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We address the problem of Blind Source Separation (BSS) when the hidden sources are Nonnegative (N-BSS). In this case, the scatter plot of the mixed data is contained within the simplicial cone generated by the columns of the mixing matrix. The proposed method, termed SCSA-UNS for Simplicial Cone Shrinking Algorithm for Unmixing Non-negative Sources, aims at estimating the mixing matrix and the sources by fitting a Minimum Aperture Simplicial Cone (MASC) to the cloud of mixed data points. SCSA-UNS is evaluated on both independent and correlated synthetic data and compared to other N-BSS methods. Simulations are also performed on real Liquid Chromatography-Mass Spectrum (LC-MS) data for the metabolomic analysis of a chemical sample, and on real dynamic Positron Emission Tomography (PET) images, in order to study the pharmacokinetics of the [18F]-FDG (FluoroDeoxyGlucose) tracer in the brain.

I. INTRODUCTION

T HE well-known problem of Non-negative Blind Source Separation (N-BSS) occurs in many situations of signal and image processing. Solving the N-BSS problem consists in retrieving the hidden non-negative sources and their corresponding mixing profiles from the measured data (also denoted by observations), which are mixtures of the original sources. The use of N-BSS on actual data has continuously increased during the last decades. Applications include chemometrics [START_REF] Zhu | Gene Expression Dissection by Non-negative Well-Grounded Source Separation[END_REF] [START_REF] Shao | Extraction of chemical information from complex analytical signals by a non-negative indepependent component analysis[END_REF], biomedical image processing [START_REF] Lee | Application Of Non-Negative Matrix Factorization To Dynamic Positron Emission Tomography[END_REF] [START_REF] Sajda | Nonnegative Matrix Factorization for Rapid Recovery of Constituent Spectra in Magnetic Resonance Chemical Shift Imaging of the Brain[END_REF], spectrometry and spectroscopy [START_REF] Gobinet | Application of Non-negative Matrix Factorization to Fluorescence Spectroscopy[END_REF] [START_REF] Moussaoui | Separation of Non-Negative Mixture of Non-Negative Sources Using a Bayesian Approach and MCMC Sampling[END_REF], remote sensing [START_REF] Miao | A Constrained Non-Negative Matrix Factorization Approach to Unmix Highly Mixed Hyperspectral data[END_REF] [START_REF] Huck | Robust Hyperspectral Data Unmixing with Spatial and Spectral Regularized NMF[END_REF], speech and music power spectra decomposition [START_REF] Virtanen | Monaural Sound Source Separation by Nonnegative Matrix Factorization With Temporal Continuity and Sparseness Criteria[END_REF] [START_REF] Durrieu | Sparse Non-negative Decomposition of Speech Power Spectra for Formant Tracking[END_REF], to name a few. The interested reader can refer to [START_REF] Plumbley | Chapter 13 -Non-negative mixtures[END_REF] and [START_REF] Cichocki | 8-Selected Applications[END_REF] for more details. The batch noiseless linear instantaneous mixture model of the N-BSS problem is given by:

X = AS (1) 
where X ∈ R m×K + is the known non-negative matrix of observations, A ∈ R m×n + is the unkown non-negative mixing matrix and S ∈ R n×K + is the hidden non-negative sources matrix. Integers m, n and K are respectively the number of observations, the number of sources and the number of samples. The scalar x i (k), 1 ≤ i ≤ m and 1 ≤ k ≤ K, is the k-th sample of the observation vector x i of size m × 1. The scalar s j (k), 1 ≤ j ≤ n, is the k-th sample of source vector s j of size n × 1, and the scalar a ij is the ij-th entry of the mixing matrix A. The task of solving problem (1) consists in recovering the sources S and their profiles A, given only the observations X, without any prior knowledge on S and A except their non-negativity.

Several methods were proposed for solving problem [START_REF] Amari | A New Learning Algorithm for Blind Signal Separation[END_REF]. One can distinguish between statistical approaches and deterministic ones.

The methods of the first class use the statistical properties of the sources in order to design the separating algorithms. They include Non-negative Independent Components Analysis (N-ICA) [START_REF]Algorithms for Nonnegative Independent Component Analysis[END_REF] and Bayesian Inference based Non-negative Source Separation (BI-NSS) [START_REF] Ichir | Bayesian Blind Source Separation of Positive Non Stationary Sources[END_REF] [START_REF] Moussaoui | Separation of Non-Negative Mixture of Non-Negative Sources Using a Bayesian Approach and MCMC Sampling[END_REF]. N-ICA assumes that the nonnegative sources, s 1 , s 2 ,• • • , s n are random variables, which are mutually statistically independent and well-grounded 1 [START_REF] Plumbley | Conditions for Nonnegative Independent Component Analysis[END_REF]. The sources and the mixing matrix are estimated by whitening the observations and by rotating the whitened data to make them non-negative [START_REF]Algorithms for Nonnegative Independent Component Analysis[END_REF] [START_REF]Geometrical methods for non-negative ICA: Manifolds, Lie groups and toral subalgebras[END_REF]. Unfortunately, N-ICA is not suited to correlated sources, as we will see in the simulations. On the other hand, in the Bayesian approach [START_REF] Ichir | Bayesian Blind Source Separation of Positive Non Stationary Sources[END_REF] [START_REF] Moussaoui | Separation of Non-Negative Mixture of Non-Negative Sources Using a Bayesian Approach and MCMC Sampling[END_REF], the sources and the mixing profiles (that is columns of the mixing matrix) are modeled by random variables. The idea is to assign a specific prior probability density to each variable, and to derive the joint posterior probability density. The sources and mixing profiles are obtained by an a posterior estimator (posterior mean or posterior maximum) using Bayes' rule and the Markov Chain Monte Carlo (MCMC) sampling. In the case of non-negative sources, BI-NSS uses a nonnegative prior probability density (such as Gamma density) for both sources and profiles. This method can unfortunately be computationally complex and time-consuming, especially for large-scale data.

