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Amini, and Christian Jutten, Fellow, IEEE

Abstract—In this paper, the problem of matrix rank mini-
mization under affine constraints is addressed. The state-of-the-
art algorithms can recover matrices with a rank much less
than what is sufficient for the uniqueness of the solution of
this optimization problem. We propose an algorithm based on a
smooth approximation of the rank function, which practically
improves recovery limits on the rank of the solution. This
approximation leads to a non-convex program; thus, to avoid
getting trapped in local solutions, we use the following scheme.
Initially, a rough approximation of the rank function subject to
the affine constraints is optimized. As the algorithm proceeds,
until reaching the desired accuracy, finer approximations of the
rank are successively optimized while the solver is initialized with
the solution of the previous approximation.

On the theoretical side, benefiting from the spherical section
property, we will show that the sequence of the solutions of
the approximating programs converges to the minimum rank
solution. On the experimental side, it will be shown that the
proposed algorithm, termed SRF standing for Smoothed Rank
Function, can recover matrices which are unique solutions of
the rank minimization problem and yet not recoverable by
nuclear norm minimization. Furthermore, it will be demonstrated
that, in completing partially observed matrices, the accuracy of
SRF is considerably and consistently better than some famous
algorithms when the number of revealed entries is close to the
minimum number of parameters that uniquely represent a low-
rank matrix.

Index Terms—Affine Rank Minimization (ARM), Compressive
Sensing, Matrix Completion (MC), Nuclear Norm Minimization
(NNM), Rank Approximation, Spherical Section Property (SSP).

I. INTRODUCTION

THERE are many applications in signal processing and

control theory which involve finding a matrix with mini-

mum rank subject to linear constraints [1]. This task is usually

referred to as the affine rank minimization (ARM) and includes

Matrix Completion (MC) as a special case. In the latter, we

are interested in reconstructing a low rank matrix from a

subset of its entries. If the location of known entries follow
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certain random laws and the rank of the matrix is sufficiently

small, one can uniquely recover the matrix with overwhelming

probability [1]–[3].

One of the celebrated applications of affine rank minimiza-

tion (or matrix completion) is Collaborative Filtering [2]. This

technique is applied when a system tries to recommend goods

to customers/users based on the available feedbacks of all

the customers. In fact, the system learns the user preferences

through the feedbacks and identifies similarities between them.

As the number of factors affecting the user interests is much

less than the total number of customers and products, the

matrix whose (i, j)-th entry represents the rating of the i-
th user for the j-th product is expected to be low-rank. This

could be efficiently used by the matrix completion techniques

to predict the users’ ratings for unrated items.

Applications of affine rank minimization in control theory

include System Identification [4] and low-order realization

of linear systems [5]. In the former, the goal is to find an

LTI system with minimum order that fits the available joint

input-output observations of a multiple-input multiple-output

system [6].

In wireless sensor networks, due to limited energy resources

and transmitting power, the sensors are able to communi-

cate only with their neighboring sensors. These communica-

tions (e.g., received powers) determine the pairwise distances

between sensors, which partially reveals the matrix of all

pairwise distances. To localize the sensors in the network,

one needs to estimate their distances from predefined anchor

points which in turn requires completion of the distance

matrix through the multi-dimensional scaling technique [7].

Interestingly, the rank of the pairwise distance matrix is small

compared to its dimension [4].

Other areas to which affine rank minimization is applied in-

clude Machine Learning [8], Quantum State Tomography [9],

Spectrum Sensing [10], and Spatial Covariance matrix com-

pletion [4], [11]. The spatial covariance matrix is essential in

estimating the directions of arrival of sources impinging on an

array of antennas using for example MUSIC [12] or ESPRIT

algorithms [13].

The main difficulty of the affine rank minimization problem

is due to the fact that the rank function is discontinuous and

non-differentiable. Indeed, the optimization problem is NP-

hard, and all available optimizers have doubly exponential

complexity [14]. In [15], Fazel proposed to replace the rank

of the matrix with its nuclear norm, which is defined as the

sum of all singular values (SV). This modification is known

to be the tightest convex relaxation of the rank minimization
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problem [4] and can be implemented using a Semi Definite

Program (SDP) [1]. Using similar techniques as in compressed

sensing, it is recently shown that under mild conditions and

with overwhelming probability, the nuclear norm minimization

(NNM) technique achieves the same solution as the original

rank minimization approach [16]–[18].

