
HAL Id: hal-00960222
https://hal.science/hal-00960222v1

Submitted on 20 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Overcomplete Dictionaries Based on
Atom-by-Atom Updating

Mostafa Sadeghi, Massoud Babaie-Zadeh, Christian Jutten

To cite this version:
Mostafa Sadeghi, Massoud Babaie-Zadeh, Christian Jutten. Learning Overcomplete Dictionaries
Based on Atom-by-Atom Updating. IEEE Transactions on Signal Processing, 2014, 62 (4), pp.883-891.
�10.1109/TSP.2013.2295062�. �hal-00960222�

https://hal.science/hal-00960222v1
https://hal.archives-ouvertes.fr

1

Learning Overcomplete Dictionaries Based on

Atom-by-Atom Updating
Mostafa Sadeghi∗, Massoud Babaie-Zadeh, Senior Member, IEEE, and Christian Jutten, Fellow, IEEE

Abstract—A dictionary learning algorithm aims to learn a
set of atoms from some training signals in such a way that
each signal can be approximated as a linear combination of
only a few atoms. Most dictionary learning algorithms use
a two-stage iterative procedure. The first stage is to sparsely
approximate the training signals over the current dictionary.
The second stage is the update of the dictionary. In this paper
we develop some atom-by-atom dictionary learning algorithms,
which update the atoms sequentially. Specifically, we propose an
efficient alternative to the well-known K-SVD algorithm, and
show by various experiments that the proposed algorithm has
much less execution time compared to K-SVD while its results
are better. Moreover, we propose a novel algorithm that instead of
alternating between the two dictionary learning stages, performs
only the second stage. While in K-SVD each atom is updated
along with the nonzero entries of its associated row vector in
the coefficient matrix (which we name it its profile), in the new
algorithm, each atom is updated along with the whole entries of
its profile. As a result, contrary to K-SVD, the support of each
profile can be changed while updating the dictionary.

To further accelerate the convergence of this algorithm and
to have a control on the cardinality of the representations, we
then propose its two-stage counterpart by adding the sparse ap-
proximation stage. We evaluate the performance of the proposed
algorithms by performing two sets of experiments. The first set
is the reconstruction of a true underlying dictionary, while the
second set is designing a sparsifying dictionary for a certain class
of signals. The results emphasize on the promising performance
of the proposed algorithms.

Index Terms—Sparse approximation, dictionary learning, com-
pressive sensing, K-SVD.

I. INTRODUCTION

A. Sparse Signal Approximation

S
PARSE decomposition of signals based on some basis

functions has attracted a lot of attention during the last

decade [1]. The problem consists in approximating a given

signal as a linear combination of as few as possible basis

functions. In this context, each basis function is called an

atom and their collection as the columns of a matrix is called

dictionary [2]. The dictionary may be overcomplete, i.e., the

number of atoms may be (much) more than the dimension

Copyright c⃝ 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
This work was supported in part by Iran National Science Foundation (INSF)
under Contract 91004600, and by European project 2012-ERC-AdG-320684
CHESS.

M. Sadeghi and M. Babaie-Zadeh are with the Electrical Engineer-
ing Department, Sharif University of Technology, Tehran, Iran (e-mail:
m.saadeghii@gmail.com; mbzadeh@yahoo.com).

C. Jutten is with the GIPSA-Lab, Department of Images and Signals,
University of Grenoble and Institut Universitaire de France, France (e-mail:
Christian.Jutten@inpg.fr).

of the atoms. Specifically, let y ∈ Rn be the signal which is

going to be sparsely represented in the dictionary D ∈ Rn×K

with K > n. This amounts to solve the following problem,

P0 : min
x

∥x∥0 subject to y = Dx, (1)

where ∥.∥0 stands for the so-called ℓ0 pseudo-norm which

counts the number of nonzero elements. Because of the

combinatorial nature of P0 [1] that makes it hard to solve,

especially in high dimensions, some relaxation methods have

been introduced. A well-known relaxation approach is to use

the ℓ1 norm instead of the ℓ0 pseudo-norm. This leads to the

following convex P1 problem which is known as Basis Pursuit

(BP) [3]

P1 : min
x

∥x∥1 subject to y = Dx. (2)

In practical situations instead of the exact equality y = Dx,

the constraint ∥y−Dx∥2 ≤ ϵ is used, which has a denoising

and stabilizing effect [4], [5]. In this case, usually the term

approximation is used instead of representation.

Many algorithms have been introduced to solve the problem

of finding the sparsest approximation of a signal in a given

overcomplete dictionary (as a good review, see [6]). These

methods can be classified into two general categories, greedy

methods such as Orthogonal Matching Pursuit (OMP) [7],

Stagewise Orthogonal Matching Pursuit (StOMP) [8], Com-

pressive Sampling Matching Pursuit (CoSaMP) [9], Subspace

Pursuit (SP) [10], and relaxation methods, which replace

the combinatorial P0 problem with a tractable one, e.g., P1

problem. Iterative Shrinkage-Thresholding (IST) [11], [12],

[13], Iterative Hard-Thresholding (IHT) [14], Iteratively Re-

weighted Least Squares (IRLS) [15], Smoothed ℓ0 (SL0)

[16], and interior-point methods [17] are some examples of

the second category. Greedy algorithms successively choose

the appropriate atoms of the dictionary that result in the

greatest improvement in the quality of the approximation.

These algorithms benefit from having high speed, but their

accuracy is usually less than that of the second category.

Various image processing tasks (e.g., denoising, compres-

sion, inpainting, zooming) [18], Blind Source Separation

(BSS) in underdetermined mixtures [19], Compressive Sensing

(CS) [20], [21], decoding real field codes [22], linear regres-

sion and variable selection [23] are some applications where

the sparse approximation approach has already been applied.

B. Learning overcomplete dictionaries

For a given class of signals, e.g., class of natural facial

images, the dictionary should have the capability of sparsely

2

representing the signals. To this aim, atoms of the dictionary

should capture the most salient features of the signals. In some

applications there are predefined and universal dictionaries

which are known to be well-matched to the contents of the

given class of signals, for example the overcomplete DCT

dictionary for the class of natural images. These non-adaptive

dictionaries are appealing because of their simplicity and

in some cases their fast computations. However, learning

the atoms from a set of training signals would result in

dictionaries with the capability of better matching the contents

of the signals. In this way, the adaptive dictionaries would

outperform the non-adaptive ones in many applications such as

image denoising [24], image compression [25], classification

tasks [26], and so on.

