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Compactness Criteria for Sets and Operators

in the Setting of Continuous Frames

M. Măntoiu and D. Parra ∗

Abstract

To a generalized tight continuous frame in a Hilbert space H , indexed by a locally compact

space Σ endowed with a Radon measure, one associates [9, 21] a coorbit theory converting spaces

of functions on Σ in spaces of vectors comparable with H . If the continuous frame is provided by

the action of a suitable family of bounded operators on a fixed window, a symbolic calculus emerges

[16], assigning operators in H to functions on Σ . We give some criteria of relative compactness

for sets and for families of compact operators, involving tightness properties in terms of objects

canonically associated to the frame. Particular attention is dedicated to a magnetic version of the

pseudodifferential calculus.
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Departamento de Matemáticas, Universidad de Chile,

Las Palmeras 3425, Casilla 653, Santiago, Chile

E-mail: mantoiu@uchile.cl

E-mail: parra.alejandro@gmail.com

Acknowledgements: The authors are supported by Núcleo Cientifico ICM P07-027-F ”Mathemati-

cal Theory of Quantum and Classical Magnetic Systems”. The first named author is grateful to the Erwin

Schrödinger Institute and to the Mittag-Leffler Institute, where part of this this paper has been written.

1 Introduction

The main goal of this article is to provide compactness criteria for bounded subsets Ω of some Banach

spaces Y in terms of generalized continuous frames [7, 9, 21, 16]. It will be convenient in this Introduc-

tion to refer to the framework of [16], less general than that of [9, 21], but having a richer mathematical

structure.

In [16] the framework is built on a family {π(s) | s ∈ Σ} of bounded operators acting in a Hilbert

space H indexed by the points of a locally compact space Σ endowed with a Radon measure µ . Under

∗2010 Mathematics Subject Classification: Primary 46B50, 42B36, Secundary 47G30, 46E30.
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certain convenient axioms (the square integrability condition (2.11) is basic), one introduces and studies

a map φπ from H × H into L2(Σ) , and a symbolic calculus f 7→ Π(f) sending functions on Σ into

operators on H (in the spirit of a pseudodifferential theory). Formally the definitions are

[φπ(u, v)](s) := 〈π(s)u, v〉 , u, v ∈ H , s ∈ Σ (1.1)

and

Π(f) :=

∫

Σ
dµ(s)f(s)π(s)∗ , f ∈ L2(Σ) , (1.2)

but with suitable interpretations (using Gelfand triples for instance) they can be pushed to much more

general situations.

If Σ is a locally compact group and π : Σ → B(H) is a (maybe projective) unitary, strongly con-

tinuous (maybe irreducible) representation, the framework is standard [7]. The function φπ is called the

representation coefficient map and Π is the integrated form of this representation.

However, in many physically or/and mathematically motivated situations Σ is not a group. Even

when it is, π is not a projective representation; the operators π(s)π(t) might not be connected to π(st)
(when the later exists) in some simple way. The need of a formalism covering non-group-like situa-

tions motivated the approach in [16], to which we refer for more technical details, for constructions

of involutive algebras and of coorbit spaces of vectors and symbols and for relevant examples. Actu-

ally coorbit spaces of vectors have been previously defined in [9, 21] starting with a continuous frame

W := {w(s) | s ∈ Σ} ⊂ H , following the fundamental approach of [7]. These references, besides a

deep investigation, also contain many examples and motivational issues to which we send the interested

reader. In such a generality, however, the symbolic calculus Π and the connected developments of [16]

are not available.

To get the situation treated in [16] one sets essentially w(s) := π(s)∗w for some fixed nomalised

vector (window) of H . It is fruitful to consider the partial function u 7→ φπw(u) := φπ(u,w) for fixed w
and clearly this can be generalized to an isometry

H ∋ u 7→ φW (u) := 〈u,w(·)〉 ∈ L2(Σ) (1.3)

for continuous frames which are not defined by families of operators. The necessary notions from [9, 16,

21] are briefly reviewed in section 2.

Let us come back to compactness issues. Let us fix an infinite dimensional Banach space Y and a

bounded subset Ω of Y . We assume that Y is somehow defined in the setting (H,Σ, π, φπ,Π) . Tipically

it will be one of the coorbit spaces of vectors constructed in terms of the frame ; the Hilbert space H
itself is a particular but important example. To be relatively compact Ω needs extra properties beyond

boundedness, and it is natural to search for such properties in terms of the maps π, φπ or Π . The

following definition (inspired by [6]) will be convenient.

Definition 1.1. Assume that the Banach space Y is endowed with a structure of Banach left module over

a normed algebra A , meaning that a left module structure A×Y ∋ (a, y) 7→ a · y ∈ Y is given and the

relation ‖a · y ‖Y ≤‖a‖A ‖y ‖Y is satisfied for every a ∈ A and y ∈ Y . Let A0 ⊂ A ; we say that the

bounded set Γ ⊂ Y is A0-tight if for every ǫ > 0 there exists a ∈ A0 with supy∈Γ ‖a · y − y‖Y ≤ ǫ .
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In various situations, depending on the meaning of · and ‖ · ‖Y , tightness could have a specific

intrepretation (equicontinuity, uniform concentration, etc). Note that Y is naturally a Banach left module

over B(Y) , the Banach algebra of all bounded lineal operators in Y , so very often we choose A0 ⊂
B(Y) .

Most of our results will involve characterization of relative compactness of Ω in terms of its tightness

with respect to a (finite) family of Banach module structures {Aj × Y 7→ Y}j∈J and corresponding

subsets {A0
j ⊂ Aj}j∈J . An occuring generalization is using for characterization tightness of the image

Ω′ := ψ(Ω) of Ω into another Banach left module.

For illustration, let us reproduce here a slightly simplified version of Theorem 4.1. We ask the map

π∗(·) := π(·)∗ : Σ → B(H) to be strongly continuous, to satisfy π∗(s1) = 1 for some s1 ∈ Σ and to

verify condition (2.11). Note that Cc(Σ) is contained in the C∗-algebra C0(Σ) of complex continuous

functions on Σ vanishing at infinity, which acts on L2(Σ) by pointwise multiplication.

Theorem 1.2. A bounded subset Ω of H is relatively compact if and only if any one of the next equivalent

conditions holds:

1. For some (every) w ∈ H the family φπw(Ω) is Cc(Σ)-tight in L2(Σ) .

2. The set Ω is Π [Cc(Σ)]-tight ; here we use the Banach module B(H)×H → H .

3. One has lim
s→s0

sup
u∈Ω

‖π∗(s)u− π∗(s0)u‖= 0 for every s0 ∈ Σ .

