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Non-negative Blind Source Separation Algorithm

based on Minimum Aperture Simplicial Cone
Wendyam Serge Boris Ouedraogo∗, Antoine Souloumiac, Meriem Jaidane, and Christian Jutten, Fellow, IEEE

Abstract—We address the problem of Blind Source Separation
(BSS) when the hidden sources are Nonnegative (N-BSS). In
this case, the scatter plot of the mixed data is contained
within the simplicial cone generated by the columns of the
mixing matrix. The proposed method, termed SCSA-UNS for
Simplicial Cone Shrinking Algorithm for Unmixing Non-negative
Sources, aims at estimating the mixing matrix and the sources
by fitting a Minimum Aperture Simplicial Cone (MASC) to the
cloud of mixed data points. SCSA-UNS is evaluated on both
independent and correlated synthetic data and compared to
other N-BSS methods. Simulations are also performed on real
Liquid Chromatography-Mass Spectrum (LC-MS) data for the
metabolomic analysis of a chemical sample, and on real dynamic
Positron Emission Tomography (PET) images, in order to study
the pharmacokinetics of the [18F]-FDG (FluoroDeoxyGlucose)
tracer in the brain.

Index Terms—Blind Source Separation, Non-negativity, Sim-
plicial Cone, Aperture, LC-MS, dynamic PET imaging

I. INTRODUCTION

THE well-known problem of Non-negative Blind Source

Separation (N-BSS) occurs in many situations of signal

and image processing. Solving the N-BSS problem consists

in retrieving the hidden non-negative sources and their corre-

sponding mixing profiles from the measured data (also denoted

by observations), which are mixtures of the original sources.

The use of N-BSS on actual data has continuously increased

during the last decades. Applications include chemometrics

[51] [45], biomedical image processing [27] [43], spectrometry

and spectroscopy [5] [30], remote sensing [29] [18], speech

and music power spectra decomposition [47] [15], to name

a few. The interested reader can refer to [40] and [11] for

more details. The batch noiseless linear instantaneous mixture

model of the N-BSS problem is given by:

X = AS (1)

where X ∈ R
m×K
+ is the known non-negative matrix of

observations, A ∈ R
m×n
+ is the unkown non-negative mixing

matrix and S ∈ R
n×K
+ is the hidden non-negative sources

matrix. Integers m, n and K are respectively the number
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46, F-38402 Saint Martin d’Hères Cedex-France, and with Institut Universi-
taire de France, (e-mail: christian.jutten@gipsa-lab.grenoble-inp.fr).

of observations, the number of sources and the number of

samples. The scalar xi(k), 1 ≤ i ≤ m and 1 ≤ k ≤ K, is

the k-th sample of the observation vector xi of size m × 1.

The scalar sj(k), 1 ≤ j ≤ n, is the k-th sample of source

vector sj of size n× 1, and the scalar aij is the ij-th entry of

the mixing matrix A. The task of solving problem (1) consists

in recovering the sources S and their profiles A, given only

the observations X, without any prior knowledge on S and A

except their non-negativity.

Several methods were proposed for solving problem (1).

One can distinguish between statistical approaches and deter-

ministic ones.

The methods of the first class use the statistical properties of

the sources in order to design the separating algorithms. They

include Non-negative Independent Components Analysis (N-

ICA) [37] and Bayesian Inference based Non-negative Source

Separation (BI-NSS) [20] [30]. N-ICA assumes that the non-

negative sources, s1, s2,· · · , sn are random variables, which

are mutually statistically independent and well-grounded1 [36].

The sources and the mixing matrix are estimated by whitening

the observations and by rotating the whitened data to make

them non-negative [37] [39]. Unfortunately, N-ICA is not

suited to correlated sources, as we will see in the simulations.

On the other hand, in the Bayesian approach [20] [30], the

sources and the mixing profiles (that is columns of the mixing

matrix) are modeled by random variables. The idea is to

assign a specific prior probability density to each variable,

and to derive the joint posterior probability density. The

sources and mixing profiles are obtained by an a posterior

estimator (posterior mean or posterior maximum) using Bayes’

rule and the Markov Chain Monte Carlo (MCMC) sampling.

In the case of non-negative sources, BI-NSS uses a non-

negative prior probability density (such as Gamma density)

for both sources and profiles. This method can unfortunately

be computationally complex and time-consuming, especially

for large-scale data.

In order to solve the N-BSS problem, deterministic ap-

proaches impose only weak assumptions on the sources dis-

tribution. In particular, the independence of the sources is

not necessary. These approaches include Non-negative Matrix

Factorization (NMF) and geometrical methods. Firstly intro-

duced by Paatero and Tapper [34], NMF was popularized

by Lee and Seung [25] and became the prevalent method

for solving the N-BSS problem. In NMF, A and S are

estimated by minimizing a divergence measure between the

1A well-grounded random variable si, has a nonvanishing probability
density function around zero, i.e. ∀ δ > 0, Pr(si < δ) > 0
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left and right parts of equation (1) under a non-negativity

constraint on both the estimated mixing matrix and sources.

See [12] for more details on different divergence measures

and optimization algorithms for NMF. Nevertheless, the non-

negativity constraint alone (on S and A) is not sufficient

to guarantee the uniqueness of the factorization [14] [31]

[23]. Therefore, according to the prior knowledge about the

sources (respectively the profiles), some additional constraints,

such as the sparsity and/or the smoothness of the sources

and/or the mixing profiles, were incorporated in NMF to

improve the physical meaning of the estimated sources and/or

mixing profiles, and reduce the number of possible solutions

[17] [9]. A novel direction has recently been introduced

in order to tackle the non-uniqueness of NMF, by adding

a minimum determinant constraint on the estimated mixing

matrix [22] [44]. The geometrical methods are the other

deterministic approaches for solving the Non-negative Blind

Source Separation problem. The first geometrical method was

introduced by Puntonet et al. [41] for unmixing two sources

having bounded probability densities. The mixing matrix is

estimated by finding the slopes of the parallelogram containing

the scatter plot of mixed data. Babaie-Zadeh et al. [2] have

proposed another geometrical method for separating sparse

sources. The latter method, which can deal with more than

two sources, estimates the mixing matrix by clustering the

scatter plot of mixed data and fitting a line (for dimension 2)

or hyper-plane (for dimensions greater than 2) to each cluster.

Other geometric methods were proposed for sources satisfying

certain properties. If for every source there is at least one

instance during which the underlying source is active and all

the others are not (i.e. ∀ 1 ≤ i ≤ n, ∃ ki (1 ≤ ki ≤ K) such

that si(ki) 6= 0 and sj(ki) = 0 for j 6= i), then the sources

are termed locally dominant. In that case, A can be estimated

by finding the vertices of the convex hull of the scatter plot of

mixed data [24] [7] [32]. Unfortunately, the local dominance

assumption (also termed the pure pixel assumption, in the

hyperspectral unmixing) is seldom verified in practice. If the

sum on every column of the sources matrix equal to one

(i.e. ∀ 1 ≤ k ≤ K,
n
∑

j=1

sj(k) = 1), then the sources are

termed full additive, and one can estimate the mixing matrix by

looking for the Minimum Volume Simplex (MVS) containing

the scatter plot of mixed data [13] [28] [3] [6]. The MVS

methods do not require the local dominance of the sources

and, in the noiseless case, one can relax the full additivity

constraint by normalizing each column of the data matrix to a

unit sum as shown in [8] and [16]. However, in the noisy case,

enforcing this normalization may amplify the noise and/or lead

to a bad estimation of the sources, especially if the number of

sources is overestimated, as illustrated in Fig.11.