In order to solve the N-BSS problem, deterministic approaches impose only weak assumptions on the sources distribution. In particular, the independence of the sources is not necessary. These approaches include Non-negative Matrix Factorization (NMF) and geometrical methods. Firstly introduced by Paatero and Tapper [START_REF] Paatero | Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[END_REF], NMF was popularized by Lee and Seung [START_REF] Lee | Learning the parts of objects by nonnegative matrix factorization[END_REF] and became the prevalent method for solving the N-BSS problem. In NMF, A and S are estimated by minimizing a divergence measure between the left and right parts of equation ( 1) under a non-negativity constraint on both the estimated mixing matrix and sources. See [START_REF]Nonnegative Matrix and Tensor Factorizations, Applications to Exploratory Multi-way Data Analysis and Blind Source Separation[END_REF] for more details on different divergence measures and optimization algorithms for NMF. Nevertheless, the nonnegativity constraint alone (on S and A) is not sufficient to guarantee the uniqueness of the factorization [START_REF] Donoho | When Does Non-Negative Matrix Factorization Give a Correct Decomposition into Parts?[END_REF] [31] [START_REF] Laurberg | Theorems on Positive Data: On the Uniqueness of NMF[END_REF]. Therefore, according to the prior knowledge about the sources (respectively the profiles), some additional constraints, such as the sparsity and/or the smoothness of the sources and/or the mixing profiles, were incorporated in NMF to improve the physical meaning of the estimated sources and/or mixing profiles, and reduce the number of possible solutions [START_REF] Hoyer | Non-negative Matrix Factorization with Sparseness Constraints[END_REF] [START_REF] Chen | Nonnegative matrix factorization with temporal smoothness and/or spatial decorrelation constraints[END_REF]. A novel direction has recently been introduced in order to tackle the non-uniqueness of NMF, by adding a minimum determinant constraint on the estimated mixing matrix [START_REF] Miao | Endmember Extraction From Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization[END_REF] [START_REF] Schachtner | Towards unique solutions of non-negative matrix factorization problems by a determinant criterion[END_REF]. The geometrical methods are the other deterministic approaches for solving the Non-negative Blind Source Separation problem. The first geometrical method was introduced by Puntonet et al. [START_REF] Puntonet | A Geometrical Algorithm for Blind Source Separation[END_REF] for unmixing two sources having bounded probability densities. The mixing matrix is estimated by finding the slopes of the parallelogram containing the scatter plot of mixed data. Babaie-Zadeh et al. [START_REF] Babaie-Zadeh | A Geometric Approach for Separating Several Speech Signals[END_REF] have proposed another geometrical method for separating sparse sources. The latter method, which can deal with more than two sources, estimates the mixing matrix by clustering the scatter plot of mixed data and fitting a line (for dimension 2) or hyper-plane (for dimensions greater than 2) to each cluster. Other geometric methods were proposed for sources satisfying certain properties. If for every source there is at least one instance during which the underlying source is active and all the others are not (i.e. ∀ 1 ≤ i ≤ n, ∃ k i (1 ≤ k i ≤ K) such that s i (k i ) = 0 and s j (k i ) = 0 for j = i), then the sources are termed locally dominant. In that case, A can be estimated by finding the vertices of the convex hull of the scatter plot of mixed data [START_REF] Lazar | A New Geometrical BSS Approach for Non Negative Sources[END_REF] [7] [START_REF] Nascimento | Vertex Component Analysis: A Fast Algorithm to Unmix Hyperspectral Data[END_REF]. Unfortunately, the local dominance assumption (also termed the pure pixel assumption, in the hyperspectral unmixing) is seldom verified in practice. If the sum on every column of the sources matrix equal to one (i.e. ∀ 1 ≤ k ≤ K, n j=1 s j (k) = 1), then the sources are termed full additive, and one can estimate the mixing matrix by looking for the Minimum Volume Simplex (MVS) containing the scatter plot of mixed data [START_REF] Craig | Minimum-Volume Transforms for Remotely Sensed Data[END_REF] [28] [3] [6]. The MVS methods do not require the local dominance of the sources and, in the noiseless case, one can relax the full additivity constraint by normalizing each column of the data matrix to a unit sum as shown in [START_REF] Chan | Convex Analysis Based Non-negative Blind Source Separation for Biomedical and Hyperspectral Image Analysis[END_REF] and [START_REF] Gillis | Sparse and Unique Nonnegative Matrix Factorization Through Data Preprocessing[END_REF]. However, in the noisy case, enforcing this normalization may amplify the noise and/or lead to a bad estimation of the sources, especially if the number of sources is overestimated, as illustrated in Fig. 11.

This paper proposes a new geometrical method for solving the overdetermined N-BSS problem. The proposed method, denoted Simplicial Cone Shrinking Algorithm for Unmixing Non-negative Sources (SCSA-UNS), estimates the mixing matrix and the sources by finding the "Minimum Aperture Simplicial Cone" (MASC) containing the scatter plot of the mixed data. It neither requires the independence of the sources, nor their local dominance, or even their full additivity.

The paper is organized as follows. In section II, we review the geometrical foundations of the N-BSS problem and we derive the Minimum Aperture Simplicial Cone based approach. Section III gives conditions on the sources for the uniqueness of N-BSS, and section IV describes the proposed method. In section V, we proposed a preprocessing for reducing the noise effect. Section VI and section VII present simulation results on synthetic and real data. Finally Section VIII presents our conclusions.

II. GEOMETRICAL FOUNDATIONS OF THE NON-NEGATIVE BLIND SOURCE SEPARATION PROBLEM

We restrict to the case where the mixture is determined (i.e. m = n). If the mixture is overdetermined (m > n), one can reduce to the previous case by a proper dimension reduction, as described in section IV-B.

A. Useful definitions and concepts

In the following, R n + denotes the set of non-negative ndimensional vectors, and R n×n + denotes the of n-size matrices whose all entries are non-negative. Given a full rank matrix

U ∈ R n×n + (U = [u 1 , u 2 , • • • , u n ],
where u i ∈ R n + is the ith column of U), we introduce the following definitions:

Definition 1: Simplicial Cone The Simplicial Cone generated by the columns of U, denoted by Span + (U), is defined as:

Span + (U) = z z = Uy with y ∈ R n + (2)
Definition 2: Edge Vector of a Simplicial Cone By abusing the notation, the i-th Edge Vector of the simplicial cone Span + (U), denoted by E i (Span + (U)), is defined as:

E i (Span + (U)) = {z z = αu i α ≥ 0} (3) 
Definition 3: Facet of a Simplicial Cone In the same way, the i-th Facet of the simplicial cone Span + (U), denoted by F i (Span + (U)), is defined as:

F i (Span + (U)) = Span + {U\ {u i }} (4)
Definition 4: Vertex of a Simplicial Cone The Vertex of the simplicial cone Span + (U), denoted by V(Span + (U)), is defined as:

V(Span + (U)) = ∩ i E i (Span + (U)) (5) 
Remarks :

• For ease of the notations, we set

E i (U) = E i (Span + (U)), F i (U) = F i (Span + (U))
, and V(U) = V(Span + (U)) • The simplicial cone, Span + (U), has n edge vectors, n facets and 1 vertex. • The vertex of Span + (U) is located at the origin of R n • R n + , the positive orthant, is the simplicial cone generated by the identity matrix I n : R n + = Span + (I n ) Given the previous definitions, one can infer the following:

Lemma 1: The scatter plot of the sources {s(k), 1 ≤ k ≤ K}, with s(k) = [s 1 (k) s 2 (k) • • • s n (k)]
T , is contained in the positive orthant, Span + (I n ):

{s(k), 1 ≤ k ≤ K} ⊆ Span + (I n ) (6) 
Proof: Follow the definition of a simplicial cone. Lemma 2: The scatter plot of the mixed data

{x(k), 1 ≤ k ≤ K}, with x(k) = [x 1 (k) x 2 (k) • • • x n (k)]
T , is contained in Span + (A), the simplicial cone generated by the columns of the mixing matrix:

{x(k), 1 ≤ k ≤ K} ⊆ Span + (A) (7) 
Proof: Follow the definition of a simplicial cone. Since A is also non-negative, one can deduce that:

Span + (A) ⊆ Span + (I n ) (8) 
To illustrate Lemma 2, for m = n = 3, we consider the mixing matrix A given below, and we generate data according to equation [START_REF] Amari | A New Learning Algorithm for Blind Signal Separation[END_REF], where each source is generated following the uniform distribution between 0 and 1. 

