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1. Full set of equations associated with models 1-3

1.1. Rheological equations

We present here the full set of equations associated with models 1-3, where the

cell-production rate kp in the epithelium is imposed as a function of distance from

the epithelium-stroma interface. For the epithelium, the rheology is that of an

incompressible viscous fluid with shear viscosity η‡ and the source term kp, which

encompasses cellular division and apoptosis:

∂αvα = kp

σ′αβ = η(∂αvβ + ∂βvα)

∂ασαβ = 0. (1)

Here, vα is the cell-velocity field and σαβ the total stress tensor, which has been split

into σ′αβ defined above and a remaining diagonal part −peδαβ, where pe is the tissue

pressure. The third equation is the force-balance condition.

In models 1-3, the rate of cellular production takes the form of a single exponential

with a characteristic decay length l:

kp(z) = k exp
(
−z − L

l

)
− k0. (2)

The steady-state thickness of the epithelium H is then related to the constant k0

introduced above by the relation:

k0 = k
l

H

[
1− exp

(
−H
l

)]
, (3)

which insures that cell velocity vanishes at the apical surface of the epithelium, or

equivalently that the total number of cells is globally conserved.

In the case of model 1, the stroma is described as an incompressible elastic solid:

∂αuα = 0

σ′sαβ = µ(∂αuβ + ∂βuα)

∂ασ
s
αβ = 0. (4)

Here, µ is the shear modulus of the elastic material and uα its displacement field with

respect to its resting configuration. The total stress tensor σs
αβ has been similarly split

into two parts, σ′sαβ and −psδαβ, with ps the stroma pressure.

‡ For simplicity, we assume a ratio of 2
3 between bulk and shear viscosities.
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In the case of model 2, the stroma is described as an incompressible viscous fluid:

∂αv
s
α = 0

σ′sαβ = ηs(∂αv
s
β + ∂βv

s
α)

∂ασ
s
αβ = 0, (5)

where ηs is the stroma viscosity and where the decomposition of the stress tensor

σs
αβ = σ′sαβ − psδαβ is similar as before.

For model 3, the constitutive equation is that of a material that behaves elastically

at short times with a shear modulus µ and flows at long times with a shear viscosity

ηs. These two quantities define a relaxation time τ = ηs/µ that marks the transition

between the two regimes. To linear order, we get the following Maxwell model:

(τ∂t + 1)σ′sαβ = ηs(∂αv
s
β + ∂βv

s
α), (6)

to which must be added the condition for incompressibility ∂αv
s
α = 0 and the force-

balance equation ∂ασ
s
αβ = 0 (with σs

αβ = σ′sαβ − psδαβ). Note that, since we investigate

our model only to linear order in perturbations around a state where the velocity field

vanishes uniformly in the stroma, the current linear Maxwell model suffices.

1.2. Boundary conditions

The boundary conditions at the apical surface of the epithelium read, to linear order:

σnt = 0

σnn = γaδH
′′

vz = ˙δH. (7)

Here and throughout the paper, the indices ‘n’ and ‘t’ denote spatial coordinates in

the directions respectively normal and tangential to the interface under consideration.

The normal coordinate is oriented positively from the ‘lower’ compartment toward the

‘upper’ compartment according to the conventions of figure 1 of the main text (here

from the epithelium toward the lumen). We also make use of the following notations

for the partial derivatives of any field φ(x, t): φ′′ = ∂2φ/∂x2 and φ̇ = ∂φ/∂t. At the

epithelium-stroma interface, we have:

σs
nn = σnn + γiδh

′′

σnt = ξ(vt − u̇t)

σs
nt = ξ(vt − u̇t)

u̇n = vn

uz = δh (8)

for the elastic stroma, and

σs
nn = σnn + γi δh

′′

σnt = ξ(vt − vs
t)
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σs
nt = ξ(vt − vs

t)

vs
n = vn

vs
z = ˙δh (9)

for either the viscous or the viscoelastic stroma. At the bottom of the stroma (z = 0),

the displacement vanishes, which reads:

ux = uy = 0 and uz = 0 (10)

for the elastic case, and

vs
x = vs

y = 0 and vs
z = 0 (11)

for the two other models.

