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ABSTRACT

In this paper, we propose a novel automatic method based
on fuzzy modeling of knowledge to segment brain struc-
tures in MRI (Magnetic Resonance Imaging) images. The
segmentation is achieved by the region-wise classification
using GAs (Genetic Algorithms), followed by the voxel-
wise refinement using parallel region growing. To improve
the accuracy of the labeling, we introduce a fuzzy model
of ROI (Regions Of Interest) by analogy with the electro-
static potential distribution, to represent more appropriately
knowledge of shape, distance and reaction between struc-
tures, and to estimate more reliably the statistical moments.
This modeling is also used in the design of the fitness func-
tion of GAs, and the criteria of the region growing. The per-
formance of our proposed method has been quantitatively
validated by 4 indexes with respect to manually segmented
images.

1. INTRODUCTION

Segmentation of neuroanatomic structures in MRI (Mag-
netic Resonance Imaging) brain images, is an indispens-
able prerequisite for quantitative morphometric analysis, 3-
D volume visualization, and measurements of the correla-
tionship between brain structures and functions, particularly
in clinical investigations, such as pathology, diagnosis, ther-
apy and surgery planning [1]. However, this segmentation is
complicated by the difficulties due to overlapping intensit-
ies between different structures (e.g., intensities of caudate,
thalamus, and putamen), anatomical variabilities in shape,
size, and orientation of structures, partial volume effect, as
well as noise perturbations, intensity inhomogeneities, and
low contrast in images.

Two important strategies reported in recent years are:
the registration-segmentation paradigm [2, 3], and the shape
model-based segmentation [4, 5, 6]. The performance of the
first strategy over-relies on the accuracy of image registra-
tion, suffering from insufficient precision in the transform-
ation, and from anatomical variabilities (for instance, in in-

tensity, orientation, scale, shape, size and position). Fur-
thermore, the one-to-one mapping does not always exist for
registration [2]. The performance of the second strategy is
spoilt by the mismatching between a geometric model and
the MRI gray level data.

Our aim is to develop a novel automatic method to seg-
ment precisely and reliably neuroanatomic brain structures
of interest, using fuzzy modeling of knowledge derived from
the Talairach atlas [7]. The Talairach atlas is well-accepted
in medical image processing, owing to its contribution to the
delineation and labeling of numerous neuroanatomic brain
structures (see Fig.1(a) with a sample image).

2. PROPOSED METHOD

2.1. Outline

The outline of our method is:

– first, to pre-process MRI images with skull removal, noise
suppression by anisotropic filtering, and intensity inhomo-
geneity correction; then to oversegment images into three
brain tissues: cerebrospinal fluid (CSF), gray matter (GM),
and white matter (WM) using fuzzy Markov random field
(MRF) [8].

– second, to indicate the coarse location of neuroanatomic
structures by registering, and thus superimposing the atlas
onto the images.

– third, to classify those regions obtained from oversegmen-
tion in the first part into brain structures using genetic al-
gorithms (GAs), followed by a voxel-wise refinement using
parallel region growing; the region growing is guided by the
obtained knowledge.

The third part is the backbone of this work, in which we
devised a fuzzy model of regions of interest (ROI) to rep-
resent structural knowledge from the atlas, to facilitate a re-
liable estimation of the statistical distribution, to design the
objective function of GAs, and to guide the region growing.



2.2. Fuzzy model of ROI

After registering and superimposing the Talairach atlas onto
the MRI images to be segmented, we construct a fuzzy model
of the ROI from the registered atlas (see Fig.1(b)), to quant-
itatively represent the potential of any voxelx belonging
to a given brain structures (s 2 [1; N ℄, whereN is the
number of structures of interest). The fuzzy model is con-
structed by analogy with the electrostatic potential distribu-
tion in the vicinity of hollow structures with uniform surface
charge density, to represent the distance and the interaction
between different brain structures. The construction is com-
prised of two stages.

First, we consider each structure as an isolated conductor
in the electrical equilibrium, i.e., all the charges are dis-
tributed on its 3-D outer surface, which is equipotential.
The electrical potential, produced by one brain structure at
voxel x located outside any equipotential structure, can be
expressed as

ps(x) =
1
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Z
Ss

�(x0s)

jx� x0sj
dS

0
; (1)

where"0 is a constant of vacuum permitivity,s denotes the
considered brain structure in the registered atlas,Ss is its
3-D outer surface, and�(x0s) denotes the charge density at
point x0s on Ss. To simplify our fuzzy model, we presume
an uniform�(x0s). Thus, equation (1) can be rewritten as

ps(x) =
X
x0

s
2Ss

1=d(x; x0s) ; (2)

whered(x; x0s) is a 3-D distance fromx to x0s. To make the
computation practical, we ignore the surface voxels that are
farther than 5 slices fromx. In this way, all the electrical po-
tentialsps(x), s 2 [1; N ℄, corresponding to different brain
structures are obtained.

Second, we treat the ROI of a brain structures as a
fuzzy set. Using the electrical potentials obtained above, we
design the fuzzy membership function�s(x) of this ROI on
the basis of favoring the larger electrical potential as

�s(x) = ps(x)=
NX
j=1

pj(x) ; (3)

Obviously,8 x in the ROI,
PN

s=1 �s(x) = 1.