Two possible generalizations can be taken into account: (a) replace W := {π(s)∗w | s ∈ Σ}
by a general continuous frame and (b) replace H by a coorbit space. Both these generalizations are

considered in section 3, but only involving the characterization 1 of relative compactness of Ω in terms

of tightness of the set φW (Ω) . One obtaines an extension of the main result of [5], which required Σ to

be a locally compact group and w(s) = π(s)∗w for some irreducible integrable unitary representation

π : Σ → B(H) . Although substantially more general, our result allows almost the same proof as in [5];

we include this proof for convenience and because some technical details are different.

In fact the characterizations 2 and 3, suitably modified, would also be available in coorbit spaces.

However this would need many preparations from the paper [16] (submitted for publication) and would

involve some implicit assumptions requiring a lot of exemplifications. Therefore, at least for the moment,

we decided to include compactness characterization in terms of π and Π only for the important case of

Hilbert spaces.

We are also interested in families of compact operators. Two Banach spaces X and Y being given,

the problem of deciding when a set K of compact operators : X → Y is relatively compact in the

operator norm topology is already a classical one; for more details and motivations cf. [1, 10, 18, 19, 22]

and references therein. Clearly, compactness results for subsets of Y (as those given in sections 3 and 4)

are crucial, but extra refinaments are needed: For K to be a relatively compact set of compact operators,

it is necessary but not sufficient that {Sx | ‖ x ‖X≤ 1, S ∈ K } be relatively compact in Y ; this even

happens in Hilbert spaces. We discuss this problem in section 5; of course, if K := {S} is a singleton,

one gets easily criteria for the operator S to be compact.
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In a final Section we treat what we think to be an important example, the magnetic Weyl calculus [16,

14], which describes the quantization of a particle moving in R
n under the action of a variable magnetic

field B (a closed 2-form on R
n) . It is a physically motivated extension of the usual pseudodifferential

theory in Weyl form, which can be recovered for B = 0 . One reason for including this here is that

it definitely stays outside the realm of projective group representations and the results on compactness

existing in the literature do not apply. But it is a rather simple particular case of the formalism developped

in [16] and the compactness criteria of the present paper work very well. We decided to present only

the Hilbert space theory, having in view certain applications to the spectral theory of magnetic quantum

Hamiltonians that will hopefully addressed in the future. A second reason to treat the magnetic Weyl

calculus here is that it presents extra mathematical structure which has important physical implications

and which also enlarges the realm of compacness criteria. If the magnetic field is zero, part of our

Theorem 6.2 reproduces the classical Riesz-Kolmogorov Theorem (cf. [5, 6, 11] for useful discussions).

Extensions of this classical result can be found in [11] and especially in [6]; since these references use

essentially the group-theoretic framework, they cannot be applied to our section 6. It would be interesting

to generalize the double module formalism of [6] to cover at least the magnetic Weyl calculus and its

generalization to nilpotent Lie groups [20, 2, 3].

2 Coorbit spaces and quantization rules associated to continuous frames

We start with some notations and conventions:

We denote by H the conjugate of the (complex separable) Hilbert space H ; it coincides with H as

an additive group but it is endowed with the scalar multiplication α · u := αu and the scalar product

〈u, v〉′ := 〈u, v〉 . If u, v ∈ H the rank one operator λu,v ≡ 〈·, v〉〈u| is given by λu,v(w) := 〈w, v〉u .

Let Σ be a Hausdorff locally compact and σ-compact space endowed with a fixed Radon measure

µ . By C(Σ) one denotes the space of all continuous functions on Σ , containing the C∗-algebra BC(Σ)
composed of bounded continuous functions. The closure in BC(Σ) of the space Cc(Σ) of continuous

compactly supported complex functions on Σ is theC∗-algebraC0(Σ) of continuous functions vanishing

at infinity. The Lebesgue space L2(Σ;µ) ≡ L2(Σ) will also be used, with scalar product 〈u, v〉L2(Σ) =:
〈u, v〉(Σ) .

For Banach spaces X ,Y we set B(X ,Y) for the space of linear continuous operators from X to Y
and use the abbreviation B(X ) := B(X ,X ) . The particular case X ′ := B(X ,C) refers to the topological

dual of X . By K(X ,Y) we denote the compact operators from X to Y . If H is a Hilbert space, B2(H)
is the two-sided ∗-ideal of all Hilbert-Schmidt operators in B(H) ; it is a Hilbert space with the scalar

product 〈S, T 〉B2(H) := Tr(ST ∗) .

We recall now the concept of tight continuous frame and the construction of coorbit spaces, slightly

modifying the approach of [9, 21]. Let us fix a family W := {w(s) | s ∈ Σ} ⊂ H that is a tight

continuous frame; the constant of the frame is assumed to be 1 by normalizing the measure µ . This

means that the map s 7→ w(s) is assumed weakly continuous and for every u, v ∈ H one has

〈u, v〉 =

∫

Σ
dµ(s)〈u,w(s)〉〈w(s), v〉 . (2.1)
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Clearly W is total in H and defines an isometric operator

φW : H → L2(Σ) , [φW (u)] (s) := 〈u,w(s)〉 (2.2)

with adjoint φ†W : L2(Σ) → H given (in weak sense) by

φ†W (f) =

∫

Σ
dµ(s)f(s)w(s) . (2.3)

The (Gramian) kernel associated to the frame is the function pW : Σ× Σ → C given by

pW (s, t) := 〈w(t), w(s)〉 = [φW (w(t))] (s) = [φW (w(s))] (t) , (2.4)

defining a self-adjoint integral operator PW = Int(pW ) in L2(Σ) . One checks easily that PW =

φWφ
†
W is the final projection of the isometry φW , so PW

[
L2(Σ)

]
is a closed subspace of L2(Σ) . Since

φ†WφW = 1 , one has the inversion formula

u =

∫

Σ
dµ(t) [φW (u)] (t)w(t) , (2.5)

leading to the reproducing formula φW (u) = PW [φW (u)] , i.e.

[φW (u)] (s) =

∫

Σ
dµ(t)〈w(t), w(s)〉 [φW (u)] (t) . (2.6)

Thus PW (Σ) := PW
[
L2(Σ)

]
is a reproducing space with reproducing kernel pW ; it is composed of

continuous functions on Σ .