P = z = [z 1 , z 2 , z 3 ] T ∈ R 3 | 3 i=1 z i = 1 (9) 
The projected data X, and cone Span + ( Ã) are obtained by: Proof: Proof of Theorem 2 is given in Appendix B.

xi (k) = x i (k)/ 3 l=1 x l (k) and ãij = a ij / 3 l=1 a il (10) 

B. Minimum Aperture Simplicial Cone based N-BSS

According to equations ( 7) and ( 8), one can estimate the mixing matrix (and the sources) by looking for a simplicial cone containing the scatter plot of the mixed data and contained in the positive orthant. But without any additional constraint, there are infinite number of such cones [START_REF] Donoho | When Does Non-Negative Matrix Factorization Give a Correct Decomposition into Parts?[END_REF] [START_REF] Laurberg | Theorems on Positive Data: On the Uniqueness of NMF[END_REF] (the positive orthant itself is an example). By assuming that the sources satisfies the full additivity constraint (see Section I), some geometrical methods [START_REF] Craig | Minimum-Volume Transforms for Remotely Sensed Data[END_REF] [28] [3] [6], look for the Minimum Volume Simplex (MVS) containing the scatter plot of mixed data. In this paper, except their non-negativity, no other assumption is made on the sources. In particular, the sources and the mixed data do not have upper bounds, and the volume of a simplicial cone containing the scatter plot of mixed data is undefined. One can normalize each column of the data matrix to a unit sum, and consider the volume of the simplex containing the normalized data, however, as we mentioned in Section I above, enforcing this normalization may amplify the noise and/or lead to a poor estimation of the sources. Therefore, instead of using the volume, we characterize a simplicial cone by its Aperture defined below:

Definition 5: Aperture of a Simplicial Cone The Aperture of the given simplicial cone, Span + (U), generated by a full rank matrix U, denoted A Span + (U) , is defined by:

A Span + (U) = |det(U)| u 1 2 × u 2 2 × • • • × u n 2 (13) 
Remarks :

• For ease of notation, we set:

A(U) = A Span + (U) • For n = 2, A (U) = sin(θ)
, where θ is the angle between the two column vectors of U. For n > 2,

A (U) = n-1 i=1
sin(θ i ), where θ i is the principal angle between E i+1 (U) and

Span + {u 1 , • • • , u i }. • According to Hadamard's inequality which states that |det(U)| ≤ n i=1 u i 2 , we have 0 ≤ A (U) ≤ 1. • A (I n ) = 1 Theorem 3: Given two full rank non-negative matrices U ∈ R n×n + and V ∈ R n×n + : Span + (U) ⊆ Span + (V) ⇒ A (U) ≤ A (V) (14) 
Proof: Proof of Theorem 3 is given in Appendix C. Theorem 4: Given two full rank non-negative matrices

U ∈ R n×n + and V ∈ R n×n + : Span + (U) = Span + (V) ⇒ A (U) = A (V) (15) 
Proof: Proof of Theorem 4 directly comes from Theorem 2 and the definition of the Aperture of a simplicial cone.

Definition 6: Minimum Aperture Simplicial Cone We state that Span + (U) is a Minimum Aperture Simplicial Cone (MASC) containing the scatter plot of mixed data {x(k), 1 ≤ k ≤ K}, if for any simplicial cone Span + (V) containing the scatter plot of mixed data, A (U) ≤ A (V). By misnomer, we also state that Span + (U) is a non-negative MASC containing the scatter plot of mixed data, if Span + (U) is a MASC and Span + (U) ⊆ Span + (I n ).

Under certain conditions on the sources (which will be discussed in section III), Span + (A) is the unique non-negative Minimum Aperture Simplicial Cone containing the scatter plot of the mixed data. In this case the mixing matrix can be estimated (up to positive scaling and permutation indeterminations) by finding this simplicial cone. In fact, if Span + (W) is another non-negative MASC containing the scatter plot of mixed data, then Span + (W) = Span + (A), and therefore W = ADP, where D is a diagonal matrix with non-negative entries, and P is a permutation matrix (Theorem 2).

Before proposing an algorithm for estimating the mixing matrix, we give below conditions on the sources, under which Span + (A) is the unique non-negative Minimum Aperture Simplicial Cone containing the scatter plot of the mixed data.

III. CONDITIONS ON THE SOURCES FOR UNIQUE N-BSS BY MINIMUM APERTURE SIMPLICIAL CONE

To ensure recovering the true mixing matrix, and then the true sources in noiseless case, Span + (A) must be the unique non-negative MASC containing the scatter plot of mixed data. The following Theorem 5 transforms this condition into a condition on the sources.

Theorem 5: Span + (A) is the unique non-negative MASC containing the scatter plot of the mixed data if and only if Span + (I n ) is the unique non-negative MASC containing the scatter plot of the sources.

Proof: Proof of Theorem 5 is given in Appendix D.

A. Necessary condition for unique N-BSS by MASC

Proposition 1: If Span + (I n ) is the unique non-negative MASC containing the scatter plot of the sources, then there is at least one point of the cloud of sources on each facet of

Span + (I n ), i.e. ∀ 1 ≤ i ≤ n, ∃ k i such as s i (k i ) = 0
Proof: Assume that there is at least one facet of Span + (I n ) where there is no point of the cloud of sources,

i.e ∃ 1 ≤ i ≤ n | ∀ 1 ≤ k ≤ K, s i (k) > 0 (Without
loss of generality, set i = 1 for the demonstration). Let's define the n-size square matrix U = [u ij ] 1≤i,j≤n as follow:

u ij =    min 1≤k≤K s1(k) s2(k) , s 2 (k) = 0 if i = 1 and j = 2 δ ij otherwise (16) 
Since the sources are non-negative, u 12 > 0 and one can easily verify that U -1 S ≥ 0. It comes that Span + (U) is a simplicial cone containing the scatter plot of the sources. Since

u 12 > 0, then Span + (U) ⊂ Span + (I n ), hence A (U) < A (I n ).
Therefore Span + (I n ) is not the unique non-negative MASC containing the scatter plot of sources.

B. Sufficient conditions for unique N-BSS by MASC 1) Local dominance:

Proposition 2: If the sources are non-negative and locally dominant (see section I), then Span + (I n ) is the unique nonnegative MASC containing the scatter plot of sources.

