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Abstract. Interfaces between stratified epithelia and their supporting stromas
commonly exhibit irregular shapes. Undulations are particularly pronounced
in dysplastic tissues and typically evolve into long, finger-like protrusions in
carcinomas. In previous work (Basan et al 2011 Phys. Rev. Lett. 106 158101),
we demonstrated that an instability arising from viscous shear stresses caused
by the constant flow due to cell turnover in the epithelium could drive this
phenomenon. While interfacial tension between the two tissues as well as
mechanical resistance of the stroma tend to maintain a flat interface, an instability
occurs for sufficiently large viscosity, cell-division rate and thickness of the
dividing region in the epithelium. Here, extensions of this work are presented,
where cell division in the epithelium is coupled to the local concentration
of nutrients or growth factors diffusing from the stroma. This enhances the
instability by a mechanism similar to that of the Mullins–Sekerka instability
in single-diffusion processes of crystal growth. We furthermore present the
instability for the generalized case of a viscoelastic stroma.
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1. Introduction

Most human cancers are carcinomas, tumours that originate in epithelial tissues [1]. From there,
they may invade through the basement membrane into the supporting connective tissue—the
stroma—and eventually lead to the formation of metastases [2, 3]. The process of invasion
and the modes of motility associated with it are a subject of intense study. Depending on
cancer type, cells may break away from the primary tumour and migrate to the blood vessels
as single cells, collectively as detached clusters or as multicellular, three-dimensional invasive
strands [4, 5]. Undoubtedly, the acquisition of mesenchymal traits by the invasive cancer cells,
together with cell motility and the expression of proteases play central roles in many of these
cases and particularly in malignant tumours [6–9]. However, undulations and protrusions of
the epithelium into the stroma are commonly found in benign tumours and even in healthy
epithelia, where the basement membrane separating the two tissues remains intact. As the
tissue progresses to higher grades of malignancy, the number of dividing layers within the
epithelium increases and such protrusions typically grow in size [1, 10]. This is the case for
example in cervical intraepithelial neoplasia [10, 11] and in the epithelial dysplasia of the
oral mucosa [12, 13]. In this work, we investigate a potential mechanism underlying these
commonly observed, yet striking morphological features of stratified epithelia and carcinomas,
which relies on proliferation-induced mechanical stresses without invoking proper cell motility.
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The mechanics of this process is of particular interest, considering that these protrusions arise
in epithelia whose apical surfaces are free of stress, such that it is non-trivial how an increased
proliferation rate alone like that observed in neoplastic tissues can lead to invasive protrusions
into the stroma.

In previous work [14], we have demonstrated the existence of a mechanical instability
based entirely on the flow caused by cell renewal in the epithelium in combination with its
viscosity due to cell–cell adhesion. We showed that when the epithelium–stroma interface is
displaced from an originally flat configuration, the excess of cell division above a nascent
protrusion creates a differential flow of cells, and the resulting viscous shear stress drives the
protrusion further. A finite-wavelength instability develops from the combination of surface-
stabilizing factors such as interfacial tension and mechanical resistance of the stroma on the one
hand, and destabilizing factors enhancing cell-division-driven flows and viscous shear stresses
on the other hand. In our previous work, we studied the two limits of a purely elastic or
purely viscous rheology of the stroma. This paper serves as a more detailed presentation of
this instability as well as proposes two important extensions of our earlier work. Firstly, we
study the instability in the general case of a viscoelastic stroma and investigate the transition
between the two regimes presented previously, which we recover as limits. Secondly, and most
importantly, we include a dependence of the cell-division rate in the epithelium on the local
concentration of a substance necessary for cell division—representing nutrients, growth factors
or oxygen—which diffuses through the epithelium from the stroma where it is delivered by
blood vessels [15]. Compared with our previous study where the rate of cell renewal in the
epithelium was pre-defined as a function of distance from the stroma, this coupling leads to a
significant enhancement of the instability by a diffusion-limitation mechanism, which is similar
to mechanisms leading to instabilities in other contexts [16–19]. We comment further in the
discussion on the comparison with classical instabilities known from non-equilibrium physics
as well as on other dynamical instabilities observed in living systems such as bacterial colonies.

In tissues, mechanical instabilities may play a role in the morphogenesis of certain shapes
and patterns exhibited by growing cell populations. For example, differential growth has been
proposed as a mechanism underlying the large-scale looping morphology of the gut [20], and a
buckling instability of a monolayered epithelium has been suggested for the formation of villi
and crypts in the colon [21, 22]. In the case of multilayered epithelia, a buckling instability of
the basal layer of the fetal epidermis has been proposed to be at the origin of the formation of
epidermal ridges [23]. The complex network of finger-like protrusions at the dermal–epidermal
junction of human skin has been proposed to result from incompatible growth of elastic tissue
layers [24]. Similar instabilities have been investigated in different geometries, such as that of
a growing elastic shell with differential growth [25–29] or that of a tube [30]. These studies
are part of the broader field related to the role of mechanics for growing tissues and of their
microenvironment [31–34].

In the specific case of tumour growth, pattern formation has been reported and studied
theoretically using reaction–diffusion descriptions of the supply of nutrients, oxygen or growth
factors [35]. Such a coupling affects tumour-growth dynamics [36], as well as tumour shape
and interfacial structure [37]. Fingering instabilities may develop depending on the degree
and spatial structure of vascularization [38]. Taking into account the mechanical properties
of the growing tissue and that of its microenvironment, residual stresses [39] and fingering
instabilities may or may not develop [40]. In particular, weakened cell–cell adhesions and
cell–matrix adhesion have been proposed to favour such instabilities [41, 42]. Instabilities may
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also result from a combination of pushing forces due to cell proliferation and pulling forces of
the tissue on either a substrate or the extra-cellular matrix in the case of a three-dimensional,
multi-cellular spheroid [43]. However, the coupling of growth dynamics to the diffusion field
of nutrients has never been investigated within the framework of the instability proposed here,
which differs from the aforementioned studies because it is based on a purely hydrodynamic
description of the tissue and because it arises in the specific geometry of an epithelium with a
free apical surface rather than that of a tumour spheroid or a two-dimensional tissue spreading
on a substrate. Because this additional diffusion-dependent mechanism can lead to an unstable
epithelium–stroma interface over a broader range of parameters than the instability reported
previously [14], we expect this mechanism to potentially play an important role in the generation
of undulated patterns as they occur in real epithelial tissues.