Most dictionary learning algorithms are indeed a general-

ization of the K-means clustering algorithm [27]. While in

K-means each training signal is forced to use only one atom

(cluster center) as its approximation, in the dictionary learning

problem each signal is allowed to use more than one atom

provided that it uses as few as possible atoms. The approach

of K-means to optimize a set of atoms (called codebook)

is to iteratively perform two stages [28]. In the first stage,

known as the clustering stage, training signals are assigned to

their nearest atoms (usually in the sense of the ℓ2 norm). The

second stage is the update of the atoms in which each atom

is updated as the average of the signals in its cluster. This

procedure is repeated several times. As a generalization of this

approach, dictionary learning algorithms iteratively perform

the two stages of sparse approximation and dictionary update.

In the first stage, which is actually the clustering of the signals

into a union of subspaces, the sparse approximations of the

signals are computed using the current dictionary. The second

stage is the update of the dictionary.

Up to our best knowledge, most dictionary learning algo-

rithms differ mainly in the way of updating the dictionary

[27], [29], [30]. Some algorithms such as K-Singular Value

Decomposition (K-SVD) [27] are based on updating the atoms

one-by-one, while some others such as Method of Optimal

Directions (MOD) [29] update the whole set of atoms at once.

In another point of view, dictionary learning algorithms

are divided into two groups: online [31], [32], [33] and

batch-based [29], [27], [30] algorithms. Online algorithms

continuously update the dictionary using only one (or a mini

batch of) training data. Because of this, they enjoy from having

the capability of handling very large sets of signals, which

is common in, for example, image processing tasks (see the

experiments of [31] on a high-resolution image). Recursive

Least Squares dictionary learning algorithm (RLS-DLA) [32]

is an example of online algorithms, which can be considered

as a generalization of the McQueen variant of K-means [34].

One major benefit of online algorithms is to learn gradually,

which is denoted as the scaling the past data in [31], and by

using a forgetting factor in [32]. Batch-based algorithms use

the whole set of training data to update the dictionary. This

increases the computational burden of these algorithms in high

dimensions. However, an advantage of batch-based algorithms

over online algorithms is their low computational loads and

memory requirements in relatively low dimensions. This is due

to the fact that at each sparse approximation stage, the whole

set of signals are approximated in the same dictionary. So, the

sparse coding algorithm can be optimized to avoid performing

common operations. Batch-OMP [35] is an example of such

optimized sparse coding algorithms.

C. Our contributions and the structure of the paper

The focus of this paper is on the algorithms that update

atoms one-by-one. We first propose an efficient way of up-

dating each atom along with its associated row vector in the

coefficient matrix: we call this idea parallel atom-updating.

From this, we propose an efficient and fast alternative for K-

SVD: we call this algorithm PAU-DL, and show by various

experiments that it performs better than K-SVD while its

computational burden is substantially lower than it. We then

propose a novel method of dictionary learning whose structure

is different from the existing algorithms. Specifically, instead

of alternating between the two dictionary learning stages, the

proposed algorithm performs only the dictionary update stage.

We call this algorithm OS-DL. In each alternation of OS-

DL, each atom is updated along with the whole entries of

its associated row vector in the coefficient matrix. The main

differences between the new algorithm and the current atom-

by-atom dictionary learning algorithms, are as follows. Firstly,

the new algorithm does not explicitly perform the sparse

approximation stage. Secondly, in this algorithm the support of

each row vector of the coefficient matrix is allowed to change.

To further accelerate the convergence of this method and

have a control on the cardinality of the representations, we pro-

pose to add the sparse approximation stage to this algorithm,

and hence we derive another new algorithm, called APrU-

DL. OS-DL and APrU-DL use the parallel atom-updating ap-

proach. Experimental results show the promising performance

of the proposed algorithms relative to K-SVD.

The paper is organized as follows. Section II is devoted

to the formulation of the dictionary learning problem. In

Section III we describe our proposed algorithms. This section

begins with introducing the parallel atom-updating approach;

a general idea for updating the atoms of the dictionary one-

by-one. Using this idea in the dictionary update stage, we

derive the parallel atom-updating dictionary learning (PAU-

DL) algorithm. We then propose the two novel atom-by-atom

dictionary learning algorithms, i.e., OS-DL and APrU-DL.

Section IV presents some experimental results.

D. Notation

We use the following notations. For vector and matrix

valued quantities we use small and capital bold face characters,

respectively. The superscript “T ” denotes vector or matrix

transpose. We denote the ith column vector of a matrix X

as xi, and its ith row vector as xT
[i]. ∥X∥F =

√

∑

ij x
2
ij and

∥x∥p = (
∑

i |xi|
p)

1

p denote the Frobenius norm of the matrix

X, and the ℓp norm of the vector x, respectively. In an iterative

algorithm, we denote a parameter in the kth iteration with the

iteration number in parenthesis, e.g., d(k). For a matrix X

with L columns and ω ⊆ {1, 2, . . . , L}, we define X(:, ω) as

3

Fig. 1. A dictionary learning problem is to factorize a training data matrix
Y as Y ≃ DX with X a sparse-column matrix.

a matrix containing those columns of X that their indices are

in ω. Also, x(ω) is a vector containing those entries of x that

are indexed by ω. Finally, |ω| denotes the cardinality of ω,

that is, its number of entries.

II. DICTIONARY LEARNING PROBLEM

Let {yi}
L
i=1 be a set of L training signals in Rn. Putting

these signals as the columns of the matrix Y, the general

dictionary learning problem is then to find a sparsifying

dictionary, D, by solving the following problem

min
D∈D,X∈X

∥Y −DX∥2F , (3)

where D and X are admissible sets of the dictionary and the

coefficient matrix, respectively. D is usually defined as the set

of all dictionaries with unit column-norms. Since we require

that each signal has a sparse approximation, X is the set of

all matrices X with sparse columns (see Fig. 1). The sparsity

measure can be, for example, the non-convex ℓ0 pseudo-norm,

or the convex ℓ1 norm. The general approach to solve (3) is to

use alternating minimization over X and D, i.e., by fixing D,

the objective function is minimized over X, and vice versa.

A. Sparse Approximation

With a fixed D, the minimization of (3) with respect to X is

equivalent to sparsely approximating the training signals over

D. Among the various sparse coding algorithms, OMP (or its

variants) is very appealing for this stage. This is due to two

reasons. The first reason is the high speed of OMP compared

to relaxation algorithms. The second one is its capability to

be efficiently implemented in the batch mode. This fact along

with the use of Cholesky factorization result in the significant

acceleration of OMP, which leads to Batch-OMP algorithm

[35].