Proof: Since sources are non-negative and locally dom-

inant, i.e. ∀ 1 ≤ i ≤ n, ∃ 1 ≤ k i ≤ K | s i (k i ) = 0 and s j (k i ) = 0 for j = i, then the k i th column of S is s(k i ) = s i (k i )e i
where e i is the ith column of I n . Let Span + (U) be a non-negative simplicial cone containing the scatter plot of sources, i.e. ∀ 1

≤ i ≤ n, s(k i ) ∈ Span + (U) then e i ∈ Span + (U), so Span + (I n ) ⊆ Span + (U) and consequently A (I n ) ≤ A (U). Therefore, Span + (I n ) is a non- negative MASC containing the scatter plot of the sources. If Span + (V) is another non-negative MASC containing the scatter plot of the sources, then V ≥ 0, V -1 S ≥ 0 and A (V) = A (I n ) = 1, which lead us to conclude that V = I n M
where M is a monomial matrix, and consequently Span + (I n ) is the unique MASC containing the scatter plot of the sources.

2) Independence and well-grounded: Proposition 3: If the sources are non-negative, independent and well-grounded, then asymptotically, Span + (I n ) tends to the unique non-negative MASC containing the scatter plot of the sources.

Proof: On the one hand the sources are well-grounded, then ∀ 1 ≤ i ≤ n, ∀ δ > 0, P r(s i < δ) > 0. On the other hand, the sources are non-negative and independent, then for a fixed i:

P r(s 1 < δ, • • • , s i > 0, • • • , s n < δ) = P r(s i > 0) n j=1,j =i P r(s j < δ) (17)
By making δ -→ 0, it follows that asymptotically, there will at least one index k i such as s i (k i ) > 0 and s j (k i ) -→ 0 for all j = i. Therefore, asymptotically, the sources tend to be locally dominant. Hence, asymptotically Span + (I n ) tends to be the unique non-negative MASC containing the scatter plot of the source.

3) Sufficiently spread condition: Proposition 4: If for each facet of Span + (I n ), at least n -1 points of the scatter plot of the sources belong to underlined facet, and the vectors corresponding to these points are linearly independent, then Span + (I n ) is the unique nonnegative MASC containing the scatter plot of the sources.

Proof: Let Span + (V) be a non-negative MASC containing the scatter plot of the sources, then V ≥ 0, V -1 S ≥ 0 and A (V) ≤ 1. The task is to demonstrate that V is a monomial matrix. For a fixed i, assume that s(

k i l ), l = 1, 2, • • • , n -1 belongs to F i (Span + (I n )), then s i (k i l ) = 0, the submatrix S i = [s(k i 1 ) s(k i 2 ) • • • s(k i n-1 )] is of size n × (n -1). Since s(k i l ), 1 ≤ l ≤ n -1 ⊆ Span + (V)
, then there is a nonnegative matrix Y ≥ 0 of size n × (n -1), such as S i = VY. For 1 ≤ j ≤ n, and 1 ≤ l ≤ n -1, the jl-th entry of S i is:

s j (k i l ) = n p=1 v jp y pl ( 18 
)
where v jp is the jp-th entry of V and y pl is the pl-th entry of Y. For j = i, we get:

s i (k i l ) = 0 = n p=1 v ip y pl (19) Since v ip ≥ 0 and z pl ≥ 0, then ∀ 1 ≤ p ≤ n, v ip = 0 or y pl = 0. For a fixed p, if v ip > 0 then ∀ 1 ≤ l ≤ n-1, y pl = 0.
It follow that each non zero v ip involves that the corresponding row of Y must have zeros entries. Furthermore, the vectors corresponding to the points S(

k i l ), l = 1, 2, • • • , n -1 are linearly independent, then rg(S i ) = n-1 = min(rg(V), rg(Y)), since Y is size n × (n -1)
, then there can be no more than one zeros row in Y. Therefore, there is only one non zero entry on the ith row of V. By varying i from 1 to n, one can conclude taht there is only one non zero entry on each row of V. Since V is non-singular, we deduce that V is a monomial matrix.

One may note that if the source points located on the facets of the positive orthant are distributed such that there is another simplicial cone containing the scatter plot of sources, and whose aperture is lower or equal to the aperture of the positive orthant, then the underlined simplicial cone will not be nonnegative (i.e. will not be included in the positive orthant), and cannot be the non-negative MASC containing the scatter plot of the sources. This is illustrated in Fig. 2, for n = 3. Propositions 2, 3 and 4, give different sufficient conditions on the sources, under which Span + (I n ) is the unique nonnegative MASC containing their scatter plot, and therefore Span + (A) is the unique non-negative MASC containing the scatter plot of the mixed data. These conditions cannot all be deduced from each other, therefore we can state that each of this condition is suffucient but not necessary.

C. Conjecture of necessary and sufficient condition on the sources for unique N-BSS by MASC

Based on the necessary condition, and the sufficient conditions described before, we conjecture that a necessary and sufficient condition on sources, under which Span + (I n ) is the unique non-negative MASC containing the scatter plot of the sources can be established as follows:

1) There are at least one point of the scatter plot of sources belonging to each facet of the positive orthant, such as the vectors corresponding to these points are linearly independent:

∀ 1 ≤ i ≤ n, ∃ k i | s i (k i ) = 0 and the n-size submatrix T = [s(k 1 ) s(k 2 ) • • • s(k n )] is full rank.
2) If Span + (T) ⊂ Span + (I n ), then there is at least one point of the scatter plot of sources, s(l) with 1 ≤ l ≤ K, which lies outside any simplicial cone involving some or all of the vectors s(k 1 ), s(k 2 ), • • • , s(k n ). Fig. 3 illustrates this intuitive condition on P, in the case where m = n = 3. A proof of this conjecture is being studied. IV. SIMPLICIAL CONE SHRINKING ALGORITHM FOR UNMIXING NON-NEGATIVE SOURCES: SCSA-UNS Assuming that Span + (I n ) is the unique non-negative MASC containing the scatter plot of the sources, and according to Theorem 5, the task of estimating the mixing matrix is reduced to finding the non-negative MASC containing the scatter plot of mixed data. This can be reduced to solving the following optimization problem [START_REF] Ichir | Bayesian Blind Source Separation of Positive Non Stationary Sources[END_REF], where  is the estimated mixing matrix and A(A) is defined by equation ( 13):

 = arg min A≥0, A -1 X≥0 A(A) (20) 
For solving [START_REF] Ichir | Bayesian Blind Source Separation of Positive Non Stationary Sources[END_REF], a possible direction is a gradient type method. However, it would lead to a non-convex optimization problem, due to the denominator term of the criterion [START_REF] Craig | Minimum-Volume Transforms for Remotely Sensed Data[END_REF]. Instead of this approach, we propose an iterative method which starts from an initial simplicial cone containing the scatter plot of the mixed data, and progressively decreases its aperture until its fit the scatter plot of the mixed data. The proposed algorithm, termed SCSA-UNS for Simplicial Cone Shrinking Algorithm for Unmixing Non-negative Sources, is described below.