In this paper, we present six different versions of a linear stability analysis of the
epithelium–stroma interface for different rheologies of the stroma and cell-renewal functions in
the epithelium. In section 2, we start by presenting the common properties of the six models that
will be studied in the paper. The associated detailed equations can be found in the supplementary
information (available from stacks.iop.org/NJP/15/065011/mmedia). Models 1 and 2, where
the cell-production function in the epithelium is pre-defined and the stroma is either purely
elastic (model 1) or purely viscous (model 2), have already been presented in [14]. The results
associated with these models are therefore presented in the supplementary information including
some novel aspects as compared with our previous work [14]. In section 3, we generalize the two
previous cases to that of a viscoelastic rheology of the stroma (model 3), and compare the mode
structures associated with these three different models. Section 4 is devoted to the description of
the coupling of cell division in the epithelium to the local concentration of available nutrients,
which diffuse from the stroma and are consumed by the epithelial cells. In sections 5–7, we
present the resulting stability analysis successively in the case of an elastic (model 4), a viscous
(model 5) and a viscoelastic (model 6) stroma. Domains of validity, similarities and differences
between the various models are discussed throughout the presentation. We finally discuss the
similarities and differences between the results presented in this study and other instabilities
known from the literature.

2. Description of models 1–3

We start this section by presenting the geometry of the system, which underlies the six different
models presented in this paper. We then present the structure of models 1–3, where the
cell-production function in the epithelium is pre-imposed as a function of distance from the
epithelium–stroma interface. The structure of the models is just described here, and the full
set of equations can be found in the supplementary information. The results associated with
models 1 and 2, already present for the main part in our previous report [14], can be found in
the supplementary information. We present here in more detail the results obtained with model
3, which constitutes a first extension of our previous work.

2.1. Description of the geometry

We consider an epithelium of thickness H adjacent to a stroma of thickness L , infinitely
extended in directions x and y. In the z-axis, we assume a rigid wall at z = 0 to which the
stroma is anchored, followed by the stroma, then the epithelium starting at z = L , and finally
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Figure 1. Schematic representation of the geometry considered in this study.
An epithelium of thickness H is adjacent to a stroma of thickness L , itself
anchored to a static, rigid structure at its opposite side. Perturbations of the
epithelium–stroma interface and of the apical surface of the epithelium have
infinitesimally small amplitudes, labelled δh and δH , respectively.

the apical surface of the epithelium directly adjacent to a lumen at z = L + H (figure 1). These
coordinates correspond to the flat configuration and are strictly valid only in the unperturbed,
steady state. We study the stability of these interfaces under a given arbitrary but infinitesimally
small perturbation. In this case, the system of equations can be linearized, and it is sufficient
to study a deformation δh of the epithelium–stroma interface translationally invariant in the
y-direction with the complex form δh(x, t) = δh0 exp(ωt + iqx). Similarly, a perturbation of
the apical surface of the epithelium can be written as δH(x, t) = δH0 exp(ωt + iqx). The
stability of the system is then given by the dispersion relations ω(q) for each of the relaxation
modes.

2.2. Description of the models

In general, for length scales and timescales large compared with cell size and characteristic
times of individual cellular processes, biological tissues can be described as continuous media
with a potentially complex rheology, intermediate between those of liquids and solids [44–47].
In our previous work [14], as in other theoretical studies of tissue growth [48, 49], a viscous
rheology was chosen to describe the epithelium, based on the assumption that cell–cell junction
rearrangements lead to the relaxation of static stresses on long timescales [50, 51] and to
effective cell flows [52]. This choice is motivated by the observation that relaxation times
are of the order of tens of minutes to several hours for embryonic tissues in compression-
plate experiments [44, 46] as well as in pipette-aspiration experiments [53]. Such results have
also been proven accurate in the specific case of carcinomas, which show an almost complete
stress relaxation under imposed sequential strains [54]. In addition, this choice is supported
by the experimentally observed presence of surface tension at tissue boundaries [47, 53, 55,
56], which may drive cell sorting and certain morphogenetic movements [55, 57, 58]. On
timescales much longer than the characteristic time of cell turnover in the tissue, repeated
cycles of cell division and apoptosis can lead to the same result even for tissues that behave
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like elastic media or yield-stress fluids on short timescales [59, 60]. We therefore model the
epithelium as a viscous fluid of shear viscosity η, which we take to be incompressible for the
sake of simplicity, but with a rate of material production kp corresponding to cellular duplication
minus cellular death. In models 1–3, this rate is pre-imposed and takes the form of a single
exponential function with a characteristic decay length l, whose amplitude is determined by a
rate parameter k (detailed equations can be found in the supplementary information, available
from stacks.iop.org/NJP/15/065011/mmedia, section 1).

In contrast to the epithelium where cells are confluent, the stroma is made up of a network
of proteoglycans, collagen and elastin fibres, within which cells—mostly fibroblasts—are
sparse [15, 61]. Fibroblasts constantly remodel the stromal fibres, which can therefore elastically
resist deformation only on short and intermediate timescales but eventually reorganize and
follow imposed deformations on long timescales. In addition, matrix metalloproteinases
expressed either by the advancing tumour cells or directly by tumour-associated stromal cells
can enhance this process by digesting the filaments of the stroma [1, 3, 7, 9]. The stroma should
therefore be thought of more as a viscoelastic material than a purely elastic or viscous medium,
with a characteristic timescale above which it reorganizes and flows. Here, three different
descriptions are envisaged, namely those of an elastic solid with shear modulus µ (model 1), a
Newtonian viscous fluid with shear viscosity ηs (model 2) or a viscoelastic material described
by a Maxwell model with a single relaxation time τ = ηs/µ (model 3). In each case, the medium
is supposed to the incompressible for the sake of simplicity.