1.3. Unperturbed solution

In the case of an unperturbed, flat configuration, the solution in the stroma is trivial,

with vanishing displacement and pressure fields. In the epithelium, the velocity and

pressure fields read:

v0
z = kl

[
1− exp

(
−z − L

l

)]
− k0(z − L)

p0
e = 2ηkp, (12)

where kp is given by equation (2). The components of the total stress tensor are zero

except for σ0
xx = σ0

yy = −p0
e = −2ηkp. Note that this form of the unperturbed solution

in the epithelium is independent of the stroma rheology.

1.4. Perturbed equations

Labelling all perturbed fields with a prefix ‘δ’, we obtain the linearized continuity

equation in the epithelium as ∂αδvα = kp|z−δh − kp|z ' −(∂kp/∂z)δh, since (z − δh) is

the new distance between the point of coordinate z in the epithelium and the perturbed

epithelium-stroma interface δh. This leads to:

∂αδvα =
k

l
exp

(
−z − L

l

)
δh. (13)

The other bulk equations in (1) as well as those describing the stroma retain their exact

same form as before, now in terms of the perturbed quantities.

To linear order in perturbations, the Fourier modes in the x and y directions

decouple, such that it is sufficient to study a deformation δh of the epithelium-

stroma interface translationally invariant in the y direction with the complex form

δh(x, t) = δh(q) exp(ωt + iqx). Consequently, all perturbed fields have the same form

and the dependence in the wave number q will be implicit in the equations given below.

Expressing the stress-tensor and velocity components in the boundary conditions (7) to
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(11) in the original reference frame with axes (x,z) leads to the following set of equations.

At the apical surface of the epithelium, we have:

η(∂xδvz + ∂zδvx) = − 2iqηkpδH

2η∂zδvz − δpe = − γaq
2δH

δvz = (∂t − kp)δH, (14)

where the different quantities are expressed at z = L+H, since further corrections due

to displacements of the interface are second order. Here, the cell-production rate at the

apical surface kp = kp|z=H+L = k exp (−H/l) − k0 appears because of the non-trivial,

unperturbed velocity field in the epithelium.

At the epithelium-stroma interface, the expression of the boundary conditions

depend on the stroma rheology. For the elastic stroma of model 1, we have:

2µ∂zδuz − δps = 2η∂zδvz − δpe − γiq
2δh

η(∂xδvz + ∂zδvx) + 2iqηkpδh = ξ(δvx − δu̇x)
µ(∂xδuz + ∂zδux) = ξ(δvx − δu̇x)
δu̇z = kpδh+ δvz

δuz = δh, (15)

where the different quantities are evaluated at z = L. Here again, the terms containing

the cell-production rate at the epithelium-stroma interface kp|z=L = k − k0 come from

the presence of the unperturbed solution in the epithelium. For the viscous stroma of

model 2, the conditions read:

2ηs∂zδv
s
z − δps = 2η∂zδvz − δpe − γiq

2δh

η(∂xδvz + ∂zδvx) + 2iqηkpδh = ξ(δvx − δvs
x)

ηs(∂xδv
s
z + ∂zδv

s
x) = ξ(δvx − δvs

x)

δvs
z = kpδh+ δvz

δvs
z = δḣ. (16)

Finally, for the viscoelastic stroma of model 3, we have:

2ηs∂zδv
s
z − (τ∂t + 1)δps = (τ∂t + 1)

[
2η∂zδvz − δpe − γiq

2δh
]

η(∂xδvz + ∂zδvx) + 2iqηkpδh = ξ(δvx − δvs
x)