This paper proposes a new geometrical method for solving

the overdetermined N-BSS problem. The proposed method,

denoted Simplicial Cone Shrinking Algorithm for Unmixing

Non-negative Sources (SCSA-UNS), estimates the mixing

matrix and the sources by finding the “Minimum Aperture

Simplicial Cone” (MASC) containing the scatter plot of the

mixed data. It neither requires the independence of the sources,

nor their local dominance, or even their full additivity.

The paper is organized as follows. In section II, we review

the geometrical foundations of the N-BSS problem and we de-

rive the Minimum Aperture Simplicial Cone based approach.

Section III gives conditions on the sources for the uniqueness

of N-BSS, and section IV describes the proposed method. In

section V, we proposed a preprocessing for reducing the noise

effect. Section VI and section VII present simulation results

on synthetic and real data. Finally Section VIII presents our

conclusions.

II. GEOMETRICAL FOUNDATIONS OF THE NON-NEGATIVE

BLIND SOURCE SEPARATION PROBLEM

We restrict to the case where the mixture is determined (i.e.

m = n). If the mixture is overdetermined (m > n), one can

reduce to the previous case by a proper dimension reduction,

as described in section IV-B.

A. Useful definitions and concepts

In the following, R
n
+ denotes the set of non-negative n-

dimensional vectors, and R
n×n
+ denotes the of n-size matrices

whose all entries are non-negative.

Given a full rank matrix U ∈ R
n×n
+ (U = [u1, u2, · · · , un],

where ui ∈ R
n
+ is the ith column of U), we introduce the

following definitions:

Definition 1: Simplicial Cone

The Simplicial Cone generated by the columns of U, denoted

by Span+(U), is defined as:

Span+(U) =
{

z z = Uy with y ∈ R
n
+

}

(2)

Definition 2: Edge Vector of a Simplicial Cone

By abusing the notation, the i-th Edge Vector of the simplicial

cone Span+(U), denoted by Ei(Span+(U)), is defined as:

Ei(Span+(U)) = {z z = αui α ≥ 0} (3)

Definition 3: Facet of a Simplicial Cone

In the same way, the i-th Facet of the simplicial cone

Span+(U), denoted by Fi(Span+(U)), is defined as:

Fi(Span+(U)) = Span+ {U\ {ui}} (4)

Definition 4: Vertex of a Simplicial Cone

The Vertex of the simplicial cone Span+(U), denoted by

V(Span+(U)), is defined as:

V(Span+(U)) = ∩
i
Ei(Span+(U)) (5)

Remarks :

• For ease of the notations, we set Ei(U) = Ei(Span+(U)),
Fi(U) = Fi(Span+(U)), and V(U) = V(Span+(U))

• The simplicial cone, Span+(U), has n edge vectors, n
facets and 1 vertex.

• The vertex of Span+(U) is located at the origin of Rn

• R
n
+, the positive orthant, is the simplicial cone generated

by the identity matrix In: Rn
+ = Span+(In)

Given the previous definitions, one can infer the following:
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Lemma 1: The scatter plot of the sources

{s(k), 1 ≤ k ≤ K}, with s(k) = [s1(k) s2(k) · · · sn(k)]
T

, is

contained in the positive orthant, Span+(In):

{s(k), 1 ≤ k ≤ K} ⊆ Span+(In) (6)

Proof: Follow the definition of a simplicial cone.

Lemma 2: The scatter plot of the mixed data

{x(k), 1 ≤ k ≤ K}, with x(k) = [x1(k) x2(k) · · · xn(k)]
T

,

is contained in Span+(A), the simplicial cone generated by

the columns of the mixing matrix:

{x(k), 1 ≤ k ≤ K} ⊆ Span+(A) (7)

Proof: Follow the definition of a simplicial cone.

Since A is also non-negative, one can deduce that:

Span+(A) ⊆ Span+(In) (8)

To illustrate Lemma 2, for m = n = 3, we consider the

mixing matrix A given below, and we generate data according

to equation (1), where each source is generated following the

uniform distribution between 0 and 1.

A =







0.67 0.49 0.32

0.65 0.02 0.65

0.54 0.88 0.81







Fig. 1(a) shows the scatter plot of mixed data included in the

simplicial cone generated by A. For ease of visualization, we

represent on Fig. 1(b) the projection of Span+(A) and the

mixed data, on the plane P defined by:

P =

{

z = [z1, z2, z3]
T
∈ R

3 |

3
∑

i=1

zi = 1

}

(9)

The projected data X̃, and cone Span+(Ã) are obtained by:

x̃i(k) = xi(k)/

3
∑

l=1

xl(k) and ãij = aij/

3
∑

l=1

ail (10)
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Fig. 1. Scatter plot of mixed data included in Span+(A)

Theorem 1: Given two full rank non-negative matrices U ∈
R

n×n
+ and V ∈ R

n×n
+ :

Span+(U) ⊆ Span+(V)⇔ U = VM

where M ∈ R
n×n
+ and rg(M) = n (11)

Proof: Proof of Theorem 1 is given in Appendix A.

Theorem 2: Given two full rank non-negative matrices U ∈
R

n×n
+ and V ∈ R

n×n
+ :

Span+(U) = Span+(V)⇔ U = VM

where M = DP and rg(M) = n (12)

D ∈ R
n×n
+ is a diagonal matrix, and P ∈ R

n×n
+ is a

permutation one. M is called a monomial matrix.

Proof: Proof of Theorem 2 is given in Appendix B.

B. Minimum Aperture Simplicial Cone based N-BSS

According to equations (7) and (8), one can estimate the

mixing matrix (and the sources) by looking for a simpli-

cial cone containing the scatter plot of the mixed data and

contained in the positive orthant. But without any additional

constraint, there are infinite number of such cones [14] [23]

(the positive orthant itself is an example). By assuming that

the sources satisfies the full additivity constraint (see Section

I), some geometrical methods [13] [28] [3] [6], look for the

Minimum Volume Simplex (MVS) containing the scatter plot

of mixed data. In this paper, except their non-negativity, no

other assumption is made on the sources. In particular, the

sources and the mixed data do not have upper bounds, and

the volume of a simplicial cone containing the scatter plot of

mixed data is undefined. One can normalize each column of

the data matrix to a unit sum, and consider the volume of

the simplex containing the normalized data, however, as we

mentioned in Section I above, enforcing this normalization

may amplify the noise and/or lead to a poor estimation

of the sources. Therefore, instead of using the volume, we

characterize a simplicial cone by its Aperture defined below:

Definition 5: Aperture of a Simplicial Cone

The Aperture of the given simplicial cone, Span+(U), gen-

erated by a full rank matrix U, denoted A
(

Span+(U)
)

, is

defined by:

A
(

Span+(U)
)

=
|det(U)|

‖u1‖2 × ‖u2‖2 × · · · × ‖un‖2
(13)

Remarks :

• For ease of notation, we set: A(U) = A
(

Span+(U)
)

• For n = 2, A (U) = sin(θ), where θ is the angle

between the two column vectors of U. For n > 2,

A (U) =
n−1
∏

i=1

sin(θi), where θi is the principal angle

between Ei+1(U) and Span+ {u1, · · · , ui}.
• According to Hadamard’s inequality which states that

|det(U)| ≤
n
∏

i=1

‖ui‖2, we have 0 ≤ A (U) ≤ 1.

