scheme. The method has been extended to the general case of collisional plasmas in electromagnetic fields
for multi-dimensions problems. An M1-Asymptotic-Preserving scheme has been derived. Next, the (M1-
AP) scheme has been implemented and two numerical test cases have been performed. The first one
shows the efficiency of the Asymptotic-Preserving scheme in the quasi-neutral regime. The second one
on the contrary corresponds to a regime where electromagnetic effects are predominant. The scheme,
accurate and fast, works in both regimes.

In this paper and in previous ones ([26, 27]), the ions have been considered as fixed due to their
important mass compared to the ones of electrons. The model must be extended when times intervals
during which their motion can not be neglected are considered. Therefore, we expect to develop in a
forthcoming paper a model taking into account ions motion.
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