Other approaches toward rank minimization consist of either

alternative solvers instead of SDP in NNM or approximating

the rank function using other forms rather than the nuclear

norm. The FPCA method belongs to the first category and

uses fixed point and Bergman iterative algorithm to solve

NNM [19]. Among the examples of the second category,

one can name LMaFit [20], BiG-AMP [21], and OptSpace

[22]. It is also possible to generalize the greedy methods of

compressive sensing to the rank minimization problem; for

instance, ADMiRA [23] generalizes the CoSaMP [24].

In this work, we introduce an iterative method that is based

on approximating the rank function. However, in contrast to

previous methods, the approximation is continuous and differ-

entiable, is made finer at each iteration, and, asymptotically,

will coincide with the rank function. Our method is inspired

by the work of Mohimani et al [25] which uses smoothed ℓ0-

norm1 to obtain sparse solutions of underdetermined system of

linear equations. Nevertheless, the way SRF is extended from

[25], and, particularly, the performance guarantees that are pro-

vided are among the contribution of our paper. Furthermore, in

generalizing the method of [25] to the ARM problem, we need

to derive the gradient of the rank approximating functions in

a closed form which is another novelty of the current work.

A few preliminary results of this work have been presented

in the conference paper [26]. While [26] was only devoted

to the matrix completion problem, the current paper focuses

on the more general problem of affine rank minimization.

Furthermore, here, we present mathematical and experimen-

tal convergence analysis, and consider more comprehensive

numerical evaluation scenarios.

The reminder of this paper is organized as follows. In

Section II, the ARM problem is formulated, and in Section III,

the SRF algorithm is introduced. Section IV is devoted to

analyze the convergence properties of the SRF algorithm. In

Section V, some experimental results of our algorithm are

provided, and it will be compared empirically against some

well known algorithms. Finally, Section VI concludes the

paper.

II. PROBLEM FORMULATION

The affine rank minimization problem generally is formu-

lated as

min
X

rank(X) subject to A(X) = b, (1)

where X ∈ R
n1×n2 is the decision variable, A : Rn1×n2 →

R
m is a known linear operator, and b ∈ R

m is the observed

measurement vector. The affine constraints A(X) = b can be

converted to

A vec(X) = b, (2)

1ℓ0-norm, not mathematically a vector norm, denotes the number of non-
zero elements of a vector.

where A ∈ R
m×n1n2 denotes the matrix representation of the

linear operator A and vec(X) denotes the vector in R
n1n2

with the columns of X stacked on top of one another.

The special case of matrix completion corresponds to the

setting

min
X

rank(X) subject to [X]ij = [M]ij ∀(i, j) ∈ Ω, (3)

where X is as in (1), M ∈ R
n1×n2 is the matrix whose entries

are partially observed, Ω ⊂ {1, 2, ..., n1}×{1, 2, ..., n2} is the

set of the indexes of the observed entries of M, and [X]ij
is the (i, j)-th entry of X. Indeed, the constraints [X]ij =
[M]ij ,∀(i, j) ∈ Ω is an affine mapping which keeps some of

the entries and discards others.

In the nuclear norm minimization, the rank function is

replaced with the nuclear norm of the decision variable,

leading to

min
X
‖X‖∗ subject to A(X) = b, (4)

where ‖X‖∗ ,
∑r

i=1 σi(X) is the nuclear norm, in which

r is the rank of the matrix X, and σi(X) is the i-th largest

singular value of the matrix X. There is a strong parallelism

between this rank minimization and ℓ0-norm minimization in

compressive sensing [1]. In particular, minimizing the rank

is equivalent to minimizing the number of non-zero singular

values. Hence, (1) can be reformulated as

min
X
‖σ(X)‖0 subject to A(X) = b, (5)

where σ(X) = (σ1(X), ..., σn(X))T is the vector of all singu-

lar values, ‖ · ‖0 denotes the ℓ0-norm, and n = min(n1, n2).
2

Likewise, the nuclear norm is the ℓ1-norm of the singular value

vector where ℓ1-norm of a vector, denoted by ‖ · ‖1, is the

sum of the absolute values of its elements. This suggests the

alternative form of

min
X
‖σ(X)‖1 subject to A(X) = b (6)

for (4). Based on this strong parallel, many results in com-

pressive sensing theory (see for example [27]–[30]) have been

adopted in the rank minimization problem [1], [16], [17], [31].