Another option, which we use in this paper, is the IST

algorithms. Although the speed of these algorithms is lower

than that of OMP, their accuracy is better.

B. Dictionary Update

As stated previously, dictionary learning algorithms differ

mainly in the way they perform the second stage, i.e., the dic-

tionary update. In this stage, some desired properties about the

dictionary may be applied, such as having bounded Frobenius

norm [30], and having bounded self-coherence (i.e., pairwise

similarity of the atoms) [36]. However, the constraint of having

unit column-norms is usually used in this stage.

In spite of its name, in the dictionary update stage some

information about the coefficient matrix may be updated,

too. This information may be the nonzero coefficients of X

(as in K-SVD and [37]) or the whole coefficients of it (as

in two of our suggested algorithms). Furthermore, as stated

previously, one of the differences among various dictionary

learning algorithms is that they either update the whole set of

atoms at once (as in MOD) or each atom separately (as in

K-SVD).

C. MOD and K-SVD

MOD [29] is one of the simplest dictionary learning al-

gorithms which firstly finds the unconstrained minimum of

∥Y − DX∥2F and then projects the solution onto the set D.

This leads to the closed-form expression

D = YXT (XXT)−1, (4)

followed by normalizing the columns of D.

K-SVD [27] is one of the most successful dictionary learn-

ing algorithms. In its dictionary update stage, only one atom

is updated at a time. Moreover, while updating each atom, the

nonzero entries in the associated row vector of X are also

updated. In other words, only those signals that have used

a specific atom participate in updating that atom. This is in

accordance with the approach of K-means in which each atom

is updated using its own cluster signals. As stated in [27],

this also prevents each row vector in X to be filled and thus

violating the sparsity constraint of the coefficient matrix.

Assume that we want to update the ith atom, di, along with

the nonzero entries of xT
[i], the ith row of X. We define ωi =

{

j : xT
[i](j) ̸= 0

}

as the support of xT
[i]. Then the problem of

updating di along with xT
[i](ωi) amounts to solve the following

minimization problem

min
d,xr

∥Er
i − dxT

r ∥
2
F subject to ∥d∥22 = 1, (5)

where Er
i = Ei(:, ωi), in which Ei = Y −

∑

j ̸=i djx
T
[j]

denotes the approximation error matrix when di is removed,

and xT
r is a row vector of length |ωi|. The above problem is

in fact equivalent to finding the closest rank-1 approximation

to Er
i , which can be easily solved via SVD of Er

i . For more

details refer to [27].

III. ATOM-BY-ATOM DICTIONARY UPDATE

In this section we propose three algorithms that update

the dictionary atom-by-atom. We call the ith row vector of

the coefficient matrix, the profile of the ith atom, because

this vector indicates which signals use this atom in their

representations. We first introduce the idea of parallel atom-

updating and from which we then propose the parallel atom-

updating dictionary learning (PAU-DL) algorithm, which is

introduced to overcome the computational burden of K-SVD.

We then proceed with introducing a novel method for dictio-

nary learning which is based on performing only the second

stage of the general dictionary learning procedure, and thus

we name it One-Stage Dictionary Learning (OS-DL). In OS-

DL, the support of each profile is allowed to change during the

update of the dictionary. To further accelerate the convergence

rate of OS-DL (as will be shown in the simulations) and

4

control the sparsity level of the representations, we propose

an algorithm, which we call Atom-Profile Updating Dictionary

Learning (APrU-DL), which in fact adds the first stage of

dictionary learning to OS-DL. In all of these algorithms, we

choose D to be the set of all unit column-norm dictionaries

in Rn×K .

A. Parallel Atom-Updating Dictionary Learning (PAU-DL)

The main drawback of K-SVD is its computational burden

especially in high dimensions. This is due to performing SVD

for atom updating. An alternative way of solving (5) is to

use the idea of alternating minimization [35]. In other words,

(5) is alternatively minimized over d and xr. A few (e.g., 3)

alternations give a fast approximation to SVD. The resulting

algorithm is known as the Approximate K-SVD (AK-SVD)

[35]. Although performing more alternations gives a better

approximation, the average performance will not exceed the

performance of the exact solution, i.e., via SVD.

In this subsection we describe a different way of performing

alternating minimization to update the atoms and their profiles.

To this aim, consider the overall error matrix,

E = Y − (A1 +A2 + . . .+AK), ∀i : Ai = dix
T
[i]. (6)

In K-SVD (or AK-SVD), in order to update (the nonzero

columns of) for example Ai, the updated versions of

A1, . . . ,Ai−1 are used to compute Ei, while Ai+1, . . . ,AK

have not been yet updated. Keeping this point in mind, we

propose to update the atoms in parallel. In other words, instead

of fully updating each Ai by performing “A” alternations

between di and xr, “A” alternations are performed in such

a way that in each alternation all of Ai’s are partially updated

(using only one alternation). In this way, in the subsequent

alternations, all Ai’s have been partially updated. As our

experimental results in Section IV suggest, parallel updating of

the atoms may result in further accelerating the convergence

rate and the quality of the final results. In other words, the

new algorithm outperforms K-SVD, which is based on exact

solving of the rank-1 approximation problem.

To update each Ai, we need to compute the error matrix

Ei. It can be easily seen that this matrix can be updated as

follows. The overall error matrix is firstly computed as E =
Y −DX using the current dictionary and coefficient matrix.

Then Ei = E+Ai and after updating Ai to A
(new)
i , the error

matrix E is updated as E = Ei −A
(new)
i .

Algorithm 1 gives a description of the dictionary update

based on parallel atom-updating. PAU-DL is an alternative to

K-SVD that uses this atom-updating procedure. Algorithm 2

gives a complete description of PAU-DL and AK-SVD. By

Batch-OMP(Y,D, τ) we mean the sparse approximation of

Y in D and with threshold τ . Depending on the application

at hand, τ may be the threshold on the approximation error

or the maximum allowed number of atoms in the sparse

approximation of each training signal.