A. Proposed algorithm 1) Finding a proper initial simplicial cone:

The first step of the proposed SCSA-UNS algorithm is finding an initial simplicial cone Span + (U) containing the scatter plot of the mixed data, say

U = [u 1 , u 2 , • • • , u n ].
For reasons which we will explain in Sec. IV-A2, we require that u T p u q ≥ 0, ∀ 1 ≤ p, q ≤ n. Since we first restrict to m = n, a trivial such simplicial cone is given by U = I n . For getting the initial simplicial cone, one can also use an extended version of the solution of a local dominant based method, in this paper, we use extended VCA [START_REF] Nascimento | Vertex Component Analysis: A Fast Algorithm to Unmix Hyperspectral Data[END_REF]. If V is the mixing matrix estimated by VCA, then the i-th column of U, u i , is computed by u i = v i -αv, where v i is the i-th column of V and v is the mean of the columns of V. The coefficient α should be adjusted in order to satisfy the condition u T p u q ≥ 0, ∀ 1 ≤ p, q ≤ n.

2) Decreasing the aperture of the current Simplicial Cone:

We define the n-size matrices R i by equation [START_REF] Kim | Noninvasive estimation of cerebral blood flow using image-derived carotid input function in H215O dynamic PET[END_REF], where r ii = 1, and r ji ≥ 0 for 1 ≤ j ≤ n, j = i.

R i =                   1 0 • • • 0 r 1i 0 • • • 0 0 1 • • • 0 r 2i 0 • • • 0 . . . . . . . . . . . . . . . . . . • • • . . . 0 0 • • • 1 r (i-1)i 0 • • • 0 0 0 • • • 0 1 0 • • • 0 0 0 • • • 0 r (i+1)i 1 • • • 0 . . . . . . • • • . . . . . . . . . . . . . . . 0 0 • • • 0 r ni 0 • • • 1                   (21) 
Proposition 5:

Let U = [u 1 , u 2 , • • • , u n ],
the n-size matrix (where u p is the p-th column of U), and Span + (U) the current simplicial cone containing the scatter plot of the mixed data, i.e U -1 X ≥ 0. For a fixed i,

let W = UR i . If ∀ 1 ≤ p, q ≤ n, u T p u q ≥ 0, then: 1) A(W) ≤ A(U).
2) The coefficients r ij of R i can be computed such that Span + (W) also contains the scatter plot of the mixed data, i.e W -1 X ≥ 0.

Proof: Set W = [w 1 , w 2 , • • • , w n ],
where w p is the p-th column of W.

i. |det(W)| = |det(UR i )| = |det(U)| |det(R i )|. Since det(R i ) = 1 then |det(W)| = |det(U)| ii. ∀ l = i, w l = u l ⇒ w l 2 = u l 2 iii. w i = n j=1 r ji u j = u i + n j=1,j =i r ji u j , then w T i w i = u T i u i + 2 n j=1 j =i r ji u T i u j + n j=1 j =i n p=1 p =i r ji r pi u T j u p (22) Since u T p u q ≥ 0, ∀ 1 ≤ p, q ≤ n, then w T i w i ≥ u T i u i , and therefore w i 2 ≥ u i 2 .
According to the definittion of the aperture of a simplicial cone given by equation [START_REF] Craig | Minimum-Volume Transforms for Remotely Sensed Data[END_REF], and considering items i, ii and iii, one can conclude that A(W) ≤ A(U). This proves 1).

We now turn to the second part of the proof of proposition 5.

Let Y = U -1 X and Z = W -1 X, then Z = [R i ] -1 Y. By computing [R i ] -1
, one can easy verify that: ∀ 1 ≤ k ≤ K, z i (k) = y i (k) and z j (k) = y j (k) -r ji y i (k) for j = i. Span + (W) contains the scatter plot of the mixed data, if Z ≥ 0. It is therefore enough to choose:

0 ≤ r ji ≤ min 1≤k≤K y j (k) y i (k)
, y i (k) = 0, for j = i

In the algorithm, we set

r ji = 1 2 min 1≤k≤K y j (k) y i (k) , y i (k) = 0 (23) 
This conclude the proof of proposition 5.

By starting from a proper initial simplicial cone containing the scatter plot of the mixed data (see Sec.IV-A1), say Span + (U), the proposed algorithm iteratively decreases A(U) by performing several sweeps of n multiplications to the right of U by R i , i varying from 1 to n. At each iteration, the matrix R i is computed as described in Proposition 5, in order to decrease the aperture of the current simplicial cone, while keeping all the mixed data inside of the new simplicial cone. The algorithm stops when the current simplicial cone fits the scatter plot of the mixed data. In this case, one cannot decrease anymore the aperture of the current simplicial cone by the matrices R i , while keeping all the mixed data inside of the new cone. This is called "Locking situation" and is detailed in the paragraph below.

3) Locking before convergence and proposed unlocking: If Span + (U) is the current estimated simplicial cone, then the algorithm described above stops if for any i between 1 and n, one cannot decrease anymore the aperture of the current simplicial cone by the matrix R i , while keeping all the mixed data inside of the new cone. In this case, the only matrix R i verifying, for W = UR i , A(W) ≤ A(U) and W -1 X ≥ 0 is R i = I n . This situation often corresponds to the convergence of the current estimated mixing matrix U to the true mixing matrix A. However, this situation may also occur while U has not converged yet to A. The latter case is called "locking before convergence", and is illustrated in Fig. 4(a) for n = 3. In this figure, the data and the current simplicial cone are projected on the plane P, as described in section II-A. In case of locking before convergence, the proposed algorithm finds R i = I n , ∀ 1 ≤ i ≤ n, and therefore r ji = δ ji . According to equation [START_REF] Laurberg | Theorems on Positive Data: On the Uniqueness of NMF[END_REF], it follows that

∀ 1 ≤ i ≤ n, ∃ 1 ≤ k i ≤ K such as y j (k i ) = 0 and y i (k i ) = 0.
Since a locking before convergence causes zeros values in the current estimated sources Y = U -1 X, the idea, in order to overcome this situation, is to modify the current simplicial cone Span + (U) to make the current estimated sources strictly positive, without increasing A(U). For this purpose we look for an "unlocking matrix", Q, that will rotate the current simplicial cone such that T = U -1 QX > 0, and for

V = Q -1 U A(V) = A(U).
For computing the unlocking matrix, we introduce the criterion J, by equation [START_REF] Lazar | A New Geometrical BSS Approach for Non Negative Sources[END_REF], where t ik is the ik-th entry of T,

J(Q) = n i=1 K k=1 t + ik where t + ik =      1 if t ik = 0 0 if t ik > 0 +∞ if t ik < 0 (24)
One may note that J(Q) = 0 if and only if T > 0, and A(Q -1 U) = A(U) if Q is an orthogonal matrix. A convenient unlocking matrix Q can be computed by solving the optimization problem [START_REF] Lee | Learning the parts of objects by nonnegative matrix factorization[END_REF]:

Q = arg min O T O=In J(O) (25) 
In order to deal with problem (25) in one step by a gradient like method, we slightly modify the original problem by:

• Regularizing the criterion J to avoid Dirac distributions when computing the gradient. We obtain the criterion J ǫ given by:

J ǫ (Q) = n i=1 K k=1 exp(- t ik ǫ ), σ > 0
One may note that J ǫ (Q) -→ J(Q) when ǫ -→ 0.