• A (In) = 1

Theorem 3: Given two full rank non-negative matrices U ∈
R

n×n
+ and V ∈ R

n×n
+ :

Span+(U) ⊆ Span+(V)⇒ A (U) ≤ A (V) (14)

Proof: Proof of Theorem 3 is given in Appendix C.

Theorem 4: Given two full rank non-negative matrices U ∈
R

n×n
+ and V ∈ R

n×n
+ :

Span+(U) = Span+(V)⇒ A (U) = A (V) (15)

Proof: Proof of Theorem 4 directly comes from Theorem

2 and the definition of the Aperture of a simplicial cone.

Definition 6: Minimum Aperture Simplicial Cone

We state that Span+(U) is a Minimum Aperture Simplicial
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Cone (MASC) containing the scatter plot of mixed data

{x(k), 1 ≤ k ≤ K}, if for any simplicial cone Span+(V)
containing the scatter plot of mixed data, A (U) ≤ A (V).

By misnomer, we also state that Span+(U) is a non-negative

MASC containing the scatter plot of mixed data, if Span+(U)
is a MASC and Span+(U) ⊆ Span+(In).

Under certain conditions on the sources (which will be

discussed in section III), Span+(A) is the unique non-negative

Minimum Aperture Simplicial Cone containing the scatter plot

of the mixed data. In this case the mixing matrix can be

estimated (up to positive scaling and permutation indetermi-

nations) by finding this simplicial cone. In fact, if Span+(W)
is another non-negative MASC containing the scatter plot of

mixed data, then Span+(W) = Span+(A), and therefore

W = ADP, where D is a diagonal matrix with non-negative

entries, and P is a permutation matrix (Theorem 2).

Before proposing an algorithm for estimating the mixing

matrix, we give below conditions on the sources, under which

Span+(A) is the unique non-negative Minimum Aperture

Simplicial Cone containing the scatter plot of the mixed data.

III. CONDITIONS ON THE SOURCES FOR UNIQUE N-BSS

BY MINIMUM APERTURE SIMPLICIAL CONE

To ensure recovering the true mixing matrix, and then the

true sources in noiseless case, Span+(A) must be the unique

non-negative MASC containing the scatter plot of mixed data.

The following Theorem 5 transforms this condition into a

condition on the sources.

Theorem 5: Span+(A) is the unique non-negative MASC

containing the scatter plot of the mixed data if and only if

Span+(In) is the unique non-negative MASC containing the

scatter plot of the sources.

Proof: Proof of Theorem 5 is given in Appendix D.

A. Necessary condition for unique N-BSS by MASC

Proposition 1: If Span+(In) is the unique non-negative

MASC containing the scatter plot of the sources, then there

is at least one point of the cloud of sources on each facet of

Span+(In), i.e. ∀ 1 ≤ i ≤ n, ∃ ki such as si(ki) = 0

Proof: Assume that there is at least one facet of

Span+(In) where there is no point of the cloud of sources,

i.e ∃ 1 ≤ i ≤ n | ∀ 1 ≤ k ≤ K, si(k) > 0 (Without loss of

generality, set i = 1 for the demonstration). Let’s define the

n-size square matrix U = [uij ]1≤i,j≤n as follow:

uij =







min
1≤k≤K

s1(k)
s2(k)

, s2(k) 6= 0 if i = 1 and j = 2

δij otherwise
(16)

Since the sources are non-negative, u12 > 0 and one can easily

verify that U−1S ≥ 0. It comes that Span+(U) is a simplicial

cone containing the scatter plot of the sources. Since u12 > 0,

then Span+(U) ⊂ Span+(In), hence A (U) < A (In).
Therefore Span+(In) is not the unique non-negative MASC

containing the scatter plot of sources.

B. Sufficient conditions for unique N-BSS by MASC

1) Local dominance:

Proposition 2: If the sources are non-negative and locally

dominant (see section I), then Span+(In) is the unique non-

negative MASC containing the scatter plot of sources.

Proof: Since sources are non-negative and locally dom-

inant, i.e. ∀ 1 ≤ i ≤ n, ∃ 1 ≤ ki ≤ K | si(ki) 6= 0
and sj(ki) = 0 for j 6= i, then the kith column of S is

s(ki) = si(ki)ei where ei is the ith column of In.

Let Span+(U) be a non-negative simplicial cone containing

the scatter plot of sources, i.e. ∀ 1 ≤ i ≤ n, s(ki) ∈ Span+(U)
then ei ∈ Span+(U), so Span+(In) ⊆ Span+(U) and

consequently A (In) ≤ A (U). Therefore, Span+(In) is a non-

negative MASC containing the scatter plot of the sources.

If Span+(V) is another non-negative MASC containing the

scatter plot of the sources, then V ≥ 0, V−1S ≥ 0 and

A (V) = A (In) = 1, which lead us to conclude that V = InM

where M is a monomial matrix, and consequently Span+(In)
is the unique MASC containing the scatter plot of the sources.

2) Independence and well-grounded:

Proposition 3: If the sources are non-negative, independent

and well-grounded, then asymptotically, Span+(In) tends to

the unique non-negative MASC containing the scatter plot of

the sources.

Proof: On the one hand the sources are well-grounded,

then ∀ 1 ≤ i ≤ n, ∀ δ > 0, Pr(si < δ) > 0. On the other

hand, the sources are non-negative and independent, then for

a fixed i:

Pr(s1 < δ, · · · , si > 0, · · · , sn < δ) = Pr(si > 0)
n
∏

j=1,j 6=i

Pr(sj < δ) (17)

By making δ −→ 0, it follows that asymptotically, there will

at least one index ki such as si(ki) > 0 and sj(ki) −→ 0
for all j 6= i. Therefore, asymptotically, the sources tend to be

locally dominant. Hence, asymptotically Span+(In) tends to

be the unique non-negative MASC containing the scatter plot

of the source.

3) Sufficiently spread condition:

Proposition 4: If for each facet of Span+(In), at least

n − 1 points of the scatter plot of the sources belong to

underlined facet, and the vectors corresponding to these points

are linearly independent, then Span+(In) is the unique non-

negative MASC containing the scatter plot of the sources.

Proof: Let Span+(V) be a non-negative MASC contain-

ing the scatter plot of the sources, then V ≥ 0, V−1S ≥ 0 and

A (V) ≤ 1. The task is to demonstrate that V is a monomial

matrix. For a fixed i, assume that s(kil), l = 1, 2, · · · , n − 1
belongs to Fi(Span+(In)), then si(k

i
l) = 0, the submatrix

Si = [s(ki1) s(ki2) · · · s(kin−1)] is of size n× (n− 1). Since
{

s(kil), 1 ≤ l ≤ n− 1
}

⊆ Span+(V), then there is a non-

negative matrix Y ≥ 0 of size n× (n− 1), such as Si = VY.