To extend the setting above beyond the L2-theory, one can supply an extra space of “test vectors”,

denoted by G , assumed to be a Fréchet space continuously and densely embedded in H . Applying the

Riesz isomorphism we are led to a Gelfand triple (G,H,G′
σ) . The index σ refers to the fact that on

the topological dual G′ we consider usually the weak-∗ topology. In certain circumstances one takes G
to be a Banach space and sometimes it can even be fabricated from the frame W and from some extra

ingredients, as in Remark 2.1 below. But very often (think of the Schwartz space) the auxiliar space G is

only Fréchet.

We shall suppose that the family W is contained and total in G and that Σ ∋ s 7→ w(s) ∈ G is a

weakly continuous function. Then we extend φW to G′ by [φW (u)] (s) := 〈u,w(s)〉 , where the r.h.s.

denotes now the number obtained by applying u ∈ G′ to w(s) ∈ G and depends continuously on s . By

the totality of the family W in G , this extension is injective. In addition, ΦW : G′ → C(Σ) is continuous

if one consider on G′ the weak-∗ topology and on C(Σ) the topology of pointwise convergence.

As in [7, 9, 21] and many other references treating coorbit spaces, one uses φW (·) to pull back

subspaces of functions on Σ . So let (M, ‖·‖M) be a normed space of functions on Σ (more assumptions

on M will be imposed when necessary) and set

coW (M) ≡ co(M) := {u ∈ G′ |φW (u) ∈ M} , ‖u‖
co(M) := ‖φW (u)‖M . (2.7)
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Recalling the totality of the family W in G , one gets a normed space
(
co(M), ‖·‖

co(M)

)
and φW :

co(M) → M is an isometry. Without extra assumptions, even when M is a Banach space, co(M)
might not be complete, so we define c̃o(M) to be the completion. The canonical (isometric) extension

of φW to a mapping : c̃o(M) → M will also be denoted by φW . If the norm topology of co(M)
happens to be stronger than the weak-∗ topology on G′ , then canonically c̃o(M) →֒ G′

σ .

Remark 2.1. Following the approach of [7, 9, 21], we indicate now a possible choice for G adapted to

a given frame W in H . Let us consider a continuous admissible weight α : Σ × Σ → [1,∞) which

is bounded along the diagonal (α(s, s) ≤ C < ∞ for all s ∈ Σ ), symmetric (α(s, t) = α(t, s) for all

s, t ∈ Σ ) and satisfies α(s, t) ≤ α(s, r)α(r, t) for all r, s, t ∈ Σ . It is easy to see that

Aα := {K : Σ× Σ → C measurable | ‖K ‖Aα
<∞} (2.8)

is a Banach ∗-algebra of kernels with the norm

‖K ‖Aα
:= max

{
ess sup
s∈Σ

∫

Σ
dµ(t)|(αK)(s, t)| , ess sup

t∈Σ

∫

Σ
dµ(s)|(αK)(s, t)|

}
. (2.9)

Picking some (inessential) point r ∈ Σ one defines the weight a ≡ ar : Σ → [1,∞) by a(s) := α(s, r) .

We require that the kernel pW given by (2.4) be an element of Aα ; Then it follows that PW defines a

bounded operator in the weighted Lebesgue space L1
a(Σ) . Then set G ≡ Ga,W := {v ∈ H | φW (v) ∈

L1
a(Σ)} with the obvious norm

‖v‖Ga,W
:= ‖φW (v)‖L1

a(Σ)=

∫

Σ
dµ(s) a(s) | [φW (v)] (s)| . (2.10)

The space Ga,W is a Banach space continuously and densely embedded in H . In this framework, coorbit

spaces were defined and thoroughly investigated in [9, 21]; if M is a Banach space then co(M) is

automatically complete. The dependence of these coorbit spaces on the frame W is also studied in

[9, 21]; we are going to assume that the frame W is fixed.

Following [16], we reconsider a particular case of the formalism described above. This particular

case has extra structure allowing to develop a symbolic calculus and to define and study corresponding

coorbit spaces of functions or ”distributions” on Σ ; we shall only indicate the facts that are useful for

the present paper.

Let π : Σ → B(H) be a map such that for every u, v ∈ H one has

∫

Σ
dµ(s) |〈π(s)u, v〉|2 = ‖u‖2 ‖v‖2 . (2.11)

We set π(s)u =: πu(s) and π(s)∗u ≡ π∗(s)u =: π∗u(s) for every s ∈ Σ and u ∈ H , getting families of

functions {πu : Σ → H | u ∈ H} and {π∗u : Σ → H | u ∈ H} . One also requires π∗u to be continuous

for every u .

The map Φπ : H⊗̂H → L2(Σ) uniquely defined by

[Φπ(u⊗ v)](s) ≡ [φπ(u, v)](s) := 〈π(s)u, v〉
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is isometric, by (2.11). Although this was not not needed in [16], we also require Φπ to be surjective. For

every normalized vector w ∈ H the map φπw : H → L2(Σ) given by φπw(u) := φπ(u,w) is isometric.

Fixing w, it is clear that we are in the above framework with the tight continuous frame defined by

W ≡W (π,w) = {w(s) := π(s)∗w |s ∈ Σ} . (2.12)

Using existing notations one can write φW = φπw and w(·) = π∗w(·) . After introducing a Fréchet space

G continuously embedded in H , one can define coorbit spaces coπw(M) := {u ∈ G′ |φπw(u) ∈ M} as it

was done above. But we are not going to need them.

To define the symbolic calculus Π , sending functions on Σ into bounded linear operators on H ,

we make use of the rank one operators Λ(u ⊗ v) ≡ λu,v := 〈·, v〉u indexed by u, v ∈ H . This

defines both a map λ : H × H → F(H) with values in the ideal of finite-rank operators and a unitary

map Λ : H⊗̂H → B2(H) from the Hilbert tensor product to the Hilbert space of all Hilbert-Schmidt

operators on H . Consequently Π := Λ ◦ (Φπ)−1 : L2(Σ) → B2(H) will also be unitary; its action is

uniquely defined by Π[(φ(u, v)] = 〈·, v〉u . Also recall [16, Prop. 2.3] the formula valid in weak sense

Π(f) =

∫

Σ
dµ(s)f(s)π∗(s) . (2.13)

3 Compactness in coorbit spaces associated to continuous frames

Let us fix a tight continuous frame W := {w(s) | s ∈ Σ} contained and total in a Fréchet space G
that is continuously embedded in the Hilbert space H . It is assumed that s 7→ 〈u,w(s)〉 is continuous

for every u ∈ G′ . For any normed space M of functions on Σ we have defined the coorbit space

coW (M) ≡ co(M) with completion c̃o(M) , which will be supposed continuously embedded in G′
σ .