• Adding a penalty term

J orth (Q) = Q T Q -I n 2 F to J ǫ (Q),
in order to penalyze its deviation from orthogonality.

The optimization problem becomes :

Q = arg min O J σ (O) + γJ orth (O), with γ ≥ 0 (26) 
and can be solved by the iterative gradient algorithm [START_REF] Lee | Application Of Non-Negative Matrix Factorization To Dynamic Positron Emission Tomography[END_REF]: The unlocking process is illustrated in Fig. 4(b), where Span + (V), is obtained by rotating Span + (U), with the unlocking matrix Q.

Q (p+1) = Q p -µ - (U -1 ) T T null T T σ + 4γQ p Q T p Q p -I n (27 
4) Framework of the SCSA-UNS algorithm for noiseless determined mixture: The pseudo-code of the proposed SCSA-UNS algorithm in the noiseless case is given by Algorithm 1. 

for i = 1 → n do 4: Compute R i as describeb in Sec IV-A2 5: U ← UR i and Y ← [R i ] -1 Y 6:
end for 7:

if a locking situation occurs then 8:

Compute Q as described in Section IV-A3 9:

U ← QU and Y ← U -1 Q -1 X 10: end if 11: until Q = I n 12: Â ← max (U, 0) 13: Ŝ ← max (Y, 0)

5) About the convergence of SCSA-UNS:

The proposed algorithm, SCSA-UNS, is designed to monotonicaly decrease the criterion (i.e the aperture of the current simplicial cone). While the multiplications by the matrices R i do not increase the criterion, the unlockings may slightly increase the criterion, since the matrices Q are not perfectly orthogonal (being computed by a regularized gradient). Although, the monotonic decrease of the criterion is not guaranted, we have noted through simulations that the proposed algorithm does not diverge.

B. Overdetermined mixture (m > n)

In case of an overdetermined mixture (m > n), one must first perform a dimension reduction before running the SCSA-UNS algorithm. By computing the Singular Value Decomposition of X, we get:

X ≈ EFG T ( 28 
)
where F ∈ R n×K is the diagonal matrix of the n-largest singular values. E ∈ R m×n (respectively G ∈ R K×n ) is the matrix of the corresponding left (respectively right) singular vectors. The second step consists in running the SCSA-UNS algorithm on the reduced data G T , in order to compute the MASC containing its scatter plot, that is G T = UY. The mixing matrix and the source are then estimated by:

 = max (EFU, 0) and Ŝ = max (Y, 0) (29) 
V. NOISE REDUCTION This section considers the case where the observations are corrupted by additive noise. The mixed data are then obtained as follows:

X = AS + B ( 30 
)
Due to the additive noise, B, the scatter plot of mixed data may expand outside the simplicial cone generated by the mixing matrix. Therefore running SCSA-UNS on the noisy data, without any pre-processing, will lead to bad a estimation of the mixing matrix (and the sources), as illustrated in Fig. 5, for m = n = 3 sources. A pre-processing is necessary to reduce the noise effect, before estimating the mixing matrix. Assuming the noise is independent and identically distributed, one can note that the noiseless mixed data points are not affected in the same way. In fact, a noisy mixed data point is given by x(k) = As(k) + b(k), and let's define the "local signal to noise ratio" by snr(k) = -10 log 10

As(k) 2 b(k) 2
. The small norms noiseless mixed data will be strongly affected by the noise, since their local signal to noise ratio will be very low. To reduce the noise effect, we propose to select and discard all the mixed data points whose norm is lower than a certain threshold λ b , before running the SCSA-UNS algorithm. Finding a proper threshold λ b is not trivial, and based on experimental result, we propose λ b = max 1≤K≤K x(k) 2 . From the remaining mixed data, denoted X r m×L (where L is the number of remaining data, after removing the small norms data), one can estimate the mixing matrix, Â m×n , using the SCSA-UNS algorithm for overdetermined mixture (see section IV-B). The sources are then estimated by:

Ŝ = max  † EFG T , 0 (31) 
where  † is the pseudoinverse of Â, F is the diagonal matrix of the n-largest singular values of X, and E (respectively G) is the matrix of the corresponding left (respectively right) singular vectors.

VI. EVALUATION ON SYNTHETIC DATA

In this section, the proposed method is evaluated on synthetic data, and compared to other Non-negative Blind Source Separation methods. The different methods are evaluated for both, mutually independent and mutually correlated sources.

A. Performance indices and algorithms for comparison

We consider two performance indices for comparison. The first one is the mixing matrix estimation error, also called separation error E sep . Given the estimated mixing matrix  and its pseudoinverse  † , E sep is defined by equation ( 32) [START_REF] Amari | A New Learning Algorithm for Blind Signal Separation[END_REF] where ∆ =  † A.

E sep = 1 2n(n -1) n i=1   n j=1 ( |∆ ij | max l |∆ il | + |∆ ji | max l |∆ li | ) -2   (32) 
The smaller is E sep , the better is the separation, and E sep is zero for perfect estimation of the mixing matrix. In this papaer, we'll consider that the mixing matrix is properly estimated if

E sep (dB) < -10dB.
The second performance index is the source estimation error, E corr , defined by equation ( 33):

E corr = -log 10 1 n n i=1 max 1≤j≤n ŝi s T j ŝi s j ( 33 
)
where ŝi is the estimate of the i-th source and s j is the true jth source. E corr is inversely proportional to the correlation between the true sources and the estimated ones. The smaller is E corr , the better is the estimation of the sources, and E corr is zero for perfect separation. In this paper we'll consider that the sources are properly estimated if E corr (dB) < -20dB. The mixed data were generated according to equation [START_REF] Moussaoui | Separation of Non-Negative Mixture of Non-Negative Sources Using a Bayesian Approach and MCMC Sampling[END_REF]. The noise matrix, B, entries are generated following the standard Normal distribution, and the Signal to Noise Ratio of the i-th observation, SN R i , is calculated by:

SN R i = 10 log 10    K k   n j=1 a ij s j (k)   2 / K k=1 [b i (k)] 2    (34)
In all the simulations, the SNR are set to the same value for all the observations. Moreover, to keep the non-negativity of the noisy mixed data, we set the negative values to zero.