ηs(∂xδv
s
z + ∂zδv

s
x) = ξ(τ∂t + 1)(δvx − δvs

x)

δvs
z = kpδh+ δvz

δvs
z = ˙δh. (17)

2. Results for model 1

We start by the presentation of the mode structure for model 1, where the stroma is

elastic.
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2.1. Asymptotic behaviour of the modes

We obtain three relaxation modes, of which we can analyze the asymptotic behaviours

in the limits of large and small wave numbers, respectively. More complete expressions

including higher-order terms can be found in section 5. In the limit of large wave

numbers q, the relaxation modes associated with the epithelium-stroma interface and

with the apical surface of the epithelium decouple, since their characteristic decay

lengths are of order q−1, which in this limit is much smaller than the epithelium thickness

H. To constant order in a systematic expansion in q−1, we get the following expressions:

ω1 ' −
γi

2η
q − µ

η
+ k − k0

ω2 ' −
γa

2η
q + ke−H/l − k0

ω3 ' − 2
µ

ξ
q − µ

η
. (18)

The two first modes correspond to a balance of surface-tension and cell-production

forces, to which in the first mode the elastic resistance of the stroma also contributes.

The third mode corresponds to a balance of tangential stress and surface friction at the

epithelium-stroma interface.

In the limit of small wave numbers, systematic expansions to leading order yield:

ω1 ' −
36µ

η

1

H3L3

1

q6

ω2 ' −
µ

4η

1

HL

1

q2

ω3 ' ke−H/l − k0. (19)

The divergence of the two first modes to minus infinity is due to the elastic resistance of

the stroma to uniform compressions. The third mode has a finite limit, which can

be derived by integrating the continuity equation at q = 0 over the height of the

epithelium to leading order in perturbations. This limit therefore comes purely from

mass-conservation in the epithelium and, as we shall see, reappears independently of

the stroma rheology.

2.2. Influence of the different parameters

A study of the influence of the main parameters on the stability of the system for

model 1 has been presented in [1] and is therefore only summarized here. The quantities

destabilizing the system when they are increased are the epithelial viscosity η, the cell-

division rate k, the thickness of the dividing region l at constant cell-production k,

and the thickness of the stroma L. This is due to the fact that the present instability

originates from viscous shear stresses in the epithelium due to the differential flow of

cells. This differential flow itself originates from non-uniform cell division along the

interface due to its perturbations. The driving force for the instability can therefore be

augmented either by increasing the epithelial viscosity at constant cell flow (increasing
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η), increasing the cellular flow at constant epithelial viscosity (increasing k), or by

increasing its extent (increasing l). The dependence in L is explained by the fact that

a thicker elastic stroma resists a given amplitude of displacements less for the same

elastic modulus µ. Stabilizing factors are the elastic shear modulus of the stroma µ, the

interfacial tension γi and the apical surface tension γa.

2.3. Oscillatory regimes

In some parameter regimes, the relaxation of the system can be oscillatory. This can be

seen from the crossing of the real parts of two of the relaxation modes and the associated

occurrence of non-zero imaginary parts, which corresponds to an oscillatory response of

the system in this range of wave numbers. This is the case for example in the model

studied here when either the rate of cell division k or the epithelium-stroma friction

coefficient ξ is increased, as illustrated in figure 1. Such oscillatory behaviours however
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Figure 1. Relaxation modes ω as a function of the wave number q for model 1.
(A) Parameter values are as follows: η = 10 MPa·s, µ = 100 Pa, γi = 10 mN·m−1,
γa = 1 mN·m−1 (all estimated from [2]), k = 8.6 divisions per day (estimated from [3]),
ξ = 10 GPa·s·m−1 (estimated from [4]), H = L = 300 µm and l = 200 µm (estimated
from [5]). The three relaxation modes are real. Note that only one of these modes
shows a region where it is positive, corresponding to an unstable system. (B) The
same curves are displayed while zooming onto a smaller region of wave-number values.
(C) The rate of cell division k is changed to 16 divisions per day, and (D) the value of
the epithelium-stroma friction coefficient ξ instead is changed to 100 GPa·s·m−1. Real
parts are shown in the upper sub-panels (indices 1) and imaginary parts in the lower
sub-panels (indices 2).

never occur with an associated positive real value of the complex-conjugated modes.