III. THE PROPOSED ALGORITHM

A. The main idea

Our approach to solve the ARM problem is to approximate

the rank with a continuous and differentiable function, and

then to use a gradient descent algorithm to minimize it. The

approximation is such that the error can be made arbitrarily

small. In contrast, note that the nuclear norm is not differen-

tiable [32] and its approximation error depends on the singular

values of the matrix and cannot be controlled.

Instead of using a fixed approximation, we use a family

Gδ : Rn1×n2 → R
+ of approximations, where the index δ is

a measure of approximation error and reflects the accuracy.

The smaller δ, the closer behavior of Gδ to the rank. For

instance, G0 stands for the errorless approximation; i.e., G0

2Note that just r entries of σ(X) are non-zero where r is the rank of the
matrix X.
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coincides with the rank function. We constrain the family to

be continuous with respect to δ. This helps in achieving the

rank minimizer (G0) by gradually decreasing δ. Besides, to

facilitate finding the minimizers of the relaxed problem, we

require the Gδ’s for δ > 0 to be differentiable with respect to

the input matrix.

In order to introduce suitable Gδ families, we specify

certain families of one-dimensional functions that approximate

Kronecker delta function.

Assumption 1: Let f : R → [0, 1] and define fδ(x) =
f(x/δ) for all δ > 0. The class {fδ} is said to satisfy the

Assumption 1, if

(a) f is real, symmetric unimodal, and analytic,

(b) f(x) = 1⇔ x = 0,

(c) f ′′(0) < 0, and

(d) lim|x|→∞ f(x) = 0.

It follows from Assumption 1 that x = 0 is the unique

mode of all fδ’s. This implies that f ′
δ(0) = 0 for δ 6= 0. In

addition, {fδ} converge pointwise to Kronecker delta function

as δ → 0, i.e.,

lim
δ→0

fδ(x) =

{
0 if x 6= 0,

1 if x = 0.
(7)

The class of Gaussian functions, which is of special interest

in this paper, is defined as

fδ(x) = exp(− x2

2δ2
). (8)

It is not difficult to verify the constraints of Assumption 1 for

this class. Other examples include fδ(x) = 1− tanh( x2

2δ2 ) and

fδ(x) =
δ2

x2+δ2 .

To extend the domain of {fδ} to matrices, let define

Fδ(X) = hδ

(
σ(X)

)
=

n∑

i=1

fδ
(
σi(X)

)
, (9)

where n = min(n1, n2) and hδ : R
n → R is defined as

hδ(x) =
∑n

i=1 fδ(xi). Since fδ is an approximate Kronecker

delta function, Fδ(X) yields an estimate of the number of zero

singular values of X. Consequently, it can be concluded that

rank(X) ≈ n−Fδ(X), and the ARM problem can be relaxed

to

min
X

(
Gδ(X) = n− Fδ(X)

)
subject to A(X) = b, (10)

or equivalently

max
X

Fδ(X) subject to A(X) = b. (11)

The advantage of maximizing Fδ compared to minimizing

the rank is that Fδ is smooth and we can apply gradient

methods. However, for small values of δ where Gδ is a

relatively good approximate of the rank function, Fδ has many

local maxima, which are likely to trap gradient methods.