Considering Algorithm 2, we see that in K-SVD: A = 1,

with a large B, in AK-SVD: A = 1, B = 3, and in PAU-DL:

A = 3, B = 1. Here the reader may suggest to use A = 3,

B = 3. However, as we saw in our simulations, the results are

Algorithm 1 Parallel Atom-Updating

1: E = Y −DX

2: for a = 1, . . . , A do

3: for i = 1, . . . ,K do

4: Ei = E+ dix
T
[i]

5: Update xT
[i]

6: Update di

7: E = Ei − dix
T
[i]

8: end for

9: end for

Algorithm 2 AK-SVD (A = 1, B = 3) and PAU-DL (A = 3,

B = 1)

1: Task: Learning a dictionary for Y

2: Initialization: D = D(0)

3: Repeat:

4: Sparse Approximation: X = Batch-OMP(Y,D, τ)
5: Dictionary Update: set E = Y −DX

6: for a = 1, . . . , A do

7: for i = 1, . . . ,K do

8: Ei = E+ dix
T
[i]

9: Er
i = Ei(:, ωi) where ωi =

{

j : xT
[i](j) ̸= 0

}

10: for b = 1, . . . , B do

11: di = Er
ix

T
[i](ωi)

12: di = di/∥di∥2
13: xT

[i](ωi) = dT
i E

r
i

14: end for

15: E = Ei − dix
T
[i]

16: end for

17: end for

18: Until convergence

similar to those of PAU-DL, yet with a higher computational

load.

At first glance, one may think that PAU-DL differs from

AK-SVD by simply changing the operation orders. This,

however, is not just a simple rescheduling. As explained

earlier, the main idea behind PAU-DL is to partially update

each atom before moving to the next atom. In this way, we

have in our disposal more reliable updates of Ai’s in order

to compute the error matrix associated with the atom we

are going to update; see (6). Moreover, as will be seen in

Section IV, PAU-DL has a sufficiently better performance than

AK-SVD and even original K-SVD.

B. One-stage Dictionary Learning (OS-DL)

In [27], after developing the main steps of K-SVD algo-

rithm, the authors asserted that “Here one might be tempted

to suggest skipping the step of sparse coding and using only

updates of columns in D, along with their coefficients, applied

in a cyclic fashion, again and again. This, however, will not

work well, as the support of the representations will never be

changed, and such an algorithm will necessarily fall into a

local minimum trap.”

In this subsection, we describe OS-DL algorithm. This

5

algorithm ignores the sparse approximation stage and perform

dictionary learning by updating atoms along with their profiles

in a cyclic fashion. To prevent the above mentioned problem, a

sparsity constraint on the profiles of the atoms is introduced,

which at the same time allows the support of each profile

to change (and probably not getting trapped into a local

minimum) and prevents each profile to be filled. Allowing

the support of each profile to change lets each atom adaptively

find its cluster members (see Subsection III-C). Each atom and

its profile are updated by solving the following minimization

problem

∀i :
{

di,x[i]

}

= argmin
d,z

1

2
∥Ei − dzT ∥2F + λ∥z∥1, (7)

subject to the constraint ∥di∥
2
2 = 1. Note that if we set

λ = 0 and restrict Ei and xT
[i] to those training data that

have used di in their approximations, then equation (7) is

exactly the one used in K-SVD. Note also that the above

problem is indeed a regularized rank-1 approximation of Ei. It

is worth mentioning that in OS-DL there is no control on the

cardinalities of the representations, and indeed each one may

have a different cardinality. However, in the next algorithm

described in Subsection III-C, this problem is avoided by

performing the sparse approximation stage.

To solve (7), we use alternating minimization. At the first

stage, we update z with a fixed d, and at the second stage,

we update d using the previously updated z. The update

formula for z is obtained by solving (7) with d being fixed.

Interestingly, this leads to a simple closed-form formula [38].

To see this, note that (7) can be de-coupled for each entry of

z. Then, we should solve L scalar problems of the form

min
z

f(z) =
1

2
∥e− zd∥22 + λ|z|, (8)

where e is the corresponding column of Ei. Since the last term

in f(z) is non-differentiable, we require that zero is included

in the subgradient of f(z), i.e., 0 ∈ ∂f(z). This results in

0 = −dT (e− zd) + λsgn(z). (9)

Now, considering the assumption ∥d∥22 = 1, the final solution

is found using the soft-thresholding operation

z = sgn(eTd).max(0, |eTd| − λ) = Sλ(e
Td), (10)

where Sλ(a) is the well-known soft-thresholding function [38]

defined as follows

Sλ(a) ≜

a− λ if a > λ
0 if |a| ≤ λ

a+ λ if a < −λ
. (11)

The final solution is x[i] = Sλ(E
T
i di), where Sλ(.) acts

component-wise.

The update formula for d is also of the simple form

di = Eix[i], (12)

followed by a normalization. Like PAU-DL, in OS-DL the

atoms are updated in parallel. A few iterations (A = 3 in our

experiments) of the alternating minimization is sufficient to

obtain xT
[i] and di. This process is repeated several iterations

until a stopping condition is satisfied. The final algorithm is

summarized in Algorithm 3.

Algorithm 3 OS-DL

1: Task: Learning a dictionary for Y

2: Initialization: D = D(0) and X = X(0)

3: The main loop: Set E = Y −DX

4: for a = 1, . . . , A do

5: for i = 1, . . . ,K do

6: Ei = E+ dix
T
[i]

7: x[i] = Sλ(E
T
i di)

8: di = Eix[i]

9: di = di/∥di∥2
10: E = Ei − dix

T
[i]

11: end for

12: end for

How does it work?

According to (10), only those columns of Ei are represented

by di that are sufficiently similar to it. After finding these

signals, the cluster members of di are actually found. Similar

to K-means, each atom is updated as the (weighted) average of

its cluster members, followed by a normalization. Indeed, each

atom is updated as a sparse linear combination of the columns

of the error matrix, see (12). In OS-DL, a sparse coding-like

stage is implicitly performed1. This is because after updating

the whole row vectors of the coefficient matrix, its columns are

also updated. This way of sparse coding is very similar to an

ordinary sparse coding algorithm that is based on updating the

coefficients sequentially using a coordinate descent algorithm

[39], [38].

C. Atom-Profile Updating Dictionary Learning (APrU-DL)

Recall that the idea of K-SVD to update each atom is indeed

a generalization of K-means clustering algorithm. In other

words, each atom is updated using only its cluster members,

i.e., those signals that have used it in their representations.

However, there is a main difference between these two al-

gorithms. As stated in [27], since in K-means each training

data uses only one atom, the atom updating problems are

decoupled, while this is not the case in K-SVD. In other words,

each training data belongs possibly to multiple atom clusters,

thus the atom update problems are indeed coupled. So, we

believe that restricting the support of the profiles to be fixed

during atom updates, as done in K-SVD, is not well justified.