We therefore expect these predicted oscillations to not be observable in actual biological

systems. Such oscillatory relaxations however could in principle be observed in in-vitro

systems prepared away from their steady-state configuration.
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3. Results for model 2

We now present the mode structure for model 2, where the stroma is viscous.

3.1. Asymptotic behaviours of the modes

We now have two relaxation modes. In the limit of large wave numbers and to constant

order in a systematic development in q−1, they read:

ω1 ' −
γi

2(η + ηs)
q +

η

η + ηs

(k − k0),

ω2 ' −
γa

2η
q + ke−H/l − k0. (20)

The second expression is identical to the one obtained previously for model 1, since

it corresponds to the relaxation mode of the apical surface, which decouples from the

stroma dynamics in this limit. In the long-wavelength limit, we get, to leading order:

ω1 ' ke−H/l − k0

ω2 ' −
L2 [3Hγa + 2L(γa + γi)]

6ηs

q4. (21)

The first expression here was also found in the case of an elastic stroma, since it

corresponds to pure mass conservation in the epithelium and is therefore independent of

the stroma rheology, as already commented. The second mode goes to zero by negative

values as the wave number tends to zero. Therefore, the system is always stable for

sufficiently small wave numbers, but in this case the relaxation time diverges in the

limit of infinitely long wavelengths, contrary to what happens for an elastic stroma. This

stems from the fact that the relaxation here is associated with lubrication-like viscous

flows over large distances in the tangential direction rather than elastic relaxations over

short distances in the normal direction. Expressions to next-to-leading order can be

found in section 5.

3.2. Mode structure and parameter dependences

The influence of the different parameters in this case are similar to the case of an elastic

stroma, and have been discussed in [1]. Here again, only one relaxation mode shows

a region where it becomes positive, corresponding to an unstable interface (figure 2A).

Here however, we rarely get crossing of the modes and associated oscillatory relaxations

as presented previously for an elastic stroma. Illustrations of the effect of an increased

cell-division rate as well as that of an increased friction at the epithelium-stroma

interface are shown in figures 2B and 2C. We can see that, contrary to the case of

an elastic stroma, the epithelium-stroma friction coefficient has little influence on the

mode structure, and that neither of these two parameter variations entrains a crossing

of the modes and the occurrence of oscillatory relaxations. However, for very specific

values of the parameters, oscillatory regimes do occur. We investigate in figure 3 an

oscillatory regime that takes place in a narrow window of parameter values.
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Figure 2. Relaxation modes ω as a function of the wave number q for model 2. (A)
The parameters are the same as in figure 1A, except for ηs = 10 kPa·s (instead of µ),
γi = 1 mN·m−1 and k = 0.86 divisions per day. (B) The rate of cell division k is
changed to 8.6 divisions per day. (C) The value of the friction coefficient ξ instead is
changed to 100 GPa·s·m−1. (D) The viscosity of the stroma ηs instead is changed to
20 MPa·s, which makes it twice as large as the epithelium viscosity η in this case.
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Figure 3. Relaxation modes ω as a function of the wave number q for model 2, starting
from a parameter set where oscillatory relaxations occur. (A) Parameters are the same
as in figure 2A, except for γi = 10 mN·m−1. The interface is stable, but the relaxation
is oscillatory in a finite interval of wave numbers, for which the real parts of the two
modes merge (imaginary parts not shown). (B) The friction coefficient ξ is changed
to 100 GPa·s·m−1, which has little influence. (C) The cell-division rate k instead is
changed to 4.3 divisions a day. The interface is now unstable at small wave numbers.
Crossing of the modes happens without oscillations at a wavelength of about 12 µm.
(D) Lowering instead k to 0.4 divisions per day prevents the modes from crossing. (E)
Increasing γi to 20 mN·m−1 has a similar effect, while (F) decreasing it to 2 mN·m−1

makes the interface unstable, pushes the crossing of the modes to short wavelengths
(here about 6 µm) and eliminates the oscillations, similarly to what happens in panel
(C).