To avoid local maxima3, we initially apply a large δ. Indeed,

we will show in Theorem 2 that under, Assumption 1, Fδ

3For any finite δ > 0, Fδ(·) is not a concave function, and, throughout the
paper, a local maximum of Fδ(·) denotes a point which is locally and not, at
the same time, globally maximum.

becomes concave as δ → ∞ and (11) will have a unique so-

lution. Then we gradually decrease δ to improve the accuracy

of approximation. For each new value of δ, we initialize the

maximization of Fδ with the result of (11) for the previous

value of δ. From the continuity of {fδ} with respect to δ, it is

expected that the solutions of (11) for δi and δi+1 are close,

when δi and δi+1 are close. In this fashion, the chance of

finding a local maximum instead of a global one is decreased.

This approach for optimizing non-convex functions is known

as Graduated Non-Convexity (GNC) [33], and was used in [25]

to minimize functions approximating the ℓ0-norm.

B. Gradient Projection

For each δ in the decreasing sequence, to maximize Fδ

with equality constraints, we use the Gradient Projection (GP)

technique [34]. In GP, the search path at each iteration is

obtained by projecting back the ascent (or descent) direction

onto the feasible set [34]. In other words, at each iteration,

one has X ← P
(
X + µj∇Fδ(X)

)
, where P denotes the

orthogonal projection onto the affine set defined by linear

constraints A(X) = b, and µj is the step–size of the j-th

iteration. As the feasible set is affine, several methods can be

exploited to implement the projection P . For example, one can

store the QR factorization of the matrix implementation of A
for fast implementation of the back projection, or, alternatively,

a least-squares problem can be solved at each step [1]. The

closed form solution of the least-squares problem can be found

in Appendix A.

To complete the GP step, we should derive the gradient

of the approximating functions with respect to the matrix

X. Surprisingly, although σi(X), i = 1, ..., n and ‖X‖∗ are

not differentiable functions of X [32], the following theorem

shows that one can find functions Fδ = hδ ◦ σ(X) which

are differentiable under the absolutely symmetricity of the

hδ . Before stating the theorem, recall that a function f :
R

q → [−∞,+∞] is called absolutely symmetric [35] if f(x)
is invariant under arbitrary permutations and sign changes of

the components of x.

Theorem 1: Suppose that Fδ : R
n1×n2 → R is rep-

resented as Fδ(X) = hδ

(
σ(X)

)
= hδ ◦ σ(X), where

X ∈ R
n1×n2 with the Singular Value Decomposition (SVD)

X = Udiag(σ1, ..., σn)V
T , σ(X) : Rn1×n2 → R

n has the

SVs of the matrix X, n = min(n1, n2), and hδ : Rn → R is

absolutely symmetric and differentiable. Then the gradient of

Fδ(X) at X is

∂Fδ(X)

∂X
= Udiag(θ)VT , (12)

where θ = ∂hδ(y)
∂y |y=σ(X) denotes the gradient of hδ at σ(X).

Informal Proof : In [35, Cor. 2.5], it is shown that if a

function hδ is absolutely symmetric and the matrix X has

σ(X) in the domain of hδ , then the subdifferential4 of Fδ is

given by

∂
(
hδ ◦ σ(X)

)
= {Udiag(θ)VT |θ ∈ ∂hδ

(
σ(X)

)
}. (13)

4To see the definition of subdifferential and subgradient of non-convex
functions, refer to [36, Sec. 3].
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Since hδ is differentiable, ∂hδ

(
σ(X)

)
is a singleton and

consequently ∂
(
hδ ◦ σ(X)

)
becomes a singleton. When the

subdifferential of a non-convex function becomes singleton,

the function is intuitively expected to be differentiable with

the subgradient as its gradient.5 Nevertheless, to the best of

our knowledge, there is no formal proof. Provided that this

intuition is true, then ∂
(
hδ ◦ σ(X)

)
will be converted to

∇
(
hδ ◦ σ(X)

)
and equation (12) is obtained.

Formal Proof: Equation (12) can be obtained directly

from the “if part” of [35, Thm. 3.1], which does not require

convexity of hδ as stated in its proof.

Corollary 1: For the Gaussian function family given in (8),

the gradient of Fδ(X) at X is

∂Fδ(X)

∂X
= Udiag(−σ1

δ2
e−σ2

1
/2δ2 , ...,−σn

δ2
e−σ2

n
/2δ2)VT .