The proposed method, SCSA-UNS, is compared to six other N-BSS methods, namely SISAL [START_REF] Bioucas-Dias | A Variable Splitting Augmented Lagrangian Approach to Linear Spectral Unmixing[END_REF], nLCA-IVM [START_REF] Wang | Nonnegative Least-Correlated Component Analysis for Separation of Dependent Sources by Volume Maximization[END_REF], VCA [START_REF] Nascimento | Vertex Component Analysis: A Fast Algorithm to Unmix Hyperspectral Data[END_REF], N-ICA [START_REF]Optimization using Fourier Expansion over a Geodesic for Non-Negative ICA[END_REF], MVC-NMF [START_REF] Miao | Endmember Extraction From Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization[END_REF], and NMF [START_REF]Algorithms for Non-negative Matrix Factorization[END_REF]. For each of these methods, the data are pre-normalized to satisfy its required conditions. So, for or nLCA-IVM [START_REF] Wang | Nonnegative Least-Correlated Component Analysis for Separation of Dependent Sources by Volume Maximization[END_REF], each row of the data matrix is normalized to unit sum, and for SISAL [START_REF] Bioucas-Dias | A Variable Splitting Augmented Lagrangian Approach to Linear Spectral Unmixing[END_REF] and VCA [START_REF] Nascimento | Vertex Component Analysis: A Fast Algorithm to Unmix Hyperspectral Data[END_REF], each column of the data matrix is normalized to unit sum. In all simulations, we set the SCSA-UNS parameters to µ = 10 -2 , ǫ = 10 -3 , γ = 1 4 . The parameters of methods used for comparison follow their original paper.

B. Independent sources

In this simulation, the sources are generated with different sparsity degrees, τ , (i.e number of non-zeros elements). Each non-zeros entry of the sources matrix is generated following the uniform distribution between 0 and 1. Three sparsity degrees are considered, τ = 90% (i.e 10% of non-zeros entries), τ = 50% (i.e 50% of non-zeros entries) and τ → 0% (i.e nearly 100% of non-zeros entries). The mixing matrix, A, has a uniform random entries. We set the number of sources to n = 5, the number of observations to m = 20, and the number of samples is K = 10000.

Fig. 6, Fig. 7, and Fig. 8, depict the variation of the average performance indices versus the SN R, for the different sparsity degrees. The averages values are computed over 50 independent Monte Carlo runs. The underlined figures show that, for the different sparsity degree, the performance indices of the different methods improve when the SNR increases, N-ICA always presents the best performance indices, followed by SCSA-UNS, for τ = 90% and τ = 50%. The estimated empirical correlation matrix, ĈS , defined by equation [START_REF] Plemmons | The Generalized Inverse of a Nonnegative Matrix[END_REF] shows that the four images are highly correlated:

ĈS ij = 1 K K k=1 [s i (k) -µ si ] s j (k) -µ sj σ si σ sj (35) 
µ s l and σ s l are the mean value and the variance of source l.

ĈS =      
1.00 0.91 0.84 0.84 0.91 1.00 0.84 0.84 0.84 0.84 1.00 0.93 0.84 0.84 0.93 1.00

     
The number of sources is n = 4, the number of samples is K = 96250. The mixing matrix entries are randomly generated following a uniform distribution between 0 and 1, we set the number of observations to m = 20. Fig. 10 shows the variation of the average over 50 independent Monte Carlo runs, of the performance indices versus the SN R. One can see on Fig. 10 that N-ICA has the worst estimated sources, this result is not surprisingly since this method has been designed for independent sources, and then is not suited to mutually correlated ones. The proposed method, SCSA-UNS, presents the best performance indices. Robustness to overestimation of the number of sources One of the problem of sources separation in real blind context, is determining the proper number of sources. We compared here the performance of the different methods when the number of sources is overestimated. To perform this evaluation, we consider the previous experiment and we assume that there are five sources. The mixing matrix estimation error is calculated by taking the columns of the estimated mixing matrix most correlated to the columns of the actual mixing matrix, and the sources estimation error is calculated by taking the estimated sources most correlated to actual ones. This section presents separation results on two different real data sets: images of positron emission tomography and Mass spectra. The indices E sep and E corr , used before to characterize the separation results on the synthetic data are no longer usable, since the original mixing matrices and sources are unknown. Results of SCSA-UNS are compared to those obtained by SISAL, N-ICA and MVC-NMF.

A. Results on Dynamic Positron Emission Tomography images

In oncology, the effectiveness of an anticancer treatment is often achieved using Positron Emission Tomography (PET) images [START_REF] Okada | FDG-PET for the evaluation of tumor viability after anticancer therapy[END_REF] [START_REF] Rigo | Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose[END_REF]. But an additional measurement of the Arterial Input Function (AIF), which provides the tracer concentration available for organs, is necessary to evaluate quantitatively the tumor activity. The reference method for AIF estimation is the arterial blood sampling which is unfortunately too invasive for routine clinic use. We perform here, the separation of real Dynamic Positron Emission Tomography (PET) images, to study the pharmacokinetics of the [18F]-FDG (FluoroDeoxyGlucose) tracer on human brain. The main objective is to estimate the arterial pharmacokinetic (Arterial Input Function) using only the dynamic TEP images, without blood sampling [21] [46]. In this experiment, an arterial input fonction obtained by blood sampling (reference Arterial Input Function rAIF) is also considered to assess the accuracy of the AIF estimation by sources separation using PET images. The data were provided by the CEA/I2BM/SHFJ. 

B. Results on Mass spectra for Metabolomics

Liquid Chromatography -Mass Spectrometry (LC-MS) technique is used for identifying and quantifying small organic molecules (also called metabolites) of biological/chemical fluids [START_REF] Zhou | LC-MS-based metabolomics[END_REF]. The sample to analyse is first introduced into a liquid chromatograph which separates its different metabolites according to their physico-chemical properties. The metabolites thus separated, flow out of the chomatograph during different time intervals, called elution profiles. At the output of the chromatograph, a mass spectrometer measures the mass spectrum of the eluted metabolites. A metabolite is characterized by its elution profile and its mass spectrum. Unfortunately, real biological/chemical fluids (urine, blood, saliva) are complex mixtures of tens or even hundreds of metabolites, therefore the liquid chromatograph cannot completely separate the elution profiles of the differents metabolites which overlap. So, the mass spectra measured can be modelized as linear combinations of the mass spectra of the different metabolites co-eluted (i.e metabolites whose elution profiles overlap). In this experiment, we seek to evaluate the efficiency of SCSA-UNS for separating the elementary elution profiles and mass spectra of differents metabolites co-eluted, given the measured mass spectra [START_REF] Xiong | Feature Extraction Approach for Mass Spectrometry Imaging Data Using Non-negative Matrix Factorization[END_REF]. The data is provided by CEA/DSV/LEMM.

Eleven commercial chimical compounds were first individually analyzed by the combination of HPLC and LTQ-Obitrap (mass spectrometer) to built a reference database of their elution profiles and mass spectra. The eleven compounds are mixed and the resulting homogeneous solution is also analyzed by the combination of HPLC and LTQ-Obitrap. The mass spectra were recorded during 20 min and stored in an observation matrix whose rows correspond to mass spectra measured at different times, and columns correspond to mass indices. The observation matrix is prepocessed by removing all the zeros columns and all the rows whose maximum value is smaller than 10 4 (threshold set by our partners biologists). The resulting number of observations is m = 1453, and the number of samples is K = 5638.