In figures 2A and 2D, we investigate the dependence of the mode structure on

the stroma viscosity ηs, and find that the instability can occur when either of the two

fluids—the epithelium or the stroma—is the more viscous one. This is contrary to the

case of a standard viscous fingering instability, the Saffman-Taylor instability, which
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corresponds to the situation where two fluids of different viscosities are displaced in a

Hele-Shaw cell [6] by an external pressure gradient [7, 8]. In this latter case indeed,

the instability develops only when the fluid displacing the other one is that of lower

viscosity, otherwise the interface remains flat.

4. Complementary information associated with models 4-6

The bulk rheological equations for the epihtelium and stroma have been presented in

section 1 for models 1-3, and remain the same here for the respective models 4-6, where

only the cell-production rate kp entering equation (1) changes. The coupling of this

function to the local concentration of nutrients is presented in the main text, section 4.

We present here the unperturbed solution to this set of equations as well as the perturbed

equations to linear order around that steady state.

4.1. Unperturbed solution

Similarly to models 1-3, the solution in the flat, unperturbed configuration is

independent of the stroma rheology, but because of the coupling to nutrient diffusion,

this solution is different from that exposed previously. In the stroma, we get a linear

dependence of the nutrient concentration as a function of z:

ρ0
s = ρ̄0 −

√
cD

Ds

[
A0

n sinh (αH)−B0
n cosh (αH)

]
(z − l + d), (22)

where α =
√
c/D and where A0

n and B0
n are further given by:

A0
n =

ρ̄0

cosh(αH) + αdD
Ds

sinh(αH) + voff

αD

[
sinh(αH) + αdD

Ds
cosh(αH)

] ,
B0

n = − voff

αD
A0

n. (23)

In the epithelium, we get:

ρ0 = A0
n cosh (αz̄) +B0

n sinh (αz̄)

k0
p = κ1

[
A0

n cosh (αz̄) +B0
n sinh (αz̄)

]
− κ0

v0
z =

κ1

α

[
A0

n sinh (αz̄) +B0
n cosh (αz̄)

]
− κ0z̄ −B0

n

κ1

α
p0

e = 2ηk0
p, (24)

where z̄ = z− (L+H) and where the parameter κ0 is fixed by imposing that the tissue

velocity vanishes at the apical surface of the epithelium:

κ0 =
κ1

αH

[
A0

n sinh (αH)−B0
n cosh (αH) +B0

n

]
. (25)

The components of the total stress tensor are zero except for σ0
xx = σ0

yy = −p0
e = −2ηk0

p.
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4.2. Perturbed equations for model 4-6

In terms of the perturbed fields, the bulk rheological equations are left unchanged

in their form as compared with the equations associated with the total fields, since

the original bulk equations are linear. However, they couple to the nutrient reaction-

diffusion equations, which now read:

δkp = κ1δρ

∂tδρ = D∆δρ− cδρ
∂tδρs = Ds∆δρs. (26)

The mechanical boundary conditions at the apical surface of the epithelium take the

exact same expressions as those given in equation (14) in the context of models 1-3,

only that kp is now replaced by k0
p|z=L+H

= κ1A
0
n − κ0.