One considers a bounded subset Ω of c̃o(M) and investigate when this subset is relatively compact

in terms of the canonical mapping φW ≡ φ . We are guided by [5, Th. 4], but some preparations are

needed due to our general setting. The next abstract Lemma will be applied to Y = c̃o(M) →֒ G′
σ .

Lemma 3.1. Let S(G) a family of seminorms defining the topology of G. Assume that Y is a normed

space continuously embedded in G′
σ and let Ω ⊂ Y be bounded.

1. For every p ∈ S(G) there exists a positive constant Dp such that

|〈u, v〉| ≤ Dp ‖u‖Y p(v) , ∀ v ∈ G, u ∈ Y .

2. Seen as a subset of G′ , the set Ω is equicontinuous and (consequently) relatively compact in the

weak-∗ topology.

Proof. 1 is standard; actually the condition is equivalent to Y →֒ G′
σ .

2. A base of neighborhoods of the origin in G is

{
U(p ; δ) := {v ∈ G |p(v) < δ} | p ∈ S(G), δ > 0

}
.
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Assume that ‖u‖Y ≤M for every u ∈ Ω . Let ǫ > 0 and p ∈ S(G) . Using 1, for every v ∈ U
(
p ; ǫ

MDp

)

and every u ∈ Ω one gets

|〈u, v〉| ≤ Dp ‖u‖Y p(v) ≤ DpMp(v) ≤ ǫ ,

and this is equicontinuity. The statement concerning relative compactness follows from the Bourbaki-

Alaoglu Theorem [15].

Let us denote by K(Σ) the family of characteristic functions of all compact subsets in Σ . It can

be seen as a subset of the normed algebra L∞
c (Σ) formed of L∞ functions on Σ which are essentially

compactly supported.

We assume that M is a solid Banach space of functions with absolutely continuous norm (cf. [4];

see also [5]). We recall that such a space contains all the characteristic functions of sets M ⊂ Σ with

µ(M) < ∞ and given f, g : Σ → C two µ-measurable functions, if |f(s)| ≤ |g(s)| almost everywhere

and g ∈ M then f ∈ M and ‖ f ‖M≤‖ g ‖M . It follows that M is a Banach L∞
c (Σ)-module. In

addition, for all f, g ∈ M the following dominated convergence theorem holds: whenever fn : Σ → C

are measurable, |fn| ≤ |g| and fn → f µ-a.e. then ‖ fn − f ‖M→ 0 . Any such space is reflexive [4,

Ch. 1, Prop. 3.6 & Th. 4.1].

Theorem 3.2. Let us assume that M is a solid Banach space of functions on Σ with absolutely continu-

ous norm. Then the bounded subset Ω of c̃o(M) is relatively compact if and only if φ(Ω) is K(Σ)-tight

in M .

Proof. We start with the only if part. By relative compactness of Ω , for any ǫ > 0 there is a finite subset

F such that

min
v∈F

‖u− v‖
c̃o(M)≤

ǫ

2
, ∀u ∈ Ω .

Recalling that Σ has been assumed σ-compact, there is an increasing family {Lm |m ∈ N} of compact

subsets of Σ with ∪mLm = Σ . Since pointwisely |χLm
φ(v)| ≤ |φ(v)| and χLm

φ(v)
m→∞
−−−−→ φ(v) ,

there is a compact set L ⊂ Σ with complement Lc such that

max
v∈F

‖χLcφ(v)‖M≤
ǫ

2
.

Then, for every u ∈ Ω , using the information above and the fact that φ : c̃o(M) → M is isometric,

‖χLcφ(u)‖M≤ min
v∈F

(‖χLcφw(u− v)‖M + ‖χLcφ(v)‖M)

≤ min
v∈F

‖φ(u− v)‖M +
ǫ

2

= min
v∈F

‖u− v‖
c̃o(M) +

ǫ

2
≤ ǫ .

We now prove the converse. Knowing that φ(Ω) is K(Σ)-tight in M , one needs to show that every

sequence (un)n∈N ⊂ Ω has a convergent subsequence. By Lemma 3.1 the bounded set Ω ⊂ c̃o(M) is

relatively compact in G′
σ , so (un)n∈N has a ∗-weakly convergent subsequence uj → u∞ ∈ G′ :

〈uj , v〉 → 〈u∞, v〉 for any v ∈ G . (3.1)

8



Putting v := w(s) in (3.1), we get for every s ∈ Σ

〈uj , w(s)〉 = [φ(uj)](s) → [φ(u∞)](s) = 〈u∞, w(s)〉 .

Therefore the sequence (φ(uj))j∈N is pointwise Cauchy. We shall convert this in the norm convergence

‖φ(uj)− φ(uk)‖M→ 0 when j, k → ∞ . (3.2)

Then the proof would be finished since φ : c̃o(M) → M is isometric: (uj)j∈N will be Cauchy in

c̃o(M) , thus convergent (to u∞ of course).

By tightness, pick a compact subset L ⊂ Σ such that ‖χLcφ(u) ‖M≤ ǫ for every u ∈ Ω ; then we

get

‖χLcφ(uj − uk)‖M≤ 2ǫ , ∀ j, k ∈ N . (3.3)

Since c̃o(M) is continuously embedded in G′
σ , for any seminorm p ∈ S(G) there exist positive constants

Dp, D
′
p such that for every s ∈ Σ

sup
j,k

|〈uj − uk, w(s)〉| ≤ Dp sup
j,k

‖uj − uk ‖c̃o(M) p[w(s)] ≤ D′
p p[w(s)] .

By our assumption on W and by the Uniform Boundedness Principle the family {w(s) | s ∈ L} is

bounded in G , so we get

| [φ(uj − uk)] (s)| ≤ D′
pCp,L , ∀ j, k ∈ N, s ∈ L .

Anyhow we obtain by the Dominated Convergence Theorem

‖χLφ(uj − uk)‖M→ 0 when j, k → ∞ . (3.4)

Putting (3.4) and (3.3) together one gets (3.2) and thus the result.