The boundary conditions are as follows. At the apical surface of the epithelium, the total
stress in contact with the lumen vanishes and the cell velocity is equal to the time derivative
of the apical-surface location. Taking into account the epithelium apical surface tension γa, the
normal component of the stress is given by the Laplace pressure, and its tangential component
vanishes. At the epithelium–stroma interface, the discontinuity of the normal component of the
stress is given by Laplace’s law with interfacial tension γi, and the tangential components of the
stress are continuous and equal to a finite surface-friction term with coefficient ξ . The normal
component of the velocity is continuous and the stroma displacement in the z-direction is equal
to δh. At the bottom of the stroma, the displacement vanishes. All the corresponding equations
are detailed in section 1 of the supplementary information.

3. Results for model 3

We present here the first generalization of our previous study [14], namely that of a viscoelastic
stroma with the cell-production rate function in the epithelium pre-defined as a function of
distance from the epithelium–stroma interface. This model 3 encompasses both of the previously
exposed models 1 and 2 as limit cases, where the stroma was either purely elastic or purely
viscous [14] (see also the supplementary information, sections 2 and 3). We shall see the
consequences of this more general model and how we recover the two cases studied before
in particular regimes.

3.1. Mode structure and comparison with models 1 and 2

We obtain four different relaxation modes. This can be understood from the structure of the
equations describing the boundary conditions, where time derivatives appear four times: once
in the continuity condition for the velocity at the apical surface of the epithelium, and three times
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in the boundary conditions at the epithelium–stroma interface (supplementary information,
equations (14) and (17)). We obtain four relaxation modes rather than three as in the case of
an elastic stroma because of the additional relaxation timescale of the viscoelastic rheology
here.

We present in figure 2 the structure of the relaxation modes as a function of the wavenumber
q, and compare the present results with those of the purely elastic and purely viscous models 1
and 2, using the same set of parameters. We choose the two tissue viscosities to be equal
to 10 MPa s for models 2 and 3, and fix the viscoelastic relaxation rate τ−1 to 0.86 per day
for model 3. This corresponds to an elastic modulus µ of 100 Pa for models 1 and 3. The
structure of the figure is as follows. Plots corresponding to a first set of parameters are shown in
figures 2(A)–(C), and for a second set in figures 2(D)–(F). For each of these parameter sets, the
first column corresponds to the viscoelastic model 3, the second column to the elastic model 1
and the third one to the viscous model 2. In addition, for each of the mode structures computed,
the corresponding plots are displayed in a range of wavevector values spanning 0–45 mm−1 in
the upper subpanels (indices 1), and 0–180 mm−1 in the lower subpanels (indices 2). The range
of omega values in the vertical axes is adapted to each individual case to show different relevant
parts of the mode structure.

In the first set of graphs, we can see from the curves associated with model 3 in figure 2(A)
that one of the modes relaxes towards the inverse viscoelastic relaxation time τ−1 of 0.86 per
day. In figure 2(B), the associated plots for the elastic model 1 almost identically reproduce the
two lower modes, which are associated with timescales shorter than τ and therefore correspond
to the elastic limit. We also recognize features of the two upper modes of the full viscoelastic
model in both plots associated with models 1 and 2 (figures 2(B) and (C), respectively), although
here these features are shared between the two different models depending on the range of
wavenumbers. In the second set of graphs (figures 2(D)–(F)), we can appreciate the similarities
between the viscoelastic and elastic relaxation modes whenever these are associated with short
timescales, and between the viscoelastic and viscous relaxation modes in the other limit.

3.2. Asymptotic behaviours of the modes

It is instructive to look at the analytic expansions of the different modes in the respective limits
of large and small wavenumbers q. In the limit of large wavenumbers, the modes associated
with the epithelium–stroma interface decouple from those associated with the apical surface of
the epithelium, since their characteristic decay lengths are of order q−1, which is much smaller
than H in this limit. Their asymptotic expressions up to constant order in a development in
powers of q−1 read

ω1 ' −
γi

2η
q −

µ

η
+ k − k0,

ω2 ' −
γa

2η
q + ke−H/ l

− k0,

(1)
ω3 ' − 2

µ

ξ
q −

(η + ηs)µ

ηηs
,

ω4 ' 0 −
µ

ηs
.
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Figure 2. Relaxation modes ω as a function of the wavenumber q for model 3,
and comparison with the results given, respectively, by models 1 and 2. (A1)
The relaxation modes corresponding to the viscoelastic model 3 are plotted for
parameter values that are identical to those of figure 1(A) of the supplemen-
tary information (available from stacks.iop.org/NJP/15/065011/mmedia) for
model 1, to which must be added the stroma viscosity ηs = 10 MPa s. Combined
with the elastic modulus of the stroma µ = 100 Pa, this gives an inverse
viscoelastic relaxation time τ−1 of 0.86 per day. (A2) The span of wavenumber
values has been augmented in order to visualize the convergence of the most un-
stable mode to this inverse relaxation time, and the range of values displayed for
ω has been shortened to zoom into the relevant region; consequently, only three
of the four modes appear here. (B) and (C) The corresponding plots are shown
respectively for the elastic and viscous models 1 and 2, with the same parame-
ters and the same panel structure. (D1) The relaxation modes corresponding to
the viscoelastic model 3 are plotted for a set of parameters that is now identical to
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Figure 2. (Continued) that used in figure 2(A) of the supplementary information
for model 2, except for a different stroma viscosity and the addition of the elastic
modulus µ = 100 Pa. The stroma viscosity takes the value ηs = 10 MPa s, chosen
such that the inverse viscoelastic relaxation time τ−1 is maintained at 0.86 per
day. (D2) The span of wavenumber values has been augmented together with a
zoom into the region of small relaxation rates to visualize more clearly the two
upper modes. (E) and (F) The corresponding plots are shown for the respective
cases of models 1 and 2, with the same parameters and the same panel structure.