For 1 ≤ j ≤ n, and 1 ≤ l ≤ n− 1, the jl-th entry of Si is:

sj(k
i
l) =

n
∑

p=1

vjpypl (18)
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where vjp is the jp-th entry of V and ypl is the pl-th entry of

Y. For j = i, we get:

si(k
i
l) = 0 =

n
∑

p=1

vipypl (19)

Since vip ≥ 0 and zpl ≥ 0, then ∀ 1 ≤ p ≤ n, vip = 0 or

ypl = 0. For a fixed p, if vip > 0 then ∀ 1 ≤ l ≤ n−1, ypl = 0.

It follow that each non zero vip involves that the corresponding

row of Y must have zeros entries. Furthermore, the vectors cor-

responding to the points S(kil), l = 1, 2, · · · , n−1 are linearly

independent, then rg(Si) = n−1 = min(rg(V), rg(Y)), since

Y is size n × (n − 1), then there can be no more than one

zeros row in Y. Therefore, there is only one non zero entry on

the ith row of V. By varying i from 1 to n, one can conclude

taht there is only one non zero entry on each row of V. Since

V is non-singular, we deduce that V is a monomial matrix.

One may note that if the source points located on the facets

of the positive orthant are distributed such that there is another

simplicial cone containing the scatter plot of sources, and

whose aperture is lower or equal to the aperture of the positive

orthant, then the underlined simplicial cone will not be non-

negative (i.e. will not be included in the positive orthant), and

cannot be the non-negative MASC containing the scatter plot

of the sources. This is illustrated in Fig. 2, for n = 3.

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

s̃1

s̃
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Pro je c t i on of S pan+(I 3)

Source points l ocated on face ts of S pan+(I 3)

P ro je c t i on of anothe r simpl i c i al cone containing the source s

Fig. 2. Illustration of the sufficiently spread condition, for n = 3

Propositions 2, 3 and 4, give different sufficient conditions

on the sources, under which Span+(In) is the unique non-

negative MASC containing their scatter plot, and therefore

Span+(A) is the unique non-negative MASC containing the

scatter plot of the mixed data. These conditions cannot all be

deduced from each other, therefore we can state that each of

this condition is suffucient but not necessary.

C. Conjecture of necessary and sufficient condition on the

sources for unique N-BSS by MASC

Based on the necessary condition, and the sufficient con-

ditions described before, we conjecture that a necessary and

sufficient condition on sources, under which Span+(In) is the

unique non-negative MASC containing the scatter plot of the

sources can be established as follows:

1) There are at least one point of the scatter plot of sources

belonging to each facet of the positive orthant, such as

the vectors corresponding to these points are linearly

independent: ∀ 1 ≤ i ≤ n, ∃ ki | si(ki) = 0 and the

n-size submatrix T = [s(k1) s(k2) · · · s(kn)] is full rank.

2) If Span+(T) ⊂ Span+(In), then there is at least one

point of the scatter plot of sources, s(l) with 1 ≤ l ≤ K,

which lies outside any simplicial cone involving some or

all of the vectors s(k1), s(k2), · · · , s(kn).

Fig. 3 illustrates this intuitive condition on P , in the case

where m = n = 3. A proof of this conjecture is being studied.
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Fig. 3. Illustration of the necessary and sufficient condition, for n = 3

IV. SIMPLICIAL CONE SHRINKING ALGORITHM FOR

UNMIXING NON-NEGATIVE SOURCES: SCSA-UNS

Assuming that Span+(In) is the unique non-negative

MASC containing the scatter plot of the sources, and accord-

ing to Theorem 5, the task of estimating the mixing matrix

is reduced to finding the non-negative MASC containing the

scatter plot of mixed data. This can be reduced to solving the

following optimization problem (20), where Â is the estimated

mixing matrix and A(A) is defined by equation (13):

Â = argmin
A≥0, A−1X≥0

A(A) (20)

For solving (20), a possible direction is a gradient type method.

However, it would lead to a non-convex optimization problem,

due to the denominator term of the criterion (13). Instead of

this approach, we propose an iterative method which starts

from an initial simplicial cone containing the scatter plot of the

mixed data, and progressively decreases its aperture until its

fit the scatter plot of the mixed data. The proposed algorithm,

termed SCSA-UNS for Simplicial Cone Shrinking Algorithm

for Unmixing Non-negative Sources, is described below.

A. Proposed algorithm

1) Finding a proper initial simplicial cone:

The first step of the proposed SCSA-UNS algorithm is

finding an initial simplicial cone Span+(U) containing the

scatter plot of the mixed data, say U = [u1, u2, · · · , un].
For reasons which we will explain in Sec. IV-A2, we require

that uT
p uq ≥ 0, ∀ 1 ≤ p, q ≤ n. Since we first restrict to

m = n, a trivial such simplicial cone is given by U = In.

For getting the initial simplicial cone, one can also use an

extended version of the solution of a local dominant based

method, in this paper, we use extended VCA [32]. If V is the

mixing matrix estimated by VCA, then the i-th column of U,

ui, is computed by ui = vi−αv̄, where vi is the i-th column

of V and v̄ is the mean of the columns of V. The coefficient α
should be adjusted in order to satisfy the condition uT

p uq ≥ 0,

∀ 1 ≤ p, q ≤ n.
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2) Decreasing the aperture of the current Simplicial Cone:

We define the n-size matrices Ri by equation (21), where

rii = 1, and rji ≥ 0 for 1 ≤ j ≤ n, j 6= i.

Ri =





































1 0 · · · 0 r1i 0 · · · 0

0 1 · · · 0 r2i 0 · · · 0

...
...

. . .
...

...
... · · ·

...

0 0 · · · 1 r(i−1)i 0 · · · 0

0 0 · · · 0 1 0 · · · 0

0 0 · · · 0 r(i+1)i 1 · · · 0

...
... · · ·

...
...

...
. . .

...

0 0 · · · 0 rni 0 · · · 1





































(21)

Proposition 5: Let U = [u1, u2, · · · , un], the n-size matrix

(where up is the p-th column of U), and Span+(U) the current

simplicial cone containing the scatter plot of the mixed data,

i.e U−1X ≥ 0. For a fixed i, let W = URi. If ∀ 1 ≤ p, q ≤ n,

uT
p uq ≥ 0, then:

1) A(W) ≤ A(U).
2) The coefficients rij of Ri can be computed such that

Span+(W) also contains the scatter plot of the mixed

data, i.e W−1X ≥ 0.

Proof: Set W = [w1,w2, · · · ,wn], where wp is the p-th

column of W.

i. |det(W)| = |det(URi)| = |det(U)| |det(Ri)|. Since

det(Ri) = 1 then |det(W)| = |det(U)|
ii. ∀ l 6= i,wl = ul ⇒ ‖wl‖2 = ‖ul‖2

iii. wi =
n
∑

j=1

rjiuj = ui +
n
∑

j=1,j 6=i

rjiuj , then

wT
i wi = uT

i ui+2

n
∑

j=1

j 6=i

rjiu
T
i uj +

n
∑

j=1

j 6=i

n
∑

p=1

p 6=i

rjirpiu
T
j up (22)

Since uT
p uq ≥ 0, ∀ 1 ≤ p, q ≤ n, then wT

i wi ≥ uT
i ui,

and therefore ‖wi‖2 ≥ ‖ui‖2.