Remark 3.3. Let S be an bounded operator from the Banach space X to c̃o(M) . Then S is a compact

operator if and only if for every ǫ>0 there exists a compact set L ⊂ Σ such that

‖χLc◦φW ◦ S ‖B(X ,M)≤ ǫ . (3.5)

This follows easily applying Theorem 3.2 to the set Ω := S
(
X[1]

)
and using the explicit form of the

operator norm . Here X[1] denotes the closed unit ball in the Banach space X .

4 Compactness in Hilbert spaces

To have an ampler setting, we turn now to the particular case described in the last part of Section 2.

Thus a family {π(s) | s ∈ Σ} of bounded operators in the Hilbert space H is given. We recall that

s 7→ π(s)∗ ∈ B(H) is strongly continuous and that (2.11) is verified for every u, v ∈ H . Then φπw :
H → L2(Σ) defined by [φπw(u)] (s) := 〈π(s)u,w〉 is well-defined and isometric for every normalized

vector w of the Hilbert space H.
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Theorem 4.1. Let Ω be a bounded subset of H . Consider the following assertions:

1. Ω is relatively compact.

2. For every w ∈ H the family φπw(Ω) is K(Σ)-tight in L2(Σ) .

3. There exists w0 ∈ H such that the family φπw0
(Ω) is K(Σ)-tight in L2(Σ) .

4. For each ǫ > 0 there exists f ∈ Cc(Σ) with sup
u∈Ω

‖Π(f)u− u‖≤ ǫ (i.e. Ω is Π [Cc(Σ)]-tight) .

5. One has lim
s→s0

sup
u∈Ω

‖π(s)∗u− π(s0)
∗u‖= 0 for every s0 ∈ Σ .

6. For every ǫ > 0 and s0 ∈ Σ there exists g ∈ Cc(Σ) such that sup
u∈Ω

‖Π(g)u− π(s0)
∗u‖≤ ǫ .

Then 1, 2, 3 and 4 are equivalent, they imply 5, which in its turn implies 6 . Thus, if we assume that

π(s1)
∗ = 1 for some s1 ∈ Σ , then all the six assertions are equivalent.

Proof. The equivalence of the points 1, 2 and 3 follows from Theorem 3.2 , since in this case H =
co

[
L2(Σ)

]
and M := L2(Σ) is indeed a solid Banach space of functions with absolutely continuous

norm.

1 ⇒ 4. Let Ω ⊂ H be relatively compact and, for some ǫ > 0 , let F be a finite subset such that for

each u ∈ Ω there exists vu ∈ F with ‖u − vu ‖≤ ǫ/4 . The subspace F generated by F will be finite-

dimensional and thus the corresponding projection P will be a finite-rank operator satisfying Pv = v for

every v ∈ F . Then for every u ∈ Ω

‖Pu− u‖ ≤‖Pu− Pvu ‖ + ‖Pvu − vu ‖ + ‖vu − u‖≤ 2 ‖u− vu ‖≤ ǫ/2 . (4.1)

Notice that {Π(f) | f ∈ Cc(Σ) } is a dense set of compact operators. To see this, use the fact that

Π : L2(Σ) → B2(H) is an isometric isomorphism and that Cc(Σ) is dense in L2(Σ) ; the topology of

B2(H) is stronger than that of B(H), while K(Σ) is the closure of B2(H) in the operator norm. Let now

M := supu∈Ω ‖ u ‖ ; by density there is some f ∈ Cc(Σ) with ‖P − Π(f) ‖B(H)≤ ǫ/2M . From this

and from (4.1) the conclusion follows immediately.

4 ⇒ 1. To prove the converse, for ǫ > 0 choose f ∈ Cc(Σ) such that supu∈Ω ‖Π(f)u − u ‖≤ ǫ/2 .

Since Π(f) is a compact operator and Ω is bounded, the range Π(f)Ω is relatively compact, so there is a

finite set G such that for each u ∈ Ω there is an element vu ∈ G with ‖Π(f)u − vu ‖≤ ǫ/2 . Then for

u ∈ Ω one has

‖u− vu ‖≤‖u−Π(f)u‖ + ‖Π(f)u− vu ‖≤ ǫ/2 + ǫ/2 = ǫ ,

so the set Ω is totally bounded.

4 ⇒ 5. Setting S⊥ := 1 − S , we compute for s0 ∈ Σ , u ∈ Ω , f ∈ Cc(Σ) and s belonging to a

neighborhood V of s0 :

‖π(s)∗u− π(s0)
∗u‖ ≤‖ [π(s)∗ − π(s0)

∗] Π(f)u‖ + ‖ [π(s)∗ − π(s0)
∗] Π(f)⊥u‖

≤ sup
u∈Ω

‖u‖ ‖ [π(s)∗ − π(s0)
∗] Π(f)‖B(H) +2 sup

t∈V
‖π(t)∗ ‖B(H) sup

u∈Ω
‖Π(f)⊥u‖ .
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The first term is small for s belonging to a suitable neighborhood V , because Ω is bounded, π∗ is strongly

continuous and this is improved to norm continuity by multiplication with the compact operator Π(f) .

The second term is also small for some suitable f , because of the assumption 4 and since ‖π∗(·)‖B(H)

is bounded on the compact set V (use the Uniform Boundedness Principle and the strong continuity of

π∗) .

5 ⇒ 6. Compute for any positive g ∈ Cc(Σ) with
∫
Σgdµ = 1

‖Π(g)u− π(s0)
∗u‖=

∥∥∥
∫

Σ
dµ(s)g(s)[π(s)∗u− π(s0)

∗u]
∥∥∥ ≤

∫

Σ
dµ(s)g(s)‖ [π(s)∗ − π(s0)

∗]u‖

and then use 5 and require g to have support inside the convenient neighborhood of the point s0 .

Remark 4.2. Among the possible applications of Theorem 4.1, let us mention one concerning the con-

nection between spectral and dynamical properties of self-adjoint operators. So let H be a (maybe

unbounded) self-adjoint operator in the Hilbert space H . We denote by {eitH | t ∈ R} the evolu-

tion group generated by H (a 1-parameter strongly continuous group of unitary operators) and for each

u ∈ H we set [u]H for the quasiorbit of u under this group, i.e. [u]H is the norm-closure of the orbit

{eitHu | t ∈ R} . By Hp(H) we denote the closed subspace of H generated by the eigenvectors of H .