To overcome this problem, we propose to allow the support

of each profile to change during the atom updating procedure.

In this way, each atom adaptively finds its cluster members.

This idea is used in OS-DL algorithm described in the previous

section. In this section, we describe the two-stage counterpart

of this algorithm by performing the sparse approximation

stage, too. Contrary to OS-DL, by this method, the cardinality

of the representations can be controlled. Moreover, as will

be seen in the simulations, the new algorithm has a better

1Note that this differs from the usual sparse approximation stage per-
formed in a typical dictionary learning algorithm. Actually, in (7), the sparsity
constraint (i.e., the ℓ1 norm penalty) is on the rows of the coefficient matrix,
not on its columns. As explained in the text, we include this constraint to
prevent each profile to be filled during the atom updating procedure.

6

Algorithm 4 Batch-FISTA(Y,D,X(0),λ)

1: Require: Y, D, X(0) ∈ RK×L, λ
2: Initialization: Z(0) = X(0), c ≤ 1/(2λmax(D

TD)), A =
DTD, B = DTY, θ0 = 1

3: for k = 0, 1, 2 . . . do

4: X(k+1) = Sc.λ(Z
(k) − cAZ(k) + cB)

5: θk+1 = (1 +
√

1 + 4θ2k)/2
6: βk = (θk − 1)/θk+1

7: Z(k+1) = X(k+1) + βk(X
(k+1) −X(k))

8: end for

performance, both in convergence rate and quality of the

results.

For the sparse approximation stage any sparse coding al-

gorithm can be used. However, the relaxation-based methods

have a better performance compared to greedy ones (to see

this, we conduct an experiment in the next section). Among

the relaxation-based methods, the soft-thresholding ones are

probably more attractive, for both their simplicity and good

performance. These methods target the following problem

min
D∈D,X

1

2
∥Y −DX∥2F + λs∥X∥1, (13)

where λs is a regularization constant. Here, we use the

Fast Iterative Shrinkage-Thresholding (FISTA) algorithm [40]

whose global convergence rate is much better than the ordinary

IST algorithms, while preserving their simplicity. The batch-

mode version of FISTA is shown in Algorithm 4, in which,

λmax(X) denotes the largest eigenvalue of X. For initialization

of the coefficient matrix in each alternation, we use its final

estimate at the previous alternation. Once the support of each

column of the coefficient matrix is found, we project the

associated training signal onto the subspace spanned by the

corresponding atoms of the dictionary. This process is called

debiasing, and it is known to improve the results [41].

In order to update the dictionary in the second stage, we

follow the same approach as in OS-DL algorithm. In other

words, the problem of updating each atom together with its

profile amounts to solve (7). Algorithm 5 gives a description

of APrU-DL algorithm.

IV. SIMULATIONS

We evaluate the efficiency of our proposed algorithms with

two sets of experiments. The first set of experiments is on

synthetic data, where we aim to evaluate the capability of

our algorithms in recovery of a known dictionary. To this

aim, we generate a set of training signals, each as a linear

combination using a different set of atoms from an underlying

dictionary. We then give these training signals (after adding

a certain amount of Gaussian noise) to each algorithm and

compare the output dictionary to the original one. In this way, a

dictionary learning algorithm should have the ability to extract

the common features of the set of signals, which are actually

the generative atoms. The second set of experiments is on

an autoregressive (AR) signal, where there is no underlying

dictionary, and we just evaluate the capability of the algorithms

Algorithm 5 APrU-DL

1: Task: Learning a dictionary for Y

2: Initialization: D = D(0) and X = X(0)

3: Repeat:

4: Sparse Approximation: X =Batch-FISTA(Y,D,X, λs)
5: Dictionary Update: set E = Y −DX

6: for a = 1, . . . , A do

7: for i = 1, . . . ,K do

8: Ei = E+ dix
T
[i]

9: x[i] = Sλ(E
T
i di)

10: di = Eix[i]

11: di = di/∥di∥2
12: E = Ei − dix

T
[i]

13: end for

14: end for

15: Until convergence

in learning a good (i.e., sparsifying) dictionary, or extracting

a set of good features. We consider an AR(1) signal as in

[32], and generate the training signals by chopping this signal

into a number of blocks. We compare the performance of our

proposed algorithms to those of K-SVD and AK-SVD2,3. As

it was said in Section III-A, for PAU-DL: A = 3, B = 1, and

for AK-SVD: A = 1, B = 3.

Our simulations were performed in MATLAB R2010b en-

vironment on a system with 3.8 GHz CPU and 8 GB RAM,

under Microsoft Windows 7 operating system. As a rough

measure of complexity, we will mention the run times of the

algorithms.

A. Synthetic Data

We generated a dictionary by normalizing a random matrix

of size 20 × 50, with zero-mean and unit-variance indepen-

dent and identically distributed (i.i.d.) Gaussian entries. A

collection of 2000 training signals {yi}
2000
i=1 were produced,

each as a linear combination of s different columns of the

dictionary, with zero-mean and unit-variance i.i.d. Gaussian

coefficients in uniformly random and independent positions.

We varied s from 3 to 6. We then added white Gaussian

noise with Signal to Noise Ratio (SNR) levels of 10, 20,

30, and 100 dB. The exact value of s was given to PAU-

DL, K-SVD, AK-SVD, and APrU-DL (with OMP). For OS-

DL we used a fixed value of λ = 0.3. For APrU-DL (with

FISTA) we used λ = 0.3 and λs = 0.6. We applied all

algorithms onto these noisy training signals, and compared

the resulting recovered dictionaries to the generating one as

follows. Assume that di is a generating atom and d̄i is the

atom in the recovered dictionary that best matches di among

the others. We say that the recovery is successful if |dT
i d̄i|

is above 0.99 [27]. The percentage of the correct recovery

2As pointed out in the previous works, e.g., [32], the performances of
MOD and K-SVD are very similar in these experiments. So, we omitted MOD
from the simulations.

3For K-SVD, AK-SVD and OMP we have used K-SVD-Box v10 and
OMP-Box v10 available at http://www.cs.technion.ac.il/∼ronrubin/software.
html

7

was used as the measure of successfully reconstructing the

generating dictionary. We performed 100 alternations between

sparse approximation and dictionary update stages for all

algorithms. The initial dictionary was made by randomly

choosing different columns of the training set followed by

a normalization. We repeated each experiment (corresponding

to a certain value of s and a certain noise level) 50 times and

reported the averaged results.