According to the definittion of the aperture of a simplicial

cone given by equation (13), and considering items i, ii and

iii, one can conclude that A(W) ≤ A(U). This proves 1).

We now turn to the second part of the proof of proposition 5.

Let Y = U−1X and Z = W−1X, then Z = [Ri]
−1

Y. By

computing [Ri]
−1

, one can easy verify that: ∀ 1 ≤ k ≤ K,

zi(k) = yi(k) and zj(k) = yj(k) − rjiyi(k) for j 6= i.
Span+(W) contains the scatter plot of the mixed data, if

Z ≥ 0. It is therefore enough to choose:

0 ≤ rji ≤ min
1≤k≤K

yj(k)

yi(k)
, yi(k) 6= 0, for j 6= i

In the algorithm, we set

rji =
1

2
min

1≤k≤K

yj(k)

yi(k)
, yi(k) 6= 0 (23)

This conclude the proof of proposition 5.

By starting from a proper initial simplicial cone contain-

ing the scatter plot of the mixed data (see Sec.IV-A1), say

Span+(U), the proposed algorithm iteratively decreases A(U)
by performing several sweeps of n multiplications to the right

of U by Ri, i varying from 1 to n. At each iteration, the

matrix Ri is computed as described in Proposition 5, in order

to decrease the aperture of the current simplicial cone, while

keeping all the mixed data inside of the new simplicial cone.

The algorithm stops when the current simplicial cone fits the

scatter plot of the mixed data. In this case, one cannot decrease

anymore the aperture of the current simplicial cone by the

matrices Ri, while keeping all the mixed data inside of the

new cone. This is called “Locking situation” and is detailed

in the paragraph below.

3) Locking before convergence and proposed unlocking:

If Span+(U) is the current estimated simplicial cone, then the

algorithm described above stops if for any i between 1 and

n, one cannot decrease anymore the aperture of the current

simplicial cone by the matrix Ri, while keeping all the mixed

data inside of the new cone. In this case, the only matrix Ri

verifying, for W = URi, A(W) ≤ A(U) and W−1X ≥ 0 is

Ri = In. This situation often corresponds to the convergence

of the current estimated mixing matrix U to the true mixing

matrix A. However, this situation may also occur while U has

not converged yet to A. The latter case is called “locking before

convergence”, and is illustrated in Fig.4(a) for n = 3. In this

figure, the data and the current simplicial cone are projected

on the plane P , as described in section II-A.
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(a) Locking before convergence
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Fig. 4. Scatter plot of mixed data included in Span+(A)

In case of locking before convergence, the proposed algo-

rithm finds Ri = In, ∀ 1 ≤ i ≤ n, and therefore rji = δji.
According to equation (23), it follows that ∀ 1 ≤ i ≤ n,

∃ 1 ≤ ki ≤ K such as yj(ki) = 0 and yi(ki) 6= 0.

Since a locking before convergence causes zeros values in

the current estimated sources Y = U−1X, the idea, in order

to overcome this situation, is to modify the current simpli-

cial cone Span+(U) to make the current estimated sources

strictly positive, without increasing A(U). For this purpose

we look for an “unlocking matrix”, Q, that will rotate the

current simplicial cone such that T = U−1QX > 0, and for

V = Q−1U A(V) = A(U). For computing the unlocking

matrix, we introduce the criterion J , by equation (24), where

tik is the ik-th entry of T,

J(Q) =
n
∑

i=1

K
∑

k=1

t+ik where t+ik =











1 if tik = 0

0 if tik > 0

+∞ if tik < 0

(24)

One may note that J(Q) = 0 if and only if T > 0,
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and A(Q−1U) = A(U) if Q is an orthogonal matrix. A

convenient unlocking matrix Q can be computed by solving

the optimization problem (25):

Q = argmin
OT O=In

J(O) (25)

In order to deal with problem (25) in one step by a gradient

like method, we slightly modify the original problem by:

• Regularizing the criterion J to avoid Dirac distributions

when computing the gradient. We obtain the criterion Jǫ
given by:

Jǫ(Q) =

n
∑

i=1

K
∑

k=1

exp(−
tik
ǫ
), σ > 0

One may note that Jǫ(Q) −→ J(Q) when ǫ −→ 0.

• Adding a penalty term Jorth(Q) =
∥

∥

∥QT Q− In

∥

∥

∥

2

F
to

Jǫ(Q), in order to penalyze its deviation from orthogo-

nality.

The optimization problem becomes :

Q = argmin
O

Jσ(O) + γJorth(O),with γ ≥ 0 (26)

and can be solved by the iterative gradient algorithm (27):

Q(p+1) = Qp−µ

[

−
(U−1)T TnullTT

σ
+ 4γQp

(

QT
p Qp − In

)

]

(27)

where Tnull
ij = exp(−

tij
σ
), and p denotes the iteration.

The unlocking process is illustrated in Fig.4(b), where

Span+(V), is obtained by rotating Span+(U), with the un-

locking matrix Q.

4) Framework of the SCSA-UNS algorithm for noiseless

determined mixture: The pseudo-code of the proposed SCSA-

UNS algorithm in the noiseless case is given by Algorithm 1.

Algorithm 1 : SCSA-UNS

Require: Mixed data X ∈ R
n×K
+

Ensure: Estimated mixing matrix Â ∈ R
n×n
+ , and estimated

sources Ŝ ∈ R
n×K
+

1: Initialization: Find a proper U by extended VCA, as

described in Sec. IV-A1, and set Y = U−1X

2: repeat

3: for i = 1→ n do

4: Compute Ri as describeb in Sec IV-A2

5: U← URi and Y← [Ri]
−1

Y

6: end for

7: if a locking situation occurs then

8: Compute Q as described in Section IV-A3

9: U← QU and Y← U−1Q−1X

10: end if

11: until Q = In
12: Â← max (U, 0)
13: Ŝ← max (Y, 0)

5) About the convergence of SCSA-UNS:

The proposed algorithm, SCSA-UNS, is designed to monoton-

icaly decrease the criterion (i.e the aperture of the current sim-

plicial cone). While the multiplications by the matrices Ri do

not increase the criterion, the unlockings may slightly increase

the criterion, since the matrices Q are not perfectly orthogonal

(being computed by a regularized gradient). Although, the

monotonic decrease of the criterion is not guaranted, we have

noted through simulations that the proposed algorithm does

not diverge.

B. Overdetermined mixture (m > n)

In case of an overdetermined mixture (m > n), one must first

perform a dimension reduction before running the SCSA-UNS

algorithm. By computing the Singular Value Decomposition of

X, we get:

X ≈ EFGT (28)

where F ∈ R
n×K is the diagonal matrix of the n-largest

singular values. E ∈ R
m×n (respectively G ∈ R

K×n) is the

matrix of the corresponding left (respectively right) singular

vectors. The second step consists in running the SCSA-UNS

algorithm on the reduced data GT , in order to compute the

MASC containing its scatter plot, that is GT = UY. The

mixing matrix and the source are then estimated by:

Â = max (EFU, 0) and Ŝ = max (Y, 0) (29)

V. NOISE REDUCTION

This section considers the case where the observations are

corrupted by additive noise. The mixed data are then obtained

as follows:

X = AS + B (30)

Due to the additive noise, B, the scatter plot of mixed data

may expand outside the simplicial cone generated by the

mixing matrix. Therefore running SCSA-UNS on the noisy

data, without any pre-processing, will lead to bad a estimation

of the mixing matrix (and the sources), as illustrated in Fig.