We performed several runs the SCSA-UNS algorithm by incrementing each time the number of sources, starting from n = 11. We noticed that all the components are found when n ≥ 16. Figure 16 shows the four first elution profiles, and corresponding mass spectra estimated by SCSA-UNS. This figure should be compared with the initial components database, give in appendix E. The estimated components do not exactly fit to the components referenced in the database, the greater part of the peaks are retrieved.

The other methods, namely SISAL, MVC-NMF and N-ICA find similar results, which are not shown here. In this paper, we propose a geometrical method for separating non-negative sources. The proposal, denoted SCSA-UNS, estimates the mixing matrix and the sources, by first reducing the dimension of the mixed data, followed by fitting a Minimum Aperture Simplicial Cone (MASC) to the scatter plot of the dimension reduced data. SCSA-UNS does not require the independence of sources, neither their local dominance, but the positive orthant must be the unique MASC containing the scatter plot of the sources, to ensure recovering the true mixing matrix and the true sources. In noisy case, the proposed method starts by discarding the points most corrupted by the noise, which can significantly expand the scatter plot of mixed data, before looking for the MASC containing the data. Simulation on synthetic data have showned that the proposed method performs good separation for both independent and mutually correlated sources. The proposal has also been successfully used to estimate the pharmacokinetic compartments of [18F]-FDG tracer on human brain (in particular to estimated the Arterial Input Function) and to separate the elementary mass spectra of differents chemical compounds, from the mass spectra measured at the output of a liquid chromatograph.

Future works include improving the robustness of the proposed method to additive noise, and incorporating multiplicative noise. In fact, in certain application the noise seem to also have a multiplicative part [19] [4], in addition to the additive part. The proof of the necessary and sufficient condition on 
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  and p denotes the iteration.
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 11 SCSA-UNS Require: Mixed data X ∈ R n×K + Ensure: Estimated mixing matrix  ∈ R n×n + , and estimated sources Ŝ ∈ R n×K + Initialization: Find a proper U by extended VCA, as described in Sec. IV-A1, and set Y = U -1 X 2: repeat 3:
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  Fig 11 shows the sources estimated by the different medthod. Visually one can see that only SCSA-UNS and nLCA-IVM properly estimate the four sources. SISAL fails due to the unit sum constraint on the estimated sources, and N-ICA cannot separate correlated sources. The performance indices recorded in
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 11 Fig. 11. Correlated sources serapation for SN R = 30dB: (row 1) original sources, and sources estimated by (row 2) SCSA-UNS, (row 3) SISAL, (row 4), nLCA-IVM, (row 5) VCA, (row 6) N-ICA, (row 7) MVC-NMF, (row 8) NMF

  Fig. 12. Pharmacokinetic compartments estimated by SCSA-UNS
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 16 Fig. 16. Four first elution profiles and corresponding mass spectra estimated by SCSA-UNS, from HPLC-LTQ Orbitrap data

Fig. 17 .

 17 Fig. 17. Database of the eleven commercial chimical compounds

  Table I show that SCSA-UNS presents the best results.

		Noiseless case
		Esep(dB)	Ecorr(dB)
	SCSA-UNS	-9.68	-20.02
	SISAL	-3.23	-9.33
	nLCA-IVM	-4.45	-17.44
	VCA	-3.11	-9.12
	N-ICA	-2.61	-8.26
	MVC-NMF	-3.82	-9.63
	NMF	-6.91	-13.26

TABLE I AVERAGE

 I PERFORMANCE INDICES FOR CORRELATED SOURCES VII. RESULTS ON ACTUAL DATA

A well-grounded random variable s i , has a nonvanishing probability density function around zero, i.e. ∀ δ > 0, P r(s i < δ) > 0

the sources, under which the simplicial cone generated by the mixing matrix is the unique non-negative MASC containing the scatter plot of the sources will also be investigated. Evalution on other real data (such as hyperspectral images) will also performed.
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APPENDIX A PROOF OF THEOREM 1

Reciprocally, assume that there is a square full column rank non-negative matrix M ∈ R n×n

APPENDIX B PROOF OF THEOREM 2

Proof of the forward sense: Assume that Span + (U) = Span + (V), then Span + (U) ⊆ Span + (V), and there is a square full column rank non-negative matrix M ≥ 0 such as U = VM (due to Theorem 1), so V = UM -1 . For any y ≥ 0, Vy ∈ Span + (V), then Vy ∈ Span + (U) (since Span + (V) = Span + (U)). Furthermore Vy = UM -1 y ⇒ UM -1 y ∈ Span + (U), then M -1 y ≥ 0, and therefore M -1 ≥ 0. Since M ≥ 0 and M -1 ≥ 0, one can conclude that M is a monomial matrix [START_REF] Plemmons | The Generalized Inverse of a Nonnegative Matrix[END_REF].

Proof of the reverse sense: Assume that U = VM where M is a monomial matrix. For any z ∈ Span + (U), there is y ≥ 0 such as z = Uy. Then z = VMy, since M is a monomial matrix then My ≥ 0, therefore z ∈ Span + (V), and one can conclude that Span + (U) ⊆ Span + (V). In the same way, and using the fact that M is a monomial matrix, one can easily show that Span + (V) ⊆ Span + (U), which lead us to conclude that Span + (U) = Span + (V). 

APPENDIX C PROOF OF THEOREM 3

On the other hand,

APPENDIX D PROOF OF THEOREM 5

We proceed by contradiction. Proof of the forward sense: Suppose that Span + (I n ) is not the unique non-negative MASC containing the scatter plot of sources, there is thus a non-negative matrix U such as U -1 S ≥ 0 and A (U) ≤ A (I n ). S = A -1 X ⇒ U -1 A -1 X = (AU) -1 X ≥ 0, therefore Span + (AU) is another simplicial cone containing the scatter plot of the mixed data. Since A ≥ 0 and U ≥ 0 then Span + (AU) ⊆ Span + (I n ). Furthermore A (AU) ≤ A (A) (because U is non-negative and due to Theorems 1 and 3), then Span + (A) is not the unique non-negative MASC containing the scatter plot of the mixed data.

Proof of the reverse sense: Assume that Span + (A) is not the unique non-negative MASC containing the scatter plot of the mixed data, there is thus another non-negative MASC, say Span + (W), containing the scatter plot of the mixed data (i.e X = WY, where Y ≥ 0), and A (W) ≤ A (A). S = A -1 X ⇒ S = A -1 WY with Y ≥ 0, then Span + (A -1 W) is another simplicial cone containing the scatter plot of the sources. ∀ y ≥ 0, Wy is in the scatter plot of the mixed data, then A -1 Wy ≥ 0, and it follow that A -1 W ≥ 0. Since A A -1 W ≤ 1 (due to Hadamard's inequality), and A (I n ) = 1, then A A -1 W ≤ A (I n ), and one can conclude that Span + (I n ) is not the unique non-negative MASC containing the scatter plot of the sources.