The average percentage of successfully recovering the un-

derlying atoms is shown in Table I. The average execution

times of the algorithms for this experiment is shown in Fig. 2.

To see the convergence behaviour of K-SVD, AK-SVD, PAU-

DL, and APrU-DL, the improvement of recovery ratio along

the alternation number is shown in Fig. 3. As we saw in our

simulations, the results of AK-SVD were very close to those

of K-SVD (as can be seen from Fig. 3). So, AK-SVD has

been omitted from Table I. Also, the average execution time

of AK-SVD is nearly the same as PAU-DL. The convergence

behaviour of OS-DL and APrU-DL with OMP are shown in

Fig. 4, where the results of APrU-DL with FISTA are also

shown for comparison. With these results in mind, we deduce

the following observations:

• PAU-DL has a better successful recovery results com-

pared to both AK-SVD and K-SVD in average. This is

especially observable at s = 5 and s = 6. The average

execution time of PAU-DL is also much smaller than that

of K-SVD.

• APrU-DL has the best results in average. Also, the results

of APrU-DL with FISTA are better than those with OMP.

However, the average runtime of FISTA is higher than

that of OMP4.

• OS-DL outperforms PAU-DL and K-SVD, both in con-

vergence rate and the final success rate (this is especially

observable at low SNRs and s = 5 and s = 6). This

shows the promising performance of one-stage dictionary

learning.

• The convergence rate of PAU-DL is better than K-SVD

and AK-SVD, while that of APrU-DL is the best. The

convergence behaviour of APrU-DL and OS-DL is ap-

proximately the same for different values of s, while those

of the other three algorithms deteriorate by increasing s.

B. AR(1) signal

In this experiment, we consider an AR(1) signal (according

to [32]), which is generated as v(k) = 0.95v(k − 1) + e(k),
where e(k) is a zero-mean and unit-variance Gaussian noise.

A collection of L = 2000 training signals were made by

chopping this signal into vectors of length n = 20. Number

of atoms was set to m = 40. As in [32], we computed

SNR as SNR = 10 log ∥Y∥2F⧸∥Y −DX∥2F . For the sparse

approximation stage of APrU-DL we have used OMP to have

an exact control on the cardinality of the representations. A

number of s = 5 atoms were used to approximate each

4Note that the average execution times for all algorithms have been
calculated for 100 alternations. As can be seen from Fig. 3, APrU-DL has
converged in about 20 alternations. So, considering the convergence times,
APrU-DL is fast enough compared to K-SVD.

TABLE I
PERCENTAGE OF SUCCESSFUL RECOVERY.

SNR (dB) Algorithms s = 3 s = 4 s = 5 s = 6

10

K-SVD 88.06 87.20 17.80 0
PAU-DL 88.80 88.67 45.60 0
OS-DL 92.27 91.47 90.80 74.67

APrU-DL 94.13 96 90.67 77.87

20

K-SVD 93.61 94.13 88.80 9.34
PAU-DL 94.13 94.20 92.20 58.13
OS-DL 93.60 92.53 93.87 91.83

APrU-DL 95.47 96.53 96.93 96.67

30

K-SVD 94.33 95.87 90.73 18.24
PAU-DL 94.60 96.13 95.60 82.80
OS-DL 93.87 93.20 91.84 91.86

APrU-DL 96.53 96.80 97.87 97.07

100

K-SVD 95.20 94.70 94.80 17.87
PAU-DL 95.40 94.73 95.60 77.47
OS-DL 93.20 94.40 95.07 93.20

APrU-DL 95.33 96.93 97.07 97.47

3 4 5 6
0

5

10

15

20

25

30

Number of non−zero coefficients (s)

A
v
e

ra
g

e
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

K−SVD

PAU−DL

OS−DL

APrU−DL with OMP

APrU−DL with FISTA

Fig. 2. Average execution times (in second) versus number of nonzero
coefficients.

training vector in the sparse approximation stage of PAU-

DL, AK-SVD, K-SVD, and APrU-DL. In order to compute

SNR in OS-DL, after each update of the dictionary the sparse

approximations of the signals have been computed using OMP.

For both APrU-DL and OS-DL a value of λ = 0.05 found to

yield promising results. For all algorithms 100 alternations

were done.

SNR versus alternation number (averaged over 50 trials)

is plotted in Fig. 5. Again, the result of AK-SVD was very

similar to that of K-SVD, and thus has been omitted from the

figure. This figure shows that the SNR is improved during the

learning process for all algorithms. The final values of SNR

as well as the average execution times of the algorithms are

reported in Table II. Based on these results, we deduce the

following observations:

• PAU-DL has reached a higher SNR value compared to

K-SVD, while its average execution time is much less

than that of K-SVD.

• OS-DL outperforms PAU-DL. This observation again

indicates the promising performance of one-stage dictio-

nary learning algorithms.

• APrU-DL has the best results, in the sense of the final

value of SNR and the rate of convergence.

As a conclusion, taking into account the performance and the

execution time, PAU-DL seems to be the best compromise.

8

0

20

40

60

80

100

S
u

c
c
e

s
s
fu

l
re

c
o

v
e

ry
 (

%
)

s=3

0

20

40

60

80

100
s=4

0 20 40 60 80 100
0

20

40

60

80

100

Alternation number (k)

S
u

c
c
e

s
s
fu

l
re

c
o

v
e

ry
 (

%
) s=5

0 20 40 60 80 100
0

20

40

60

80

100

Alternation number (k)

s=6

K−SVD

AK−SVD

PAU−DL

APrU−DL

K−SVD

AK−SVD

PAU−DL

APrU−DL

Fig. 3. Convergence behaviour of K-SVD, AK-SVD, PAU-DL, and APrU-DL
(with FISTA) in reconstruction of a known dictionary. Each figure corresponds
to a certain amount of sparsity (number of nonzero coefficients). Noise level
is SNR = 30 dB.

0

20

40

60

80

100

S
u

c
c
e

s
s
fu

l
re

c
o

v
e

ry
 (

%
) s=3

0

20

40

60

80

100
s=4

0 20 40 60 80 100
0

20

40

60

80

100

Alternation number (k)

S
u

c
c
e

s
s
fu

l
re

c
o

v
e

ry
 (

%
) s=5

0 20 40 60 80 100
0

20

40

60

80

100

Alternation number (k)

s=6

with OMP

with FISTA

OS−DL

with OMP

with FISTA

OS−DL

with OMP

with FISTA

OS−DL

with OMP

with FISTA

OS−DL

Fig. 4. Convergence behaviour of OS-DL and APrU-DL with (Batch) OMP
and (Batch) FISTA as the sparse approximation stage. The setup is the same
as in Fig. 3.