5, for m = n = 3 sources. A pre-processing is necessary to

reduce the noise effect, before estimating the mixing matrix.
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Fig. 5. Projection on P of the scatter plot of the noisy mixed data, Span+(A)
and the MASC estimated by SCSA-UNS

Assuming the noise is independent and identically dis-

tributed, one can note that the noiseless mixed data points are

not affected in the same way. In fact, a noisy mixed data point

is given by x(k) = As(k) + b(k), and let’s define the “local

signal to noise ratio” by snr(k) = −10 log10
‖As(k)‖

2

‖b(k)‖
2

. The
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small norms noiseless mixed data will be strongly affected

by the noise, since their local signal to noise ratio will be

very low. To reduce the noise effect, we propose to select and

discard all the mixed data points whose norm is lower than a

certain threshold λb, before running the SCSA-UNS algorithm.

Finding a proper threshold λb is not trivial, and based on

experimental result, we propose λb = max
1≤K≤K

‖x(k)‖2. From

the remaining mixed data, denoted Xr
m×L

(where L is the

number of remaining data, after removing the small norms

data), one can estimate the mixing matrix, Â
m×n

, using the

SCSA-UNS algorithm for overdetermined mixture (see section

IV-B). The sources are then estimated by:

Ŝ = max
(

Â
†
EFGT , 0

)

(31)

where Â
†

is the pseudoinverse of Â, F is the diagonal matrix of

the n-largest singular values of X, and E (respectively G) is the

matrix of the corresponding left (respectively right) singular

vectors.

VI. EVALUATION ON SYNTHETIC DATA

In this section, the proposed method is evaluated on syn-

thetic data, and compared to other Non-negative Blind Source

Separation methods. The different methods are evaluated for

both, mutually independent and mutually correlated sources.

A. Performance indices and algorithms for comparison

We consider two performance indices for comparison. The

first one is the mixing matrix estimation error, also called

separation error Esep. Given the estimated mixing matrix Â

and its pseudoinverse Â
†
, Esep is defined by equation (32) [1]

where ∆ = Â
†
A.

Esep =
1

2n(n− 1)

n
∑

i=1





n
∑

j=1

(
|∆ij |

max
l
|∆il|

+
|∆ji|

max
l
|∆li|

)− 2





(32)

The smaller is Esep, the better is the separation, and Esep is

zero for perfect estimation of the mixing matrix. In this papaer,

we’ll consider that the mixing matrix is properly estimated if

Esep(dB) < −10dB.

The second performance index is the source estimation

error, Ecorr, defined by equation (33):

Ecorr = − log10

[

1

n

n
∑

i=1

max
1≤j≤n

∣

∣ŝis
T
j

∣

∣

‖ŝi‖ ‖sj‖

]

(33)

where ŝi is the estimate of the i-th source and sj is the true

jth source. Ecorr is inversely proportional to the correlation

between the true sources and the estimated ones. The smaller

is Ecorr, the better is the estimation of the sources, and Ecorr

is zero for perfect separation. In this paper we’ll consider that

the sources are properly estimated if Ecorr(dB) < −20dB.

The mixed data were generated according to equation (30).

The noise matrix, B, entries are generated following the

standard Normal distribution, and the Signal to Noise Ratio

of the i-th observation, SNRi, is calculated by:

SNRi = 10 log10







K
∑

k





n
∑

j=1

aijsj(k)





2

/

K
∑

k=1

[bi(k)]
2







(34)

In all the simulations, the SNR are set to the same value for

all the observations. Moreover, to keep the non-negativity of

the noisy mixed data, we set the negative values to zero.

The proposed method, SCSA-UNS, is compared to six other

N-BSS methods, namely SISAL [3], nLCA-IVM [48], VCA

[32], N-ICA [38], MVC-NMF [22], and NMF [26]. For each

of these methods, the data are pre-normalized to satisfy its

required conditions. So, for or nLCA-IVM [48], each row of

the data matrix is normalized to unit sum, and for SISAL [3]

and VCA [32], each column of the data matrix is normalized

to unit sum.

In all simulations, we set the SCSA-UNS parameters to µ =
10−2, ǫ = 10−3, γ = 1

4 . The parameters of methods used for

comparison follow their original paper.

B. Independent sources

In this simulation, the sources are generated with different

sparsity degrees, τ , (i.e number of non-zeros elements). Each

non-zeros entry of the sources matrix is generated following

the uniform distribution between 0 and 1. Three sparsity

degrees are considered, τ = 90% (i.e 10% of non-zeros

entries), τ = 50% (i.e 50% of non-zeros entries) and τ → 0%
(i.e nearly 100% of non-zeros entries). The mixing matrix, A,

has a uniform random entries. We set the number of sources

to n = 5, the number of observations to m = 20, and the

number of samples is K = 10000.

Fig. 6, Fig. 7, and Fig. 8, depict the variation of the

average performance indices versus the SNR, for the different

sparsity degrees. The averages values are computed over 50

independent Monte Carlo runs. The underlined figures show

that, for the different sparsity degree, the performance indices

of the different methods improve when the SNR increases, N-

ICA always presents the best performance indices, followed

by SCSA-UNS, for τ = 90% and τ = 50%.
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Fig. 6. Average indices vs SNR: n = 5, m = 20, K = 10000, τ = 90%

C. Correlated sources

Here, we evaluate the ability of the different methods to
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Fig. 7. Average indices vs SNR: n = 5, m = 20, K = 10000, τ = 50%
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Fig. 8. Average indices vs SNR: n = 5, m = 20, K = 10000, τ → 0%

unmix mutually correlated sources. We consider four mutually

correlated images of size 350× 275 despicted on Fig. 9 [10].

Each image is reshaped to form one row of the source matrix.

Fig. 9. Four correlated images

The estimated empirical correlation matrix, ĈS, defined by

equation (35) shows that the four images are highly correlated:

[

ĈS

]

ij
=

1
K

K
∑

k=1

[si(k)− µsi ]
[

sj(k)− µsj

]

σsiσsj

(35)

µsl and σsl are the mean value and the variance of source l.

ĈS =













1.00 0.91 0.84 0.84

0.91 1.00 0.84 0.84

0.84 0.84 1.00 0.93

0.84 0.84 0.93 1.00













The number of sources is n = 4, the number of samples

is K = 96250. The mixing matrix entries are randomly

generated following a uniform distribution between 0 and 1,

we set the number of observations to m = 20. Fig. 10 shows

the variation of the average over 50 independent Monte Carlo

runs, of the performance indices versus the SNR. One can

see on Fig.10 that N-ICA has the worst estimated sources, this

result is not surprisingly since this method has been designed

for independent sources, and then is not suited to mutually

correlated ones. The proposed method, SCSA-UNS, presents

the best performance indices.
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Fig. 10. Average indices vs SNR: n = 4, m = 20, K = 96250

Robustness to overestimation of the number of sources

One of the problem of sources separation in real blind context,

is determining the proper number of sources. We compared

here the performance of the different methods when the num-

ber of sources is overestimated. To perform this evaluation, we

consider the previous experiment and we assume that there are

five sources. The mixing matrix estimation error is calculated

by taking the columns of the estimated mixing matrix most

correlated to the columns of the actual mixing matrix, and the

sources estimation error is calculated by taking the estimated

sources most correlated to actual ones. Fig 11 shows the

sources estimated by the different medthod. Visually one can

see that only SCSA-UNS and nLCA-IVM properly estimate

the four sources. SISAL fails due to the unit sum constraint on

the estimated sources, and N-ICA cannot separate correlated

sources. The performance indices recorded in Table I show

that SCSA-UNS presents the best results.