At the epithelium-stroma interface, we get the same conditions as in equations (15)

to (17) depending on the stroma rheology, kp being replaced by k0
p|z=L =

κ1 [A0
n cosh (αH)−B0

n sinh (αH)] − κ0. At the anchoring boundary of the stroma, the

displacement field vanishes. To this must be added the boundary conditions regarding

the perturbed nutrient concentrations in the epithelium and stroma, respectively δρ and

δρs. They read:

δρs|z=L−d = 0

ρ0
|z=L+δh + δρ|z=L = ρ0

s |z=L+δh + δρs|z=L

D
(
∂zρ

0
|z=L+δh + ∂zδρ|z=L

)
= Ds

(
∂zρ

0
s |z=L+δh + ∂zδρs|z=L

)
D
(
∂zρ

0
|z=L+H+δH + ∂zδρ|z=L+H

)
= − voff

(
ρ0
|z=L+H+δH + δρ|z=L+H

)
. (27)

Note that corrections of the interfaces’ locations by a distance δh or δH in the perturbed

fields lead to second-order terms and can therefore be ignored. These corrections however

should be taken into account in the steady-state solutions where they contribute to linear

order.

4.3. Fitting procedure for the comparison of models 1 and 4

In order to compare the results of models 1 and 4 in section 5 of the main text, we derive

from model 4 a cell-production rate as a function of z at steady state. We then fit the

cell-production rate of model 1 to that function to generate the associated relaxation

modes. We illustrate in figure 4 this fitting procedure, which gives a nearly perfect

agreement between the two rate functions.

5. Assymptotic behaviours of the relaxation modes

Here, we present more detailed asymptotic expressions of the different relaxation modes

of the different models, both in the short- and long-wavelength limits. We start with

the model where the cell-production function is predefined and given by equations (2)

and (3). We give the expressions whenever possible up to next-to-leading order.
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Figure 4. Superposition of the cell-production functions at steady state for model 4
(curve (1)) and model 1 (curve (2)), following the fitting procedure described in the
text. Parameters used to generate curve (1) are identical to those of figure 3A of the
main text. The fitting parameters associated with curve (2) take the values k = 2
division per day and l = 44 µm.

5.1. Elastic stroma

With an elastic stroma (model 1), we have three relaxation modes, which are given in

the short-wavelength limit by:

ωel
1 = − γi

2η
q − µ

η
+ k − k0 +O

(
1

q

)

ωel
2 = − γa

2η
q + ke−H/l − k0 +O

(
1

q

)

ωel
3 = − 2

µ

ξ
q − µ

η
+O

(
1

q

)
, (28)

and in the long-wavelength limit by:

ωel
1 = − 36µ

η

1

H3L3

1

q6
− 18µ

5η

2(H − L)2 −HL
H3L3

1

q4
+O

(
1

q2

)

ωel
2 = − µ

4η

1

HL

1

q2

−
(
ke−H/l − k0

2
+
µ

η

10(H2 + L2) + 3HL

24HL
+

µ

Lξ

)
+O

(
q2
)

ωel
3 = ke−H/l − k0

− (ke−H/l − k0)

(
2ke−H/l(H + l)Lη

µ
+

2Hη

ξ
− 2lLηk

µ
+H2

)
q2

+O
(
q4
)
.

(29)
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5.2. Viscous stroma

With a viscous stroma (model 2), we have two relaxation modes, which are given in the

short-wavelength limit by:

ωv
1 = − γi

2(η + ηs)
q +

η

η + ηs

(k − k0) +O

(
1

q

)

ωv
2 = − γa

2η
q + ke−H/l − k0 +O

(
1

q

)
, (30)

and in the long-wavelength limit by:

ωv
1 = ke−H/l − k0 − (ke−H/l − k0)

(
1 +

2η

ξH
+

2ηL

ηsH

)
H2 q2 +O

(
q4
)

ωv
2 = − L2 [3Hγa + 2L(γa + γi)]

6ηs

q4 + ωv,6
2 q6 +O

(
q8
)
. (31)

Here, ωv,6
2 is a very long expression that is not particularly enlightening. In the case

where γa = 0, it reads:

ωv,6
2 = − L2

2ηs

{
ηk

9

[
l(H2 − 6l2)(3H + 2L)e−H/l + 12Ll3 + 6H3l

+2H2l(−9l + 2L) + 6Hl2(3l − 2L)
]

+
L2γi

5ηs

(6Lηs + 5Hη)

}
.