It is known (see [11] for instance) that a vector u belongs to Hp(H) if and only if [u]H is a compact

subset of H . Applying Theorem 4.1 to the bounded set Ω := [u]H one gets various characterizations

for the vector to belong to the spectral subspace Hp(H) in terms of one of the objects π,Π or φπw . This

is valuable especially when H is the quantum Hamiltonian of some physical system described in H and

the family π(·) also has some physical meaning.

For simplicity, we are always going to assume that π(s1)
∗ = 1 for some s1 ∈ Σ . Below H[1]

denotes the closed unit ball of the Hilbert space H .

Corollary 4.3. Let X be a Banach space and S ∈ B(X ,H) . The next assertions are equivalent:

1. S is a compact operator.

2. The set φπw(SX[1]) is K(Σ)-tight in L2(Σ) for some (every) w ∈ H .

Writting M⊥
χL

for the operator of multiplication by the function 1 − χL in L2(Σ) , this can be

restated: for every ǫ > 0 there is a compact subset L of Σ such that ‖M⊥
χL

◦φπw ◦S ‖B(X ,L2)≤ ǫ .

3. For every ǫ > 0 there is some f ∈ Cc(Σ) such that ‖ [Π(f)− 1]S ‖B(X ,H)≤ ǫ .

4. The map Σ ∋ s 7→ π(s)∗S ∈ B(X ,H) is norm-continuous.

Proof. This is a simple consequence of Theorem 4.1, since S is a compact operator if and only if Ω :=
SX[1] is relatively compact in H ; also use ‖T ‖B(X ,H)= sup

x∈X[1]

‖Tx‖ .
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Remark 4.4. Let us have a look at the implication 4 ⇒ 1 . We could say that a strongly continuous

function ρ : Γ → B(H) (Γ is a topological space) characterizes compactness if for any S ∈ B(X ,H)
(and for any Banach space X ) the fact that the function ρS(·) := ρ(·)S is norm-continuous implies

S ∈ K(H) . In particular, our function π∗ does this. Many other don’t; think for instance that ρ is

already norm-continuous or that all the ranges ρ(γ)H are orthogonal on some fixed proper infinitely

dimensional subspace.

Remark 4.5. It is easy to interpret the point 3 as a tightness condition, since B(X ,H) is a left Banach

module over B(H) under operator multiplication.

5 Compactness in spaces of compact operators

Our next problem is to describe relative compactness of subsets K of the Banach space K(X , c̃o(M))
of all compact operators from an arbitrary Banach space X to (the completion of) a coorbit space. Even

the case c̃o(M) = H is interesting. Of course, the key fact is that we have now convenient descriptions

of relative compactness in the final Banach space c̃o(M) . But this can be used efficiently only taking

into account some rather deep abstract facts.

One could hope that the good conditions would be uniform versions of (3.5) (the same L for a given

ǫ and for all the elements S of K ) or of the conditions 2,3 or 4 in Corollary 4.3 . Clearly such a guess

is connected to the notion of collective compactness. If X and Y are Banach spaces, a subset L of

K(X ,Y) is called collectively compact if LX[1] := ∪S∈L SX[1] is relatively compact in Y . It can be

shown that if L is relatively compact in K(X ,Y) then it is also collectively compact. To see that the

converse is false, take for simplicity X = Y = H a Hilbert space. It is easy to check that L is relatively

compact if and only if L ∗ := {S∗ | S ∈ L } is relatively compact. But such a stability under taking

the family of adjoints fails dramatically in the case of collective compactness. Let {ej | j ∈ N} be

an orthonormal base in H and set L := {〈·, ej〉e1 | j ∈ N} . Then L is collectively compact while

L ∗ := {〈·, e1〉ej |j ∈ N} is not!

Let us return to the Banach case and denote by X ′ and Y ′ , respectively, the topological duals of the

spaces X and Y . It has been considered a success proving finally [19, 1] that L ⊂ K(X ,Y) is relatively

compact if and only if both L and L ′ ⊂ K(Y ′,X ′) are collectively compact. By definition, L ′ is

composed of the transposed operators S′ : Y ′ → X ′ with S ∈ L .

This result is not yet handy for our problem (in which Y = c̃o(M)) , because in general we do not

know anything about compactness of the subsets of X ′ . On the other hand, much later [22] it has been

shown that L ′ ⊂ K(Y ′,X ′) is collectively compact if and only if L is equicompact, in the sense that

there is a sequence X ′ ∋ x′n → 0 such that supS∈L‖Sx‖Y ≤ supn |〈x
′
n, x〉| for every x ∈ X .

Remark 5.1. In [18] it is also shown that if X does not contain an isomorphic copy of l1 then L

is relatively compact if and only if it is collectively compact and uniformly weak-norm continuous (if

xn → 0 weakly then supS∈L ‖Sxn ‖Y→ 0) . This also follows from [22], while [10] contains a related

result.

Using all these, the notions introduces in section 2 and Theorem 3.2 one gets easily
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Corollary 5.2. Let us assume that M is a solid Banach space of functions on Σ with absolutely contin-

uous norm, let X be a Banach space and K a subset of B [X , c̃o(M)] . Then K is a compact family of

compact operators if and only if

1. For every ǫ>0 there exist a compact set L ⊂ Σ such that sup
S∈K

‖χLc◦φW ◦ S ‖B(X ,M)≤ ǫ

and

2. There is a sequence X ′ ∋ x′n → 0 such that sup
S∈K

‖ φW (Sx) ‖M≤ supn |〈x
′
n, x〉| for every

x ∈ X .

If X does not contain an isomorphic copy of l1 , then 2 can be replaced by

2’. If xn → 0 weakly then sup
S∈K

‖φW (Sxn)‖M→ 0 .

We refer now to the situation explored in section 4, recalling the objects (π, φπw,Π) ; for simplicity we

only consider the case X = H . There are several ways to characterize relative compactness of subsets of

K(H) , relying on Theorem 4.1 and the discussion preceding Corollary 5.2. We present the one involving

collective compactness of the family and of the family of adjoints and leave to the interested reader the

easy task to state others, maybe also for the case of a general Banach space X . The setting is that of

section 4; it is also assumed that π(s1)
∗ = 1 for some s1 ∈ Σ .

Corollary 5.3. Let K be a family of bounded operators in H . The following assertions are equivalent:

1. K is a relatively compact family of compact operators.

2. For some (any) w ∈ H the family {φw(SH[1]) |S ∈ K ∪ K ∗} is uniformly tight in L2(Σ) .

This condition means that for every strictly positive ǫ there exists a compact subset L of Σ such

that sup
S∈K ∪K ∗

‖M⊥
χL

◦ φw ◦ S ‖B(H,L2)≤ ǫ .