2.3. Statistical moment estimation

Using fuzzy MRF oversegmentation, we obtain plenty of
regions along with three fuzzy membership values for each
region; every three values represent the degrees of the cor-
responding region belonging to three different brain tissues
(CSF, GM and WM). Firstly, we select some regions to as-
semble a set
s; those selected regions should have large

intersection areas with the brain structures in the registered
Talairach atlas, and high degrees of fuzzy membership to
brain tissues, e.g., high membership to GM while regarding
s as caudate, and putamen. It is reasonable to regard
s as
the set of those regions reliably belonging tos.

Secondly, the statistical meanMs and variance�2s are
chosen to describe the intensity of the brain structures.
With the help of the fuzzy model of the ROI and
s, we
can estimateMs and�2s with a higher precision as
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1
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whereZ =
P

x2
s

�s(x) , andf(x) is the intensity of the
voxelx.

2.4. Region-wise classification using GAs

GAs are stochastic search methods, by analogy with some
mechanisms of evolution in nature, conducted by an object-
ive function which is referred as fitness function in GAs re-
lated references. GAs are widely applied in optimization,
in artificial intelligence, as well as in brain structures la-
beling [9, 5]. Preliminarily, we define a set
t of the over-
segmented regions which possibly corresond to one of the
brain structures:


t = fregionr j 9 structures;
X
x2r

�s(x) > tg ; (6)

wheret is an empirical threshold.
t embraces not only
the elements of all the
s, but also the regions without sig-
nificantly high possibility to be a constituent of any brain
structure of interest, i.e.,
t � (

S
s2[1;N ℄
s). Then, we

design the fitness function as the sum of two items, using
our fuzzy model and the statistical mean estimated above.

The first item measures the average fuzzy membership
value of all the voxels in
t after classifying each voxel into
a certain brain structure:

Fit1 =
1

N1

X
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X
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wheresr is the corresponding structures labeled to the re-
gion r. N1 =

P
r2
t

nr is a normalization coefficient,
wherenr represents the number of voxels in the regionr.
This item relates to the correct classification rate if we take
the registered atlas as a template of the correct classification.

The second item measures the correlation of intensity
between regions and the corresponding structures:
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1
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wheremr is the mean of regionr, andMsr denotes the
mean of the structuresr as estimated in equation (4) and (5).
Imax (Imin) is the maximum (minimum) intensity of the
images. The exponent� adjusts the influence of intensity
disparity.

2.5. Voxel-wise refinement

The use of only region-wise classification is no doubt coarse
and insufficient to achieve an accurate segmentation of neuroana-
tomic structures, because the foregoing oversegmentation
suffers significantly from the overlap of intensity ranges among
different structures like caudate, thalamus and putamen. How-
ever, after region-wise classification, the majority of voxels
has been correctly labeled; these voxels can be preserved as
seeds for refinement. In this context, we choose a parallel
region growing algorithm to achieve voxel-wise refinement,
guided by the structural and statistical knowledge obtained.

Region growing techniques are often hampered by two
difficulties: selection of reliable seeds, and predetermina-
tion of appropriate growing criteria. Here, firstly we use
conditional morphological erosion to remove the voxels un-
qualified of being seeds; then we define criteria of region
growing as follows:

A voxelx is allowed to “grow” into the same structures
with certain seeds if it satisfies the following requirements:
a) its value of membership�s(x) in fuzzy model of ROI
is above an empirical threshold; b) its intensityf(x) lies
in the statistical range determined by the meanMs and the
variance�2s which are estimated reliably by equation (4) and
(5).

3. RESULTS, VALIDATION, AND CONCLUSION

The subjects in our study were scanned with a GE Signa 1.5
Tesla scanner, employing a T1-weighted SPGR sequence.
We employ four different indexes (false positive ratio
sfp,
false negative ratio
sfn, similarity index�s [10], and Kappa
statistic�s [10]) as quantitative measures to validate the ac-
curacy and reliability of our method, compared to the manu-
ally segmented result considered as “ground truth”. Four
important neuroanatomic structures are segmented. They
are clearly visible close to the center of Fig.1: the bright-
est one is caudate, the second brightest one is thalamus, the
darkest one is ventricle, and the second darkest one is puta-
men). The fuzzy model of the ROIs of these four structures
are shown in Fig.2 with respect to Fig.1(b). The quantitative
validation results are shown in Table 1. One sample image
of the original MRI data and the corresponding segmenta-
tion result using our method are shown in Fig.3(a), and 3(b)
respectively.

From Table 1, we deduce that almost all the false ratios
are less than 10% (except
sfp for caudate due to its smal-

ler size), and all the similarity indexes and Kappa statistics
are higher than 90%. The results show that our segmenta-
tion method is promising for quantitative analysis of brain
neuroanatomic structures.



s
fp 


s
fn �

s
�
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Ventricle 0.070 0.018 0.982 0.957
Caudate 0.112 0.086 0.914 0.902
Thalamus 0.090 0.063 0.937 0.924
Putamen 0.083 0.049 0.951 0.934

Table 1. Quantitative validation results with false positive
ratio, false negative ratio, similarity index, and Kappa stat-
istic.

(a) Talairach atlas (b) registered Talairach atlas

Fig. 1. Sample images of Talairach atlas and its registered
result onto the MRI images to be segmented.
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