Among these, the first three expressions correspond to short characteristic times. We therefore
expect their behaviours to be similar to those obtained in the case of an elastic stroma of modulus
µ as already discussed in [14] and summarized in the supplementary information (available
from stacks.iop.org/NJP/15/065011/mmedia), see equation (18). This is indeed the case for all
of these three modes to leading order, and for the two first ones even up to constant order. In
the third mode, the term of constant order mixes the epithelium and stroma viscosities, and
therefore departs from the simpler µ/η term present in the elastic case. The additional fourth
mode converges towards the inverse relaxation time τ−1

= µ/ηs of the viscoelastic stroma, as
illustrated in figure 2(A2).

In the limit of small wavenumbers, systematic expansions to leading order read

ω1 ' −
36µ

η

1

H 3L3

1

q6
,

ω2 ' −
µ

4η

1

H L

1

q2
,

(2)
ω3 ' k e−H/ l

− k0,

ω4 ' −
L2

[
3Hγa + 2L(γa + γi)

]
6ηs

q4.

Here, the expressions mix contributions coming from the entire system. The asymptotic
expressions of the two first modes are identical to those already obtained in the case of an
elastic stroma, and the one of the fourth mode corresponds to that obtained in the case of
a viscous stroma (equations (19) and (21), supplementary information). This can be easily
understood from the observation that the two first limits correspond to short-time dynamics and
the fourth one to long-time dynamics. As for the third asymptotic expression, it is common to
the three models. This is because this limit comes from pure mass conservation in the epithelium
and is therefore independent of the stroma rheology. One can indeed recover this limit by
integrating the continuity equation at q = 0 over the height of the epithelium to leading order
in the perturbations. Expressions to next-to-leading order can be found in the supplementary
information, section 5.

4. Nutrient-diffusion dynamics

As discussed in the introduction, the first three models exposed above and in the supplementary
information (available from stacks.iop.org/NJP/15/065011/mmedia) sections 1–3 rely on a
specific pre-defined function for the rate of cell division minus apoptosis in the epithelium,
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characterized by an exponential decay with a single characteristic length l (equations (2) and (3),
supplementary information). This description is motivated by the fact that the supply of nutrients
and growth factors in the epithelium comes from diffusion from the stroma. However, the
function used above was set a priori, and to be more accurate, nutrient diffusion needs to be
solved explicitly. Here, we solve the entire system of equations, where nutrients are produced
at a given location in the stroma, diffuse in both tissues with tissue-specific diffusion constants,
and can leak from the epithelium at its apical surface if they are in excess. They are consumed
by the epithelial cells and influence their division rate.

4.1. Bulk equations

The equations describing the epithelium are still given by equation (1) of the supplementary
information, but we now couple the cell-production rate kp to the nutrient density ρ. In the
absence of further detailed knowledge about this coupling, we assume a linear dependence of
kp on ρ:

kp = κ1ρ − κ0, (3)

where κ1 and κ0 are effective phenomenological coefficients. These coefficients take positive
values, since we expect the cell-division rate to increase as a function of ρ, as well as the overall
cell population to starve and progressively die in the absence of nutrients. The nutrient-density
function ρ is determined by the following diffusion-consumption equations. In the epithelium,
nutrients diffuse with a coefficient D and are consumed by the cells with a rate c:

∂tρ = D1ρ − cρ. (4)

In the stroma, nutrients have the density ρs and diffuse with a coefficient Ds, without being
consumed:

∂tρs = Ds1ρs. (5)

For the stroma, we again consider three different versions of the rheology as investigated above:
an elastic rheology for model 4, a viscous one for model 5 and a viscoelastic one for model 6.
The associated equations are presented in the supplementary information, section 1.

4.2. Boundary conditions

The mechanical boundary conditions are identical to those presented in the previous sections,
but we need to specify the boundary conditions for the nutrient fields ρ and ρs. We assume a
fixed concentration of nutrients ρ̄0 a distance d away from the epithelium–stroma interface in
the stroma compartment:

ρs|z=L−d = ρ̄0. (6)

At the epithelium–stroma interface, the density as well as the flux of nutrients in the direction
perpendicular to the local interface are continuous:

ρ|interface = ρs|interface,
(7)

D∂⊥ρ|interface = Ds∂⊥ρs|interface.

Here ‘∂⊥’ stands for the partial derivative in the direction perpendicular to the local interface,
oriented positively from the stroma towards the epithelium. At the apical surface of the
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epithelium, we allow for a potential leakage of nutrients from the epithelium into the lumen.
Since we expect this leakage to increase with the local nutrient concentration, we write to linear
order that the nutrient flux is proportional to this concentration locally:

−D∂⊥ρ|apical = voffρ|apical. (8)

5. Results for an elastic stroma: model 4

We present here the mode structure for model 4, where the stroma is treated as an
elastic, incompressible material. The expressions of the steady-state solutions for the
nutrient concentration, velocity and stress fields in the epithelium as well as the perturbed
equations to linear order can be found in the supplementary information (available from
stacks.iop.org/NJP/15/065011/mmedia), section 4. To solve this system of equations, we
consider the case where nutrient diffusion is much faster than the characteristic relaxation
of the system, both in the stroma (ω � Dsq2) and in the epithelium (ω � Dq2 + c). This
approximation is valid sufficiently close to the instability threshold and is a standard
approximation of the treatment of diffusion-limited interface dynamics [16, 17]. In this regime,
we can solve the equations describing nutrient diffusion at steady state first, and then substitute
the obtained solutions into the mechanical equations.