3. For every ǫ > 0 there exists f ∈ Cc(Σ) such that sup
S∈K ∪K ∗

‖ [Π(f) − 1]S ‖B(H)≤ ǫ (also a

tightness statement).

4. {Σ ∋ s 7→ π(s)∗S ∈ B(H) | S ∈ K ∪ K ∗} is an equicontinuous family.

6 Compactness in the magnetic Weyl calculus

The magnetic pseudodifferential calculus [17, 14] has as a background the problem of quantization of

a physical system consisting in a spin-less particle moving in the euclidean space X := R
n under the

influence of a magnetic field, i.e. a closed 2-form B on X (dB = 0), given by matrix-component

functions Bjk = −Bkj : X → R , j, k = 1, . . . , n . For convenience we are going to assume that the

components Bjk belong to C∞
pol(X) , the class of smooth functions on X with polynomial bounds on

all the derivatives. The magnetic field can be written in many ways as the differential B = dA of some
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1-form A on X called vector potential. One has B = dA = dA′ iff A′ = A + dϕ for some 0-form ϕ
(then they are called equivalent). It is easy to see that the vector potential can also be chosen of class

C∞
pol(X) ; this will be tacitly assumed.

One would like to develop a symbolic calculus a 7→ OpA(a) taking the magnetic field into account.

Basic requirements are: (i) it should reduce to the standard Weyl calculus [8, 12] for A = 0 and (ii)

the operators OpA(a) and OpA
′

(a) should be unitarily equivalent (independently on the symbol a) if A
and A′ are equivalent; this is called gauge covariance and has a fundamental physical meaning. There

are many ways to justify the formulae, including geometrical or classical mechanics reasons or ideas

coming from group cohomology and the theory of crossed product C∗-algebras. The one closest to

our approach it to think of the emerging symbolic calculus as a functional calculus for the family of

non-commuting self-adjoint operators (Q1, . . . , Qn;P
A
1 , . . . , P

A
n ) in H := L2(X) . Here Qj is one of

the components of the position operator, but the momentum Pj := −i∂j is replaced by the magnetic

momentum PAj := Pj − Aj(Q) where Aj(Q) indicates the operator of multiplication with the function

Aj ∈ C∞
pol(X) . Notice the commutation relations

i[Qj , Qk] = 0 , i[PAj , Qk] = δjk , i[PAj , P
A
k ] = Bjk(Q) . (6.1)

Let us set Σ := X × X∗ (called the phase space and isomorphic to R
2n) , on which we consider the

Lebesgue measure dµ(x, ξ) ≡ dxdξ . One defines the magnetic Weyl system

πA : Σ → B(H) , πA(x, ξ) := exp
[
i
(
x · PA −Q · ξ

)]
(6.2)

and gets in terms of the circulation of the 1-formA through the segment [y, y+x] := {y+tx | t ∈ [0, 1]}
the explicit formula

[
πA(x, ξ)u

]
(y) = e−i(y+

x
2 )·ξ exp


(−i)

∫

[y,y+x]

A


 u(y + x) . (6.3)

These operators depend strongly continuous of (x, ξ) and satisfy πA(0, 0) = 1 and πA(x, ξ)∗ = πA(x, ξ)−1 =
πA(−x,−ξ) (thus being unitary). However they do not form a projective representation of Σ = X×X∗.

Actually they satisfy

πA(x, ξ)πA(y, η) = ωB[(x, ξ), (y, η);Q]πA(x+ y, ξ + η) , (6.4)

where ωB[(x, ξ), (y, η);Q] only depends on the 2-form B and denotes the operator of multiplication in

L2(X) by the function

X ∋ z → ωB[(x, ξ), (y, η); z] := exp

[
i

2
(y · ξ − x · η)

]
exp


(−i)

∫

<z,z+x,z+x+y>

B


 . (6.5)

Here the distinguished factor is constructed with the flux (invariant integration) of the magnetic field

through the triangle defined by the corners z, z + x and z + x+ y.
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A straightforward computation leads to the magnetic Fourier-Wigner function

[
ΦA(u⊗ v)

]
(x, ξ) ≡

[
φAv (u)

]
(x, ξ) := 〈πA(x, ξ)u, v〉

=

∫

X
dy e−iy·ξ exp


(−i)

∫

[y−x/2,y+x/2]

A


u(y + x/2) v(y − x/2).

It can be decomposed into the product of the multiplication by a function with values in the unit circle,

a change of variables with unit jacobian and a partial Fourier transform. All these are isomorphisms, so

ΦA : L2(X)⊗̂L2(X) → L2(Σ) defines a unitary transformation. Thus we get a formalism which is a

particular case of the one presented at the end of section 2. Therefore one can apply all the prescriptions

and get the correspondence

f 7→ ΠA(f) :=

∫

Σ
f(x, ξ)πA(−x,−ξ) dxdξ . (6.6)

In fact people are interested in the (symplectic) Fourier transformed version a(Q,PA ) ≡ OpA(a) :=
ΠA[F−1(a)] . The resulting magnetic Weyl calculus is given by

[
OpA(a)u

]
(x) = (2π)−n

∫

X
dy

∫

X∗

dξ exp [i(x− y) · ξ] exp

[
−i

∫

[x,y]
A

]
a

(
x+ y

2
, ξ

)
u(y). (6.7)

An important property of (6.7) is gauge covariance, as hinted above: if A′ = A + dρ defines the same

magnetic field as A, then OpA
′

(a) = eiρOpA(a) e−iρ. By killing the magnetic phase factors in all the

formulae above one gets the defining relations of the usual Weyl calculus.

Due to the particular structure, one can introduce {UA(x) := πA(x, 0) | x ∈ X} (generalizing the

group of translations for A 6= 0) and {V (ξ) := πA(0, ξ) | ξ ∈ X∗} (the group generated by the position

operator Q) . One can also introduce ϕ(Q) := OpA(ϕ⊗ 1) and ψ(PA) := OpA(1⊗ ψ) for ϕ ∈ L2(X)
and ψ ∈ L2(X∗) . One checks easily that ϕ(Q) is the operator of multiplication by ϕ while for zero

magnetic field ψ(PA=0) ≡ ψ(P ) is the operator of convolution by the Fourier transform of ψ . Since

ϕ ⊗ 1 and 1 ⊗ ψ are not L2-functions in both variables, one needs the results of [17, 14] for an easy

justification of these objects. Equivalently, one can use formulas as ψ(PA) :=
∫
Xdx ψ̂(x)U

A(x) .