Noiseless case
Esep(dB) Ecorr(dB)

SCSA-UNS -9.68 -20.02

SISAL -3.23 -9.33

nLCA-IVM -4.45 -17.44

VCA -3.11 -9.12

N-ICA -2.61 -8.26

MVC-NMF -3.82 -9.63

NMF -6.91 -13.26

TABLE I
AVERAGE PERFORMANCE INDICES FOR CORRELATED SOURCES

VII. RESULTS ON ACTUAL DATA

This section presents separation results on two different

real data sets: images of positron emission tomography and

Mass spectra. The indices Esep and Ecorr, used before to

characterize the separation results on the synthetic data are no

longer usable, since the original mixing matrices and sources

are unknown. Results of SCSA-UNS are compared to those

obtained by SISAL, N-ICA and MVC-NMF.

A. Results on Dynamic Positron Emission Tomography images

In oncology, the effectiveness of an anticancer treatment is

often achieved using Positron Emission Tomography (PET)

images [33] [42]. But an additional measurement of the

Arterial Input Function (AIF), which provides the tracer

concentration available for organs, is necessary to evaluate
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Fig. 11. Correlated sources serapation for SNR = 30dB: (row 1) original
sources, and sources estimated by (row 2) SCSA-UNS, (row 3) SISAL, (row
4), nLCA-IVM, (row 5) VCA, (row 6) N-ICA, (row 7) MVC-NMF, (row 8)
NMF

quantitatively the tumor activity. The reference method for AIF

estimation is the arterial blood sampling which is unfortunately

too invasive for routine clinic use. We perform here, the

separation of real Dynamic Positron Emission Tomography

(PET) images, to study the pharmacokinetics of the [18F]-

FDG (FluoroDeoxyGlucose) tracer on human brain. The main

objective is to estimate the arterial pharmacokinetic (Arterial

Input Function) using only the dynamic TEP images, without

blood sampling [21] [46]. In this experiment, an arterial input

fonction obtained by blood sampling (reference Arterial Input

Function rAIF) is also considered to assess the accuracy of

the AIF estimation by sources separation using PET images.

The data were provided by the CEA/I2BM/SHFJ.
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Fig. 12. Pharmacokinetic compartments estimated by SCSA-UNS
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Fig. 13. Pharmacokinetic compartments estimated by SISAL
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Fig. 14. Pharmacokinetic compartments estimated by N-ICA
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Fig. 15. Pharmacokinetic compartments estimated by MVC-NMF

We have 19 human brain PET images recorded during

30mn. The original images are size 128 × 128 × 63, but we

only considered subimages of size 63× 73× 58 for focusing

on the voxels with activity. Each 3D PET image is reshaped
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to form one row of the observations matrix X. The number

of observations is m = 19 and the number of samples is

K = 266742. According to biological consideration, we set

the number of sources to n = 3.

Figures 12, 13, 14, and 15, shows the pharmacokinetic

compartments estimated respectively by SCSA-UNS, SISAL,

N-ICA and MVC-NMF. Each subfigure a, b and c, represents,

at lower left, the normalized kinetics (columns of the estimated

mixing matrix) and the corresponding spatial distributions

(rows of the estimated sources) according to the three views,

coronal (upper left), sagittal (upper right) and axial (lower

right). All the four methods properly estimate the Veinous

and the Tissue compartments. SISAL and MVC-NMF fail to

recover the Arterial compartment, and one can on Fig 13.d and

Fig 15.d that the AIF estimated by these methods are far from

the refereence AIF, obtained by blood sampling. The third

sources estimated by N-ICA suggests a nose compartment.

Unlike the previous methods, SCSA-UNS found the cortid

arteries (Fig. 12.c) [21], and Fig. 12.d shows that the AIF

estimated by SCSA-UNS closely follows the reference AIF.

B. Results on Mass spectra for Metabolomics

Liquid Chromatography - Mass Spectrometry (LC-MS)

technique is used for identifying and quantifying small organic

molecules (also called metabolites) of biological/chemical

fluids [50]. The sample to analyse is first introduced into a

liquid chromatograph which separates its different metabolites

according to their physico-chemical properties. The metabo-

lites thus separated, flow out of the chomatograph during

different time intervals, called elution profiles. At the output

of the chromatograph, a mass spectrometer measures the mass

spectrum of the eluted metabolites. A metabolite is charac-

terized by its elution profile and its mass spectrum. Unfor-

tunately, real biological/chemical fluids (urine, blood, saliva)

are complex mixtures of tens or even hundreds of metabolites,

therefore the liquid chromatograph cannot completely separate

the elution profiles of the differents metabolites which overlap.

So, the mass spectra measured can be modelized as linear

combinations of the mass spectra of the different metabolites

co-eluted (i.e metabolites whose elution profiles overlap). In

this experiment, we seek to evaluate the efficiency of SCSA-

UNS for separating the elementary elution profiles and mass

spectra of differents metabolites co-eluted, given the measured

mass spectra [49]. The data is provided by CEA/DSV/LEMM.

Eleven commercial chimical compounds were first indi-

vidually analyzed by the combination of HPLC and LTQ-

Obitrap (mass spectrometer) to built a reference database of

their elution profiles and mass spectra. The eleven compounds

are mixed and the resulting homogeneous solution is also

analyzed by the combination of HPLC and LTQ-Obitrap. The

mass spectra were recorded during 20 min and stored in an

observation matrix whose rows correspond to mass spectra

measured at different times, and columns correspond to mass

indices. The observation matrix is prepocessed by removing

all the zeros columns and all the rows whose maximum value

is smaller than 104 (threshold set by our partners biologists).

The resulting number of observations is m = 1453, and the

number of samples is K = 5638.

We performed several runs the SCSA-UNS algorithm by

incrementing each time the number of sources, starting from

n = 11. We noticed that all the components are found when

n ≥ 16. Figure 16 shows the four first elution profiles,

and corresponding mass spectra estimated by SCSA-UNS.

This figure should be compared with the initial components

database, give in appendix E. The estimated components do

not exactly fit to the components referenced in the database,

the greater part of the peaks are retrieved.

The other methods, namely SISAL, MVC-NMF and N-ICA

find similar results, which are not shown here.

(a) Cystathionine (b) Cis-4-Hydroxy-D-Proline

(c) Beta-D-Fucose (d) DL-Arginine

Fig. 16. Four first elution profiles and corresponding mass spectra estimated
by SCSA-UNS, from HPLC-LTQ Orbitrap data

VIII. CONCLUSION

In this paper, we propose a geometrical method for separat-

ing non-negative sources. The proposal, denoted SCSA-UNS,

estimates the mixing matrix and the sources, by first reducing

the dimension of the mixed data, followed by fitting a Min-

imum Aperture Simplicial Cone (MASC) to the scatter plot

of the dimension reduced data. SCSA-UNS does not require

the independence of sources, neither their local dominance,

but the positive orthant must be the unique MASC containing

the scatter plot of the sources, to ensure recovering the true

mixing matrix and the true sources. In noisy case, the proposed

method starts by discarding the points most corrupted by

the noise, which can significantly expand the scatter plot of

mixed data, before looking for the MASC containing the data.