5.1. Mode structure and influence of diffusion

The number of modes that we obtain is identical to the one obtained with a pre-imposed
function for the production of cells, since the number of modes is prescribed by the structure
of the mechanical boundary conditions. In the particular case of an elastic stroma, we obtain
three relaxation modes, which can be seen from the expressions of the boundary conditions,
where time derivatives appear three times (equations (14) and (15), supplementary information).
In figure 3, we study the influence of nutrient diffusion on the structure of these modes. In
figure 3(A), we show all three relaxation modes. The main qualitative difference between the
present curves and those associated with model 1 (figure 1 in the supplementary information) is
the presence of a clear maximum at low values of the wavenumber q (here around 5 mm−1), that
is at long wavelengths, in addition to the other broader maximum at smaller wavelength already
present in the previous model (here around q = 30 mm−1). To test whether this new maximum
is indeed controlled by nutrient diffusion, we vary in figures 3(B) and (C) the values of the
diffusion coefficients of nutrients, respectively, in the stroma and in the epithelium. In doing
so, we change the value of the nutrient concentration at its production location (ρ̄0) in order
to keep a constant concentration at the epithelium–stroma interface in the unperturbed steady
state. This allows us to decouple the influence of diffusion from that of the overall amount of
nutrient supply. We see in figure 3(B) that increasing nutrient diffusion in the stroma makes the
maximum at low q disappear, and that decreasing it instead makes the curve saturate towards a
maximum limit curve with a pronounced peak. This behaviour is in qualitative agreement with
that of an instability controlled by diffusion limitation [16, 17, 19]. The situation is different
in terms of the variation of D, the diffusion coefficient in the epithelium, as illustrated in
figure 3(C). In this case indeed, increasing D favours the instability and decreasing it makes the
system stable. This stems from the fact that slowing down diffusion in the epithelium makes the
layer of dividing cells very thin. This in turns lowers the driving force for the instability, which
originates from differential cell flows in the epithelium due to inhomogeneous cell divisions.

New Journal of Physics 15 (2013) 065011 (http://www.njp.org/)

http://stacks.iop.org/NJP/15/065011/mmedia
http://www.njp.org/


12

q [1/mm]

ω
[1
/d
]

q [1/mm]

ω
[1
/d
]

Ds

q [1/mm]

ω
[1
/d
]

DA B C

Figure 3. Relaxation modes for model 4 as a function of nutrient diffusion.
(A) Parameters are as follows: η = 30 MPa s, µ = 50 Pa, γi = 10 mN m−1,
γa = 1 mN m−1, ξ = 10 GPa s m−1, H = 300 µm, L = 600 µm, d = 75 µm,
κ1 = 100 × 10−6 m3 s−1, D = 200 × 10−12 m2 s−1, Ds = 100 × 10−12 m2 s−1, c =

0.1 s−1, ρ̄0 = 1 m−3 and voff = 0 m s−1. All three relaxation modes are shown,
of which only one becomes unstable and presents a clear maximum at low-q
values. (B) The most unstable mode is shown for the same parameter set as
in panel (A) for the default curve (1), and Ds is varied in the other curves. It
takes the following values: (1) 100 × 10−12 m2 s−1, (2) 200 × 10−12 m2 s−1, (3)
1000 × 10−12 m2 s−1, (4) 20 × 10−12 m2 s−1, (5) 2 × 10−12 m2 s−1. (C) A similar
analysis is presented while varying D, which takes the following values: (1)
200 × 10−12 m2 s−1, (2) 500 × 10−12 m2 s−1, (3) 100 × 10−12 m2 s−1, (4) 10 ×

10−12 m2 s−1. In both panels, ρ̄0 is changed as Ds or D are varied to keep the
concentration of nutrients unchanged at the epithelium–stroma interface. Plots
are coded in both colour and linestyles as indicated on the right of the figure.
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Figure 4. Comparison of the modes obtained with model 4 (linestyle (1)) and
with model 1 (linestyle (2)), following the procedure described in the text. The
parameters are those of figure 3(A), together with the fitting parameters k = 2
divisions per day and l = 44 µm for model 1. Panels (A) and (B) present the
same modes but over two different wavevector ranges.

We now compare the results of the two models more directly, namely those obtained with
a pre-defined cell-production function (model 1) versus those obtained while coupling the cell-
production function to nutrient diffusion (model 4). In order to do so, we derive from model 4
a cell-production rate as a function of z at steady state. We then fit the cell-production rate of
model 1 to that function to generate the associated relaxation modes. As illustrated in figure 4 of
the supplementary information, the fitting procedure gives a nearly perfect agreement between
the two rate functions. We can therefore assume that the cell-production profiles are identical
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in the unperturbed situation for both models, and that all the differences that are observed are
due to the effect of being coupled to nutrient diffusion to first order in the case of model 4
versus keeping the cell production unchanged in the case of model 1. We can see in figure 4
that coupling to nutrient diffusion overall increases the instability and introduces an additional
maximum for the most unstable mode at a low q as commented on above. The remaining mode
structure is unchanged and the stable modes are nearly identical in both models. In particular, in
both the large- and low-q limits, we have the same asymptotic behaviours for the three modes
with both models, as we now discuss in section 5.2.

5.2. Asymptotic behaviours of the modes

To leading order, the large-q expansions of the three modes are identical to those obtained for
model 1 and given by equation (18) of the supplementary information. This is also the case
in the small-q limit for the two diverging modes of model 1, given by equation (19) of the
supplementary information. This stems from the fact that these regimes correspond to a fast
dynamics, where pure mechanics is at play without feeling the influence of the relatively slow
cell-division events. However, the constant-order terms of these expansions do depend on the
particular form of the cell-production function. The exact expressions have been derived but are
very long and do not yield any particular physical insight in their full extent. They are therefore
not presented in this paper. In figure 4 of the previous paragraph, the fitting procedure ensures
that the limit of the upper mode is the same for both versions of the model.