V. CONCLUSION

In this paper, we addressed the dictionary update stage in a

general dictionary learning problem. We especially considered

the atom-by-atom dictionary update procedure. We introduced

the idea of parallel atom-updating and based on this, we

derived PAU-DL, an efficient alternative for the well-known

K-SVD algorithm which provides atom sequential updating,

i.e., fully updating of one atom before moving to the next

one. Conversely, the main idea of parallel atom-updating is

to update the atoms in parallel. In this way, before moving to

update each atom, previous atoms have been partially updated.

So, we have more reliable updates of the previous atoms to

be used for updating the next atom. We then proposed a

novel dictionary learning algorithm which we called OS-DL.

This algorithm sequentially updates each atom along with the

whole entries of its corresponding row vector in the coefficient

matrix. OS-DL differs from the existing dictionary learning

algorithms in the sense that it does not perform the first stage,

i.e., the sparse approximation stage. This is because, here, we

constrain the sparsity criterion on the rows of the coefficient

matrix, not on its columns. To have a better control on the

sparsity level of the representations, we then proposed the

two-stage counterpart of OS-DL, which is obtained by adding

the sparse approximation stage to OS-DL. In this way, as it

was seen in Section IV, the convergence rate of OS-DL is

increased. Our simulations on recovery of a known dictionary,

as well as designing a sparsifying dictionary for an AR(1)

0 10 20 30 40 50 60 70 80 90 100
14.5

15

15.5

16

16.5

17

17.5

18

Alternation number (k)

S
N

R
 (

d
B

)

K−SVD

PAU−DL

OS−DL

APrU−DL

Fig. 5. SNR in dB is plotted versus the alternation number during the learning
process.

TABLE II
FINAL SNR IN DB AND AVERAGE EXECUTION TIMES (AET) IN SECONDS,

FOR VARIOUS ALGORITHMS.

Algorithm K-SVD PAU-DL OS-DL APrU-DL

SNR(dB) 17.03 17.16 17.59 17.67

AET(s) 14.57 2.53 12.93 21

signal indicate that our algorithms outperform K-SVD.

REFERENCES

[1] M. Elad, Sparse and Redundant Representations, Springer, 2010.

[2] S. Mallat and Z. Zhang, “Matching pursuits with time-frequency
dictionaries,” IEEE Trans. on Signal Proc., vol. 41, no. 12, pp. 3397–
3415, 1993.

[3] S. S. Chen, D. D. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Rev., vol. 43, pp. 129–159, 2001.

[4] D. L. Donoho, M. Elad, and V. Temlyakov, “Stable recovery of sparse
overcomplete representations in the presence of noise,” IEEE Trans.

Info. Theory, vol. 52, no. 1, pp. 6–18, 2006.

[5] M. Babaie-Zadeh and C. Jutten, “On the stable recovery of the sparsest
overcomplete representations in presence of noise,” IEEE Transactions

on Signal Processing, vol. 58, no. 10, pp. 5396–5400, 2010.

[6] J. A. Tropp and S. J. Wright, “Computational methods for sparse
solution of linear inverse problems,” Proceedings of the IEEE, vol.
98, no. 6, pp. 948–958, 2010.

[7] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching
pursuit: recursive function approximation with applications to wavelet
decomposition,” in In Proc. Asilomar Conf. Signal Syst. Comput., 1993.

[8] D. L. Donoho, Y. Tsaig, I. Drori, and J. L. Starck, “Sparse solution of
underdetermined systems of linear equations by stagewise orthogonal
matching pursuit,” IEEE Trans. on Information Theory, vol. 58, no. 2,
pp. 1094–1121, 2012.

[9] D. Needell and J. A. Tropp, “Cosamp: Iterative signal recovery from
in-complete and inaccurate samples,” Appl. Comput. Harmon. Anal.,
vol. 26, no. 3, pp. 301–321, 2009.

[10] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing
signal reconstruction,” IEEE Trans. on Information Theory, vol. 55, no.
5, pp. 2230–2249, 2009.

[11] I. Daubechies, M. Defrise, and C. De-Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,” Comm.

Pure Appl. Math., vol. 57, no. 11, pp. 1413–1457, 2004.

[12] M. Elad, B. Matalon, J. Shtok, and M. Zibulevsky, “A wide-angle view
at iterated shrinkage algorithms,” in in Proc. SPIE (Wavelet XII), 2007,
pp. 26–29.

[13] S. Becker, J. Bobin, and E. J. Candès, “NESTA: a fast and accurate first-
order method for sparse recovery,” SIAM Journal on Imaging Sciences,
vol. 4, no. 1, pp. 1–39, 2011.

[14] T. Blumensath, “Accelerated iterative hard threshoding,” Signal

Processing, vol. 92, no. 3, pp. 752–756, 2012.

[15] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for
compressive sensing,” in IEEE ICASSP, 2008.

[16] H. Mohimani, M. Babaie-Zadeh, and Ch. Jutten, “A fast approach for
overcomplete sparse decomposition based on smoothed ℓ0 norm,” IEEE

Trans. on Signal Processing, vol. 57, pp. 289–301, 2009.

9

[17] S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior
point method for large-scale ℓ1-regularized least squares,” IEEE Journal

of Selected Topics in Signal Processing, vol. 1, no. 4, pp. 606–617, 2007.
[18] M. Elad, M. A. T. Figueiredo, and Y. Ma, “On the role of sparse

and redundant representations in image processing,” Proceedings of the

IEEE, vol. 98, no. 6, pp. 972–982, 2010.
[19] P. Bofill and M. Zibulevsky, “Underdetermined blind source separation

using sparse representations,” Signal Processing, vol. 81, pp. 2353–2362,
2001.

[20] D. L. Donoho, “Compressed sensing,” IEEE Trans. on Information

Theory, vol. 52, no. 4, pp. 1289–1306, April 2006.
[21] R. G. Baraniuk, “Compressive sensing,” IEEE Signal Proc. Magazine,

vol. 24, no. 4, pp. 118–121, 2007.
[22] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE

Transactions on Information Theory, vol. 51, no. 12, pp. 4203–4215,
2005.

[23] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J.