Simulation on synthetic data have showned that the proposed

method performs good separation for both independent and

mutually correlated sources. The proposal has also been suc-

cessfully used to estimate the pharmacokinetic compartments

of [18F]-FDG tracer on human brain (in particular to estimated

the Arterial Input Function) and to separate the elementary

mass spectra of differents chemical compounds, from the mass

spectra measured at the output of a liquid chromatograph.

Future works include improving the robustness of the pro-

posed method to additive noise, and incorporating multiplica-

tive noise. In fact, in certain application the noise seem to also

have a multiplicative part [19] [4], in addition to the additive

part. The proof of the necessary and sufficient condition on
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the sources, under which the simplicial cone generated by the

mixing matrix is the unique non-negative MASC containing

the scatter plot of the sources will also be investigated.

Evalution on other real data (such as hyperspectral images)

will also performed.
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APPENDIX A

PROOF OF THEOREM 1

U ∈ R
n×n
+ and V ∈ R

n×n
+ are full rank matrices, let

U = [u1, u2, · · · , un] and V = [v1, v2, · · · , vn] where ui

(respectively vi) the i-th column of U (respectively V).

If Span+(U) ⊆ Span+(V) then ∀ 1 ≤ i ≤ n, ui ∈ Span+(V),
therefore there is mi ∈ R

n
+ such as ui = Vmi.

Let M = [m1,m2, · · · ,mn], then M ∈ R
n×n
+ and U = VM.

Since rg(U) = rg(V) = n then rg(M) = n.

Reciprocally, assume that there is a square full column rank

non-negative matrix M ∈ R
n×n
+ such as U = VM. For any

z ∈ Span+(U), there is y ∈ R
n
+ such as z = Uy. Since

U = VM, then z = VMy. It follows that z ∈ Span+(V)
(because My ∈ R

n
+), and therefore Span+(U) ⊆ Span+(V).

APPENDIX B

PROOF OF THEOREM 2

Proof of the forward sense: Assume that Span+(U) =
Span+(V), then Span+(U) ⊆ Span+(V), and there is a

square full column rank non-negative matrix M ≥ 0 such

as U = VM (due to Theorem 1), so V = UM−1. For

any y ≥ 0, Vy ∈ Span+(V), then Vy ∈ Span+(U)
(since Span+(V) = Span+(U)). Furthermore Vy = UM−1y

⇒ UM−1y ∈ Span+(U), then M−1y ≥ 0, and therefore

M−1 ≥ 0. Since M ≥ 0 and M−1 ≥ 0, one can conclude

that M is a monomial matrix [35].

Proof of the reverse sense: Assume that U = VM where M

is a monomial matrix. For any z ∈ Span+(U), there is y ≥ 0
such as z = Uy. Then z = VMy, since M is a monomial

matrix then My ≥ 0, therefore z ∈ Span+(V), and one can

conclude that Span+(U) ⊆ Span+(V). In the same way, and

using the fact that M is a monomial matrix, one can easily

show that Span+(V) ⊆ Span+(U), which lead us to conclude

that Span+(U) = Span+(V).

APPENDIX C

PROOF OF THEOREM 3

Let G = [g1, g2, · · · , gn] and H = [h1, h2, · · · , hn] with

gi =
ui

‖ui‖2

and hi =
vi

‖vi‖2

then Span+(G) = Span+(U) and

Span+(H) = Span+(V) (Theorem 2). It is enough to prove

that A (G) ≤ A (H).
Span+(U) ⊆ Span+(V) ⇒ Span+(G) ⊆ Span+(H) there is

a full column rank non-negative matrix M such as G = HM

(Theorem 1). Let M = [m1,m2, · · · ,mn], where mi is the ith

column of M. For fixed i: gli =
n
∑

r=1
hlrmri, then

g2li =

(

n
∑

r=1

hlrmri

)2

≥
n
∑

r=1

h2
lrm

2
ri

thus

n
∑

l=1

g2li ≥

n
∑

l=1

(

n
∑

r=1

h2
lrm

2
ri

)

=

n
∑

r=1

m2
ri

(

n
∑

l=1

h2
lr

)

.

Since
n
∑

l=1

g2li = 1 and
n
∑

l=1

h2
li = 1, then 1 ≥

n
∑

r=1
m2

ri, so 1 ≥

‖mi‖2. It follows that:

1 ≥
n
∏

i=1

‖mi‖2 ⇒ 1 ≤
1

‖m1‖ × ‖m2‖ × · · · × ‖mn‖

Furthermore, since |det(G)| = |det(H)| |det(M)| then

|det(G)| ≤ |det(H)|
|det(M)|

‖m1‖2 × ‖m2‖2 × · · · × ‖mn‖2

On the other hand,
|det(M)|

‖m1‖2
×‖m2‖2

×···×‖mn‖2

≤ 1 due to

Hadamard’s inequality, then |det(G)| ≤ |det(H)|. Moreover,

since
n
∏

i=1

‖gi‖2 = 1 and
n
∏

i=1

‖hi‖2 = 1, then A (G) ≤ A (H).

APPENDIX D

PROOF OF THEOREM 5

We proceed by contradiction.

Proof of the forward sense: Suppose that Span+(In) is not

the unique non-negative MASC containing the scatter plot

of sources, there is thus a non-negative matrix U such as

U−1S ≥ 0 and A (U) ≤ A (In).
S = A−1X ⇒ U−1A−1X = (AU)−1X ≥ 0, therefore

Span+(AU) is another simplicial cone containing the scatter

plot of the mixed data. Since A ≥ 0 and U ≥ 0 then

Span+(AU) ⊆ Span+(In). Furthermore A (AU) ≤ A (A)
(because U is non-negative and due to Theorems 1 and 3), then

Span+(A) is not the unique non-negative MASC containing

the scatter plot of the mixed data.

Proof of the reverse sense: Assume that Span+(A) is not

the unique non-negative MASC containing the scatter plot of

the mixed data, there is thus another non-negative MASC, say

Span+(W), containing the scatter plot of the mixed data (i.e

X = WY, where Y ≥ 0), and A (W) ≤ A (A).
S = A−1X⇒ S = A−1WY with Y ≥ 0, then Span+(A−1W)
is another simplicial cone containing the scatter plot of the

sources. ∀ y ≥ 0, Wy is in the scatter plot of the mixed

data, then A−1Wy ≥ 0, and it follow that A−1W ≥ 0.

Since A
(

A−1W
)

≤ 1 (due to Hadamard’s inequality), and

A (In) = 1, then A
(

A−1W
)

≤ A (In), and one can con-

clude that Span+(In) is not the unique non-negative MASC

containing the scatter plot of the sources.
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Fig. 17. Database of the eleven commercial chimical compounds

APPENDIX E

DATABASE OF THE COMMERCIAL CHIMICAL COMPOUNDS
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