6. Discussion for a viscous stroma: model 5

We now investigate the equivalent model for a viscous stroma.

6.1. Effect of nutrient diffusion on mode structure

As for model 4, we study in figure 5 the influence of the dynamics of nutrient diffusion. Here,
we have two relaxation modes, since as compared with the elastic case, we lose the mode that
originates from the tangential stress-balance condition at the epithelium–stroma interface (see
equation (16), supplementary information). Similarly to the previous case, the main difference
with model 2 is the presence of an extra maximum of the unstable mode at long wavelengths
(figure 5(A) here and figure 2(A) of the supplementary information). In figure 5(B), we study
the behaviour of this maximum as we vary the nutrient diffusion constant in the stroma Ds

while keeping the nutrient concentration constant at the epithelium–stroma interface in the
unperturbed steady state. We see that, similarly to what happened for model 4, decreasing Ds

enhances the instability at long wavelengths which saturates as Ds goes towards zero. Increasing
Ds instead tends to eliminate this maximum. In figure 5(C), we study the effect of the diffusion
coefficient D in the epithelium compartment, following the same procedure. Here, increasing
D first favours the instability by increasing the thickness of the dividing region, but eventually
suppresses the instability at short wavelengths. This is because increasing D eventually renders
cell division homogeneous over short lengthscales. Decreasing D instead tends to stabilize the
system, which stems from the fact that the thickness of the dividing region is decreased as
nutrient penetration is decreased.

As in the case of an elastic stroma, we compare in figure 6 the relaxation modes obtained
with model 5 and those obtained with model 2 where the cell-production function is obtained
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Figure 5. Relaxation modes for model 5 as a function of nutrient diffusion.
(A) Parameters are as follows: η = 10 MPa s, ηs = 10 kPa s, γi = 1 mN m−1,
γa = 1 mN m−1, ξ = 10 GPa s m−1, H = L = 300 µm, d = 100 µm, κ1 = 100 ×

10−6 m3 s−1, D = 100 × 10−12 m2 s−1, Ds = 200 × 10−12 m2 s−1, c = 0.2 s−1,
ρ̄0 = 0.3 m−3 and voff = 0 m s−1. Both relaxation modes are shown, of which
only one becomes unstable and presents a clear maximum at low-q values. (B)
The most unstable mode is shown for the same parameter set as in panel (A)
for curve (1), and Ds is varied in the other curves. As for figure 3, the value
of ρ̄0 is set accordingly to keep the concentration of nutrients unchanged at
the epithelium–stroma interface. Values of Ds are (1) 200 × 10−12 m2 s−1, (2)
20 × 10−12 m2 s−1, (3) 2 × 10−12 m2 s−1, (4) 400 × 10−12 m2 s−1 and (5) 2000 ×

10−12 m2 s−1. (C) The same procedure is applied to study the variation of
D, which takes the values (1) 100 × 10−12 m2 s−1, (2) 1000 × 10−12 m2 s−1,
(3) 100 × 10−9 m2 s−1, (4) 20 × 10−12 m2 s−1 and (5) 5 × 10−12 m2 s−1.
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Figure 6. Comparison of the modes obtained with model 5 (linestyle (1)) and
with model 2 (linestyle (2)), following the procedure described in the text. The
parameters used for model 5 and their corresponding values in model 2 are
identical to those of figure 5(A). In model 2, the fitting parameters take the values
k = 0.8 divisions per day and l = 22 µm. Panels (A) and (B) present the same
mode structure but over two different wavevector ranges.

by the fitting procedure described above. As for figure 4, we see that the instability is globally
enhanced, and especially at long wavelengths where a second maximum appears.

6.2. Asymptotic behaviours of the modes

In terms of the asymptotic expressions of the modes in the limit of small and large wavenumbers,
we find as for models 1 and 4 that the expressions associated with models 2 and 5 match to
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leading order in the short-wavelength limit and correspond to those given by equation (20) of the
supplementary information (available from stacks.iop.org/NJP/15/065011/mmedia). Beyond
that, the expressions are complicated and depend on nutrient coupling. We illustrate in
equation (35) of the supplementary information the asymptotic expression of one of these
modes in a particular case to see how it differs from its equivalent for model 2 (equation (21),
supplementary information).

7. Discussion for a viscoelastic stroma: model 6

We now consider the full model with coupling of the mechanical equations to the
reaction–diffusion dynamics of nutrients, and with the full viscoelastic rheology for the stroma.

7.1. Parameter-variation study

In figure 7, we study the influence of some of the total 12 independent parameters on which
the model depends. We choose here to present the dependence of the most unstable mode while
independently varying six out of these parameters, which gives us an almost complete picture
of the mode structure. The dependence in the diffusion constants D and Ds has been studied
in detail for models 4 and 5 and is therefore not reproduced here for model 6. In figures 7(A)
and (B), we show the mode structure for a default parameter set, which is then used in the
other panels as a starting point for a systematic parameter-variation study. Only three out of the
four modes are visible on the panels, since one relaxation rate takes very large absolute values
and stands out of the plot. One of the four existing modes presents a region of instability. We
note the presence of two distinct maxima in the unstable region, one around q = 5 mm−1 and
one around q = 20 mm−1, corresponding to the two distinct maxima already discussed in the
case of models 4 and 5. The viscoelastic relaxation rate τ−1 is equal to 0.86 per day here. We
recognize features of the elastic model for the lower mode, which corresponds to relaxation rates
larger than τ−1, and features of the viscous model for the two upper modes, which correspond
to relatively long relaxation times. In figure 7(B), we display the same mode structure as in
figure 7(A) but over a larger wavenumber domain, in order to visualize the convergence of the
upper mode to τ−1 in the short-wavelength limit.