(14)

Proof: fδ is an even function for the Gaussian family;

therefore, hδ becomes an absolutely symmetric function. As a

result, Theorem 1 proves (14).

C. Initialization

Naturally, we initialize the GNC procedure by the solution

of (11) corresponding to δ →∞. This solution can be found

from the following theorem.

Theorem 2: Consider a class of one variable functions {fδ}
satisfying the Assumption 1. For the rank approximation

problem (11), let X̃ = argmin{‖X‖F | A(X) = b}, then

lim
δ→∞

argmax{Fδ(X) | A(X) = b} = X̃, (15)

where ‖ · ‖F denotes the matrix Frobenius norm.

There is a simple interpretation of the solution of (11) for

the Gaussian family when δ approaches ∞. As e−x ≈ 1− x
for small values of x,

Fδ(X) =
n∑

i=1

e−σ2

i
(X)/2δ2 ≈ n−

n∑

i=1

σ2
i (X)/δ2

for δ ≫ σi(X). Consequently,

argmax{Fδ(X) | A(X) = b} ≈

argmin{
n∑

i=1

σ2
i (X)|A(X)=b}=argmin{‖X‖F |A(X)=b}.

The proof is left to Appendix B.

The following Corollary is an immediate result of the above

theorem.

Corollary 2: For the matrix completion problem, the ini-

tial solution of the SRF algorithm is X̃ with the following

definition:

[X̃]ij =

{
[M]ij (i, j) ∈ Ω,

0 (i, j) /∈ Ω.
, (16)

where M and Ω are as defined in (3).

• Initialization:

1) Let X̂0 = argmin{‖X‖F | A(X) = b} as the initial
solution.

2) Choose a suitable decreasing sequence of δ,
{δ1, δ2, . . .}; e.g., δj = cδj−1, j ≥ 2.

3) Choose ǫ as the stopping threshold.
4) Choose suitable L (Number of internal loop iteration)

and µ, and initialize j with 1.

• While d > ǫ
1) Let δ = δj .
2) Internal maximization loop:

– Initialization: X = X̂j−1.
– For ℓ = 1 . . . L,

a) Compute the SVD of

X = Udiag(σ1, . . . , σn)V
T .

b) Let

D = Udiag(−σ1e
−σ2

1
/2δ2 , . . . ,

−σne
−σ2

n
/2δ2)VT .

c) X← X+ µD.
d) Project X back onto the feasible set:

X← P(X).

3) Set X̂j = X.

4) d = ‖X̂j − X̂j−1‖F /
√
n1n2.

5) j ← j + 1.

• Final answer is X̂j .

Fig. 1. The SRF Algorithm.

D. The Final Algorithm

The final algorithm is obtained by applying the main idea,

initial solution, and gradient projection to the Gaussian func-

tion given in (8). Fig. 1 depicts the algorithm. In the sequel,

we briefly review some remarks about the parameters used in

the implementation of the algorithm. Most of these remarks

correspond to similar remarks for the SL0 algorithm [25] and

are presented here for the sake of completeness.

Remark 1. It is not necessary to wait for the convergence

of the internal steepest ascent loop because as explained in

Section III-A for each value of δ, it is just needed to get

close to the global maximizer of Fδ to avoid local maxima.

Therefore, the internal loop is only repeated for a fixed number

of times (L).

Remark 2. After initiating the algorithm with the mini-

mum Frobenius norm solution, the first value of δ may be

set to about two to four times of the largest SV of X̂0

(the initial guess). If we take δ > 4maxi
(
σi(X̂0)

)
, then

exp
(
− σ2

i (X̂0)/2δ
2
)
> 0.97 ≈ 1 for 1 ≤ i ≤ n. Thus, this

δ value acts virtually like ∞ for all SVs of X̂0. In addition,

the decreasing sequence can be adjusted to δj = cδj−1, j ≥ 2,

where c generally is chosen between 0.5 and 1.

Remark 3. This remark is devoted to the selection of µj ,

step–size parameter. Typically, in a gradient ascent algorithm,

µj should be chosen small enough to follow the ascent

5For a convex function, the subdifferential is singleton iff the function is
differentiable [37].