(32)

5.3. Viscoelastic stroma

With a viscoelastic stroma (model 3), we have four relaxation modes, are given in the

short-wavelength limit by:

ωve
1 = − γi

2η
q − µ

η
+ k − k0 +O

(
1

q

)

ωve
2 = − γa

2η
q + ke−H/l − k0 +O

(
1

q

)

ωve
3 = − 2

µ

ξ
q − (η + ηs)µ

ηηs

+O

(
1

q

)

ωve
4 = − µ

ηs

+
2µ2

γiηs

1

q
+O

(
1

q2

)
, (33)

and in the long-wavelength limit by:

ωve
1 = − 36µ

η

1

H3L3

1

q6
− 18µ

5η

2(H − L)2 −HL
H3L3

1

q4
+O

(
1

q2

)

ωve
2 = − µ

4η

1

HL

1

q2

−
(
ke−H/l − k0

2
+
µ

η

10(H2 + L2) + 3HL

24HL
+

µ

Lξ
+
µ

ηs

)
+O

(
q2
)

ωve
3 = ke−H/l − k0
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− (ke−H/l − k0)

(
2(ke−H/l − k0)

η

µ

L

H
+

2η

ξH
+

2ηL

ηsH
+ 1

)
H2 q2

+O
(
q4
)

ωve
4 = − L2 [3Hγa + 2L(γa + γi)]

6ηs

q4 + ωve,6
4 q6 +O

(
q8
)
. (34)

Here, ωve,6
4 has the exact same expression as ωv,6

2 discussed above in the case of a viscous

stroma. In particular, when γa = 0, it has the expression given by equation (32).

5.4. Coupling to nutrient diffusion

When coupling to nutrient diffusion is included, the asymptotic expressions to next-

to-leading order are very long. Here, we therefore only summarize the expressions

to leading order. For all three choices of the stroma rheology, the expressions of the

relaxation modes in the short-wavelength limit are identical to those presented above

respectively for models 1-3. This is because these expressions are not dependent on

cell division to this order, since the relaxation toward the flat state in this limit is fast

and therefore controlled by relaxation mechanics only. For one of the four modes of the

viscoelastic model, the limit corresponds to the inverse viscoelastic relaxation time of

the stroma and has therefore also the same expression here. This is also the case to

leading order for the expressions in the long-wavelength limit whenever the relaxation

rate diverges when q goes to zero, for similar reasons. So, the expressions are changed

in this limit only for one relaxation mode when the stroma is elastic, the two relaxation

modes when it is viscous, and two of the four relaxation modes when it is viscoelastic.

The full expressions are very long, and we give here only one example, that of the mode

proportional to q4 for both the viscous and viscoelastic rheologies. To leading order,

and in the simplified case where voff = 0, this mode reads:

ω
v/ve
2 = − L2

6ηs

{
(3Hγa + 2L(γa + γi))

− (3H + 2L) [γaA+ 16Hκ1ηρ̄0B]
}
q4 +O

(
q6
)
, (35)

with A and B dimensionless expressions given by:

A =
sinh2 (αH)

−Ds

D
+ Ds

DαH
cosh (αH) sinh (αH) + d

H
sinh2 (αH)

B =
cosh (αH/2) sinh3 (αH/2) [cosh (αH)− sinh (αH)/(αH)]

αd [cosh (2αH)− 1] + Ds

D
[sinh (2αH)− 2αH]

× 1

{cosh (αH) + α1d sinh (αH)}
. (36)
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