In the remaining panels, we study the dependence of the most unstable mode on different
parameters. We first show the dependence on η, the epithelium viscosity in figure 7(C). As
expected and discussed in [14], the instability is increased with increasing values of η, which
stems from the fact that the instability relies on viscous shear stresses in the epithelium. We
recover this dominant tendency here. However, decreasing η never really stabilizes the system
as was the case in [14], and the interface always remains unstable on a small interval at
sufficiently small wavenumbers. This can be attributed to the coupling to nutrient diffusion,
similarly to what happens in the context of crystal growth, where the system is always unstable
at arbitrarily long wavelengths [16, 17]. In figure 7(D), we study the dependence on the stroma
viscosity ηs. Increasing ηs to very large values tends to eliminate the low-q maximum, but is
not enough to render the system stable. It is interesting to note that, contrary to the case of
the Saffman–Taylor instability [62, 63], which occurs when a fluid of lower viscosity displaces
a more viscous one in a Hele–Shaw cell, the relative values of the two fluid viscosities here
is not a criterion to change the stability of the system. This fact was also observed in the
context of model 2 and illustrated in figure 2 of the supplementary information (available from
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Figure 7. Study of the relaxation-mode structure for model 6, as a function of
several parameters entering the model. (A) and (B) The whole mode structure
is shown for a default set of parameter values over two different wavevector
ranges. Parameter values are η = 10 MPa s, ηs = 1 MPa s, µ = 10 Pa, γi =

5 mN m−1, γa = 1 mN m−1, ξ = 10 GPa s m−1, H = L = 300 µm, d = 75 µm,
κ1 = 100 × 10−6 m3 s−1, D = 100 × 10−12 m2 s−1, Ds = 100 × 10−12 m2 s−1, c =

0.1 s−1, ρ̄0 = 0.6 m−3 and voff = 0 m s−1. Only three of the four modes are visible,
since one relaxation rate takes very large negative values and stands out of scale.
In each of the remaining panels, the most unstable mode is displayed for different
parameter values, as one parameter at a time is varied as compared with the
default parameter set of panels (A) and (B). The plain-red linestyle, associated
with number (1), corresponds to the default parameter set. Other parameter
values are as follows. (C) Variation of η: (2) η = 5 MPa s; (3) η = 20 MPa s.
(D) Variation of ηs: (2) ηs = 20 MPa s, (3) ηs = 100 kPa s. (E) Variation of H :
(2) H = 100 µm; (3) H = 50 µm; (4) H = 900 µm. (F) Variation of d: (2)
d = 50 µm; (3) d = 150 µm. (G) Variation of κ1: (2) κ1 = 50 × 10−6 m3 s−1;
(3) κ1 = 150 × 10−6 m3 s−1. (H) Variation of γi: (2) γi = 10 mN m−1; (3) γi =

2 mN m−1.

stacks.iop.org/NJP/15/065011/mmedia), section 3. In figure 7(E), we study the dependence in
H , the thickness of the epithelium layer. A sufficiently thin epithelium does not display any
instability. This is because the underlying mechanism of the instability remains the presence
of viscous shear stresses within the epithelium, even when nutrient diffusion is introduced. In
figure 7(F), we then study the dependence on d, the distance between the epithelium–stroma
interface and the source of nutrients in the stroma. Varying this distance has a pronounced
effect on the growth rate of the instability. This is natural since this distance directly influences
the distribution of nutrients within the stroma, and so dramatically influences the stability of
the system. In figure 7(G), we study the dependence on κ1, which describes the coupling of cell
division to nutrient concentration (equation (3)). Decreasing κ1 allows only the long-wavelength
maximum to remain unstable, and increasing it allows the other maximum to reach larger values.
Finally, figure 7(H) shows that the epithelium–stroma interfacial tension γi has a stabilizing
effect, and primarily at short wavelengths.

Among the parameters whose variations have not been displayed in this figure, D and
Ds have similar effects to those seen in figures 3 and 5 in the frameworks of models 4 and 5,
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and the remaining parameters have a simple, intuitive effect. Increasing the elastic modulus µ

of the stroma tends to stabilize the system, and so does the increase of c, the rate of nutrient
consumption by the epithelial cells. On the other hand, the stroma thickness L as well as the
total amount of nutrient produced ρ̄0 have a destabilizing effect (graphs not shown).

7.2. Mode structure and asymptotic expressions

Similarly as before, the different associated expressions of the fast modes to leading order are
unchanged as compared with the case of model 3. In the limit of small wavelengths, we retrieve
the expressions given by equation (1) to linear order, which is explained for the three first
modes by the fact that these correspond to fast relaxations of the system, and for the fourth
mode because its limit corresponds to the inverse relaxation time of the viscoelastic material
constituting the stroma, which is independent of cell division. In the long-wavelength regime,
the expressions to leading order of the two first modes are identical to those obtained without
nutrient diffusion and are given by equation (2). The situation is different for the modes of
order constant and proportional to q4, for which the specific coefficients do depend on nutrient
coupling. The general expressions are very long, but the example of equation (35) of the
supplementary information (available from stacks.iop.org/NJP/15/065011/mmedia) discussed
above also holds here.

8. Discussion

In this work, we have proposed a mechanism for the formation of undulations at the
epithelium–stroma interface that arise from a physical instability intrinsic to the structure of
a multilayered epithelium. This instability, presented originally in [14] and discussed here in
more detail, is a hydrodynamic instability arising from viscous shear stress originating from flow
within the tissue due to cell renewal. Such an instability can develop in a healthy epithelium,
depending on its physical characteristics such as the thickness of the cell-division region, its
long-term viscosity due to cell–cell adhesion and the mechanical resistance of the stroma. These
results are in agreement with the observation that the degree of undulations in vivo typically
depends on the grade of the dysplastic epithelium. The grade itself correlates with the number
of dividing cell layers [12], and is part of the diagnosis of dysplastic tissues, for example of
oral cancer [13, 64]. The mechanical resistance of the stromal tissue can also influence the
morphology of the basement membrane. This has been observed for example to a mild extent
in vivo in the stratified epithelia of the cornea and of the limbus [65], and in a clearer way in
reconstituted epithelia in vitro [66]. There, different degrees of undulations were observed as
a function of the properties of the supporting scaffold on which the tissue was grown. More
generally, this instability could be present in all sufficiently viscous fluids with internal flow
due to material production or destruction. Growth factors, proteases, external feedback and
abnormal proliferation are not required for the occurrence of this instability.