The next result is inspired by [11, Prop. 2.2] and basically reduces to [11, Prop. 2.2] for A = 0 . By

S(Y ) we denote the Schwartz space on the real finite-dimensional vector space Y .

Proposition 6.1. The C∗-algebra K
[
L2(X)

]
of compact operators in L2(X) coincides with the closed

vector space C generated in B
[
L2(X)

]
by products ϕ(Q)ψ(PA) with ϕ ∈ S(X) and ψ ∈ S(X∗) .

Proof. It is easy to check that ϕ(Q)ψ(PA) is an integral operator with kernel given for x, y ∈ X by

kAϕ,ψ(x, y) = e
−i

∫
[x,y] A ϕ(x)ψ̂(y − x). (6.8)

We assumed the components of A to be C∞
pol-functions and this immediatly implies that the magnetic

phase factor in (6.8) belongs to C∞
pol(X × X) . Therefore, if ϕ ∈ S(X) and ψ ∈ S(X) , then kAϕ,ψ ∈
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S(X × X) ⊂ L2(X × X) and thus ϕ(Q)ψ(PA) is a Hilbert-Schmidt operator. From this follows

K
[
L2(X)

]
⊃ C .

Reciprocally, it is enough to show that C contains all the integral operators with kernel k ∈ L2(X ×
X) (they are the Hilbert-Schmidt operators and form a dense set in K

[
L2(X)

]
) . Pick inside the Schwartz

space S(X) an orthonormal base {ei | i ∈ N} for L2(X) . Setting

FAij (x, y) := e
−i

∫
[x,y] A ei(x)ej(y − x) , ∀x, y ∈ X, i, j ∈ N ,

we get an orthonormal base {FAij | i, j ∈ N} of L2(X×X) . So k =
∑

i,j cijF
A
ij , where

∑
i,j |cij |

2 <∞

and the sum is convergent in L2(X × X). Then the integral operator with kernel k coincides with∑
i,j cijei(Q)êj(P

A) . The sum converges in B2

[
L2(X)

]
, thus in B

[
L2(X)

]
, therefore the operator

belongs to C .

We can also state:

Theorem 6.2. Let Ω a bounded subset of H := L2(X) . The following statements are equivalent:

1. The set Ω is relatively compact.

2. For some (any) window w ∈ H , the family φAw(Ω) is K(Σ)-tight in L2(Σ) .

3. For every ǫ > 0 there exist f ∈ Cc(Σ) with sup
u∈Ω

∥∥
[
OpA(f̂)− 1

]
u
∥∥ ≤ ǫ .

4. One has

lim
(x,ξ)→0

sup
u∈Ω

‖
[
πA(x, ξ)− 1

]
u‖= 0 . (6.9)

5. One has

lim
x→0

sup
u∈Ω

‖
[
UA(x)− 1

]
u‖= 0 and lim

ξ→0
sup
u∈Ω

‖ [V (ξ)− 1]u‖= 0 . (6.10)

6. For every ǫ > 0 there exist ϕ ∈ S(X) and ψ ∈ S(X∗) with

sup
u∈Ω

(
‖ [ϕ(Q)− 1]u‖ + ‖

[
ψ(PA)− 1

]
u‖

)
≤ ǫ . (6.11)

Proof. 1 ⇔ 2 ⇔ 3 follow from Theorem 4.1 by particularization, while 4 ⇔ 5 is trivial, taking into

account the relathionships between UA, V and πA . The implication 3 ⇒ 4 also holds, taking s0 = 0
in Theorem 4.1 (and replacing s by −s) . A careful examination of (6.4) and (6.5) would even lead to

3 ⇔ 4 , restauring the relevant convergence for arbitrary s0 := (x0, ξ0) , but this will not be needed.

1 ⇒ 5 follows trivially, because Ω can be approximated by finite sets and UA, V are strongly continuous

at the origin.

5 ⇒ 6 can be obtained along the same lines as the proof of the implication 4 ⇒ 5 in Theorem 4.1,

taking also into account the relations ψ(PA) =
∫
Xdx ψ̂(x)U

A(x) and ϕ(Q) =
∫
X∗dξ ϕ̂(ξ)V (ξ) .
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We finally show 6 ⇒ 3 . Let us set T⊥ := 1− T and compute

‖u− ϕ(Q)ψ(PA)u‖ = ‖ϕ(Q)ψ(PA)⊥u+ ϕ(Q)⊥u‖

≤‖ϕ‖∞‖ψ(PA)⊥u‖ + ‖ϕ(Q)⊥u‖ .

By using the assumption 6 , this can be made arbitrary small uniformly in u ∈ Ω if ϕ, ψ are chosen

suitably. As in the proof of Proposition 6.1 one sees that ϕ(Q)ψ(PA) is a Hilbert-Schmidt operator. It

can be approximated arbitrarily in norm by some operator OpA(f̂) with f ∈ Cc(Σ) and then 3 follows

easily because Ω is bounded.

Remark 6.3. Many small variations are allowed in the results above. The Schwartz spaces S(X) and

S(X∗) in Proposition 6.1 or at point 6 of Theorem 6.2 can be replaced by other convenient ”small”

spaces. In Theorem 6.2, at point 3 one could use OpA(a) with a ∈ S(Σ) or with a ∈ C∞
c (Σ) .

Remark 6.4. Compact operators and relative compact families of compact operators can also be treated

easily in the magnetic setting, essentially combining the results of sections 5 and 6.

Remark 6.5. This is connected to Remark 4.2. In [11, Sect. 5] one can find improvements of a clas-

sical result of Ruelle, characterizing the pure point space Hp(H) and the continuous space Hc(H) :=

[Hp(H)]⊥ of a self-adjoint operator H acting in L2(X) . This involves operators ϕ(Q) (multiplication

by ϕ) and ψ(P ) (convolution by the Fourier transform of ψ) that are obtained by setting A = 0 . The

analogous magnetic results are also easily available, as corollaries of Theorem 6.2, and they seem to be

new and physically significant. A detailed discussion would need too many preparations, so we do not

include it here; the interested readers would easily find the statements and the proofs by themselves.
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