Royal. Statist. Soc B., vol. 58, no. 1, pp. 267–288, 1996.
[24] M. Elad and M. Aharon, “Image denoising via sparse and redundant

representations over learned dictionaries,” IEEE Trans. on Image

Processing, vol. 15, no. 12, pp. 3736 – 3745, 2006.
[25] O. Bryt and M. Elad, “Compression of facial images using the K-SVD

algorithm,” Journal of Visual Communication and Image Representation,
vol. 19, no. 4, pp. 270–283, 2008.

[26] J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learning,” IEEE

Trans. on Pattern Analysis and Machine Intelligence, vol. 34, no. 4, pp.
791–804, 2012.

[27] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE

Trans. on Signal Processing, vol. 54, no. 11, pp. 4311–4322, 2006.
[28] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression,

Springer, 1992.
[29] K. Engan, S. O. Aase, and J. Hakon Husoy, “Method of optimal

directions for frame design,” in Proceedings of IEEE ICASSP, 1999,
vol. 5.

[30] M. Yaghoobi, T. Blumensath, and M. E. Davies, “Dictionary learning
for sparse approximations with the majorization method,” IEEE Trans.

on Signal Processing, vol. 57, no. 6, pp. 2178 – 2191, 2009.
[31] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix

factorization and sparse coding,” Journal of Machine Learning Research,
vol. 11, pp. 19–60, 2010.

[32] K. Skretting and K. Engan, “Recursive least squares dictionary learning
algorithm,” IEEE Trans. on Signal Processing, vol. 58, pp. 2121 – 2130,
2010.

[33] K. Labusch, E. Barth, and T. Martinetz, “Robust and fast learning of
sparse codes with stochastic gradient descent,” IEEE Journal of Selected

Topics in Signal Processing, vol. 5, no. 5, pp. 1048–1060, 2011.
[34] J. MacQueen, “Some methods for classification and analysis of

multivariate observations,” in Proc. 5th Berkeley Symp. Math. Statist.

Probabil., 1967, vol. I, pp. 281–296.
[35] R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient implementation of

the K-SVD algorithm using batch orthogonal matching pursuit,” Tech.
Rep., Technion University, 2008.

[36] C. D. Sigg, T. Dikk, and J. M. Buhmann, “Learning dictionaries with
bounded self-coherence,” IEEE Signal Processing Letters, vol. 19, no.
12, pp. 861–864, 2012.

[37] W. Dai, T. Xu, and W. Wang, “Simultaneous codeword optimization
(SimCO) for dictionary update and learning,” IEEE Trans. on Signal

Proc., vol. 60, no. 12, pp. 6340–6353, 2012.
[38] M. Elad, “Why simple shrinkage is still relevant for redundant repre-

sentations?,” IEEE Trans. on Information Theory,, vol. 52, no. 12, pp.
5559–5569, 2006.

[39] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, “Pathwise
coordinate optimization,” Annals of Applied Statistics, vol. 1, no. 2,
pp. 302–332, 2007.

[40] A. Beck and M. Teboulle, “Fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM Journal on Imaging Sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[41] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient
projection for sparse reconstruction: Application to compressed sensing
and other inverse problems,” IEEE Journal of Selected Topics in Signal

Processing, vol. 1, no. 4, pp. 586–597, 2007.

Mostafa Sadeghi received the B.S. degree in electri-
cal engineering from Ferdowsi University of Mash-
had, Mashhad, Iran in 2010, and the M.S degree
in electrical engineering from Sharif University of
Technology, Tehran, Iran, in 2012. He is now work-
ing toward his Ph.D. degree in the electrical engi-
neering department, Sharif University of Technol-
ogy.

His main research areas are Sparse Signal Pro-
cessing, Dictionary Learning for Sparse Represen-
tation, Statistical Signal Processing, and Machine

Learning for Signal Processing.

Massoud Babaie-Zadeh (M04-SM09) received the
B.S. degree in electrical engineering from Isfahan
University of Technology, Isfahan, Iran in 1994,
and the M.S degree in electrical engineering from
Sharif University of Technology, Tehran, Iran, in
1996, and the Ph.D. degree in Signal Processing
from Institute National Polytechnique of Grenoble
(INPG), Grenoble, France, in 2002.

Since 2003, he has been a faculty member of
the Electrical Engineering Department of Sharif
University of Technology, Tehran, IRAN, firstly as

an assistant professor and since 2008 as an associate professor. His main
research areas are Blind Source Separation (BSS) and Independent Component
Analysis (ICA), Sparse Signal Processing, and Statistical Signal Processing.

Dr. Babaie-Zadeh received the best Ph.D. thesis award of INPG for his
Ph.D. dissertation.

Christian Jutten (AM92-M03-SM06-F08) received
Ph.D. and Doctor es Sciences degrees in signal
processing from Grenoble Institute of Technology
(GIT), France, in 1981 and 1987, respectively. From
1982, he was an Associate Professor at GIT), before
being Full Professor at University Joseph Fourier
of Grenoble, in 1989. For 30 years, his research
interests have been machine learning and source sep-
aration, including theory (separability, source separa-
tion in nonlinear mixtures, sparsity, multimodality)
and applications (brain and hyperspectral imaging,

chemical sensor array, speech). He is author or coauthor of more than 75
papers in international journals, 4 books, 24 keynote plenary talks, and 170
communications in international conferences.

He has been visiting professor at Swiss Federal Polytechnic Institute
(Lausanne, Switzerland, 1989), at Riken labs (Japan, 1996) and at Campinas
University (Brazil, 2010). He was director or deputy director of his lab
from 1993 to 2010, especially head of the signal processing department
(120 people) and deputy director of GIPSA-lab (300 people) from 2007 to
2010). He was a scientific advisor for signal and images processing at the
French Ministry of Research (19961998) and for the French National Research
Center (20032006). Since May 2012, he is deputy director at the Institute for
Information Sciences at French National Center of Research (CNRS) in charge
of signal and image processing.

Christian Jutten was organization or program chairs of many international
conferences, especially of the 1st International Conference on Blind Signal
Separation and Independent Component Analysis in 1999. He has been a
member of a few IEEE Technical Committees, and currently in SP Theory
and Methods of the IEEE Signal Processing society. He received best paper
awards of EURASIP (1992) and of IEEE GRSS (2012), and Medal Blondel
(1997) from the French Electrical Engineering society for his contributions
in source separation and independent component analysis. He is IEEE fellow
(2008) and EURASIP fellow (2013). He is a Senior Member of the Institut
Universitaire de France since 2008, with renewal in 2013. He is the recipient
of a 2012 ERC Advanced Grant for a project on challenges in extraction and
separation of sources (CHESS).