Nevertheless, introducing coupling of cell division to the diffusion of nutrients, growth
factors or oxygen from the stroma adds a destabilizing effect, similar to that occurring
during diffusion-limited growth [18, 19]. This leads to a significant enhancement of the
previously proposed instability and to the appearance of an additional maximum of the unstable
mode at long wavelengths. Instabilities originating from similar coupling terms have been
identified in living systems, for example in the case of bacterial-colony growths, where patterns
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similar to those associated with aggregation phenomena and viscous fingering have been
observed [67–69]. Such a coupling can lead to fractal branching patterns via the process of
diffusion-limited aggregation [70, 71] or other types of branching patterns depending on the
bacterial morphotype [72, 73].

The destabilizing effect of the coupling to nutrient diffusion is reminiscent of the
Mullins–Sekerka instability in the context of crystal growth [16, 17]. This analogy relies on
the fact that nutrients here play a similar role as either latent heat when crystal growth occurs
in an undercooled melt of a pure substance or solute molecules when it occurs in an isothermal
but binary, supersaturated solution: outward-pointing epithelium protrusions have access to a
larger amount of nutrients than retracted regions, and therefore proliferate faster, enhancing the
already existing protrusion. The instability therefore develops faster when nutrient diffusion is
slower, especially at long wavelengths as illustrated in figures 3 and 5. Nevertheless, differences
exist between the diffusion-driven instability proposed here and that of growing crystals. For
one, in the latter case, the solid phase grows by addition of new material coming from the
environment to the interface. This phase therefore grows only at the surface and, once formed,
remains rigid and static in the bulk. Here however, the new material comes from cell division
within the epithelial tissue itself, and growth occurs as a bulk phenomenon. As a consequence,
the instability proposed here can only develop for sufficiently thick epithelia, as illustrated in
figure 7(E), and its driving force still relies on differential cell flows, as proposed originally [14].

The instability discussed in this work may also evoke the Saffman–Taylor instability, which
occurs when a fluid of lower viscosity displaces a more viscous one in a Hele–Shaw cell [62, 63].
However, the two mechanisms are very different and should not be confused. In the case of
the Saffman–Taylor instability, an external force in the form of a global pressure difference
is required to drive the system out of equilibrium. The dynamics is governed by Darcy’s law
arising from the balance of pressure gradient with friction of the fluid with the background. The
Laplace equation for the pressure field together with the constant-pressure boundary conditions
determine the instability and the mode structure. On the other hand, in the case studied here,
forces are generated within the epithelial tissue by internal processes. In addition, the field
responsible for the second, long-wavelength maximum is the nutrient-concentration field, which
follows a Laplace equation in the stromal compartment in the regime of fast diffusion, rather
than the pressure field. A particular illustration of the difference between the two instabilities can
be seen from figure 7 of the main text and figure 2 of the supplementary information (available
from stacks.iop.org/NJP/15/065011/mmedia), which show that here, the instability can develop
when either of the two fluids—epithelium or stroma—is the more viscous one.

Beyond the mechanisms discussed in this work, which rely entirely on cell-division
driven cellular flows and their coupling to passive diffusion, there exist more specific, active,
biological mechanisms that can cause significant aberrations of the tissue interface in malignant
cases. As one example, neoplastic epithelial cells are known to excrete signalling molecules
that recruit and stimulate stromal fibroblasts and induce the differentiation of monocytes into
macrophages [1, 3]. This further induces the production and release of epithelial growth factors,
matrix metalloproteinases and angiogenetic factors [1, 74, 75]. This effect may enhance the
progression of protrusions in a positive feedback loop, since advancing protrusions increase the
concentration of signalling molecules in regions of the stroma close to them, further stimulating
the expression of growth factors by fibroblasts. As a second example, many malignant epithelial
tissues and their stromal-associated cells are known to secrete matrix-degrading enzymes such
as metalloproteinases [1, 3, 7, 9]. These enzymes play a central role in the invasion of epithelial
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protrusions in the stroma by cutting through the dense meshwork of collagen fibres, carving out
space for the expanding tumour. Proteases such as matrix metalloproteinases 2 and 9 can be
produced by the tumour-associated macrophages [9, 75], a mechanism that contributes to the
cross-talk mentioned above.

While neither of these effects is directly included in our model, we expect the driving force
behind the advancing protrusions to still originate from the fundamental mechanical picture
proposed here. Indeed, these effects may enhance an already existing instability, but do not
represent an alternative driving force to the present model. The situation is fundamentally
different in the case where cells from the epithelium have undergone the transition to a motile
phenotype and invade the stroma [4, 5]. Although clearly only relevant for malignant tissues,
this mechanism is fundamentally different from the one discussed in this work and provides a
true alternative process that can lead to pronounced irregular pathologies observed in vivo [10],
and ultimately drive cancerous invasion. However, one may speculate that the acquisition of
invasive motile phenotypes itself comes after an original protrusion has formed rather than be
responsible for its initiation. In two-dimensional tissue migration for example, the emergence
of fingering protrusions seems to arise spontaneously [76] and is often accompanied by the
emergence of a different phenotype at the tip of the protrusion [77]. The appearance of such
leader cells may however be the signature of a loss of contact inhibition [78–80], and may
therefore be induced by the original perturbation rather than be responsible for its initiation.
One may therefore speculate that a physical mechanism such as the instability proposed here
could initiate the emergence of invasive phenotypes.
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