5

direction. Furthermore, reducing δ results in more fluctuating

behaviour of the rank approximating function. Therefore, to

avoid large steps which cause jumps over the maximizer, one

should choose smaller values of step–size for smaller values of

δ. Following the same reasoning as in [25, Remark 2], a good

choice is to decrease µj proportional to δ2; that is, µj = µδ2,

where µ is a constant. sBy letting µj = µδ2, the gradient step

can be reduced to

X← X− µUdiag(σ1e
−σ2

1
/2δ2 , . . . , σne

−σ2

n
/2δ2)VT .

Remark 4. The distance between the solutions at the two

consecutive iterations is the criterion to stop the algorithm.

That is, if d , ‖X̂j − X̂j−1‖F /
√
n1n2 is smaller than some

tolerance (ǫ), the iterations are ended and X̂j becomes the

final solution.

IV. CONVERGENCE ANALYSIS

Noting that the original problem is NP-hard and we are

dealing with maximizing non-concave functions, a complete

and thorough convergence analysis would be beyond the scope

of this paper. We believe that similar to [38] which examines

the global convergence properties of the SL0 algorithm [25],

it would be possible to analyze the convergence of the SRF

algorithm to the global solution. However, in this paper, we

only study a simplified convergence analysis, and the complete

analysis is left for a future work.

For the simplified analysis, in the sequel, it is assumed that

the internal loop has been converged to the global maximum,

and we prove that this global solution converges to the

minimum rank solution as δ goes to zero. This analysis helps

us to characterize the conditions under which

lim
δ→0

argmax{Fδ(X) | A(X) = b} (17)

is equivalent to

argmax{ lim
δ→0

Fδ(X) | A(X) = b}. (18)

The equivalence of (17) and (18) is of particular importance

since it shows that the idea of SRF corresponding to optimiza-

tion of (17) is indeed the case and leads to finding the solution

of program (18) which is identical to the original affine rank

minimization problem defined in (1).

The following results and proofs are not direct extension of

the convergence results of [25] and are more tricky to obtain,

though our exposition follows the same line of presentation.

We start the convergence analysis by the definition of

Spherical Section Property (SSP), used in the analysis of

uniqueness of the rank and nuclear norm minimization [16],

and a lemma which makes this abstract definition clearer.

Definition 1: Spherical Section Property [16], [39]. The

spherical section constant of a linear operator A : Rn1×n2 →
R

m is defined as

∆(A) = min
Z∈null(A)\{0}

‖Z‖2∗
‖Z‖2F

. (19)

Further, A is said to have the ∆-spherical section property if

∆(A) ≥ ∆.

Definition 1 extends a similar concept in the compressive

sensing framework where it is shown that many randomly gen-

erated sensing matrices possesses SSP with high probability

[30]. Although extending a similar theoretical result to the

matrix case is a topic of interest, [39] proves that if all entries

of the matrix representation of A are identically and inde-

pendently distributed (i.i.d.) from a zero-mean, unit-variance

Gaussian distribution, then, under some mild conditions, A
possesses the ∆-spherical section property with overwhelming

probability.

Lemma 1: Assume A has the ∆-spherical section property.

Then for any X ∈ null(A) \ {0}, we have rank(X) ≥ ∆.

Proof: Since X belongs to null(A), one can write

‖X‖∗
‖X‖F

≥
√
∆⇒ ‖X‖∗ ≥

√
∆‖X‖F .

It is also known that
√
rank(X)‖X‖F ≥ ‖X‖∗, see for

example [40]. Putting them together, we have

‖X‖∗ ≥
√
∆

‖X‖∗√
rank(X)

⇒ rank(X) ≥ ∆

or rank(X) ≥ ⌈∆⌉, where ⌈∆⌉ denotes the smallest integer

greater than or equal to ∆.

The above lemma shows that if ∆ is large, the null space

of A does not include low rank matrices. Such subspaces are

also known as almost Euclidean subspaces [30], in which the

ratio of ℓ1-norm to ℓ2-norm of elements cannot be small.

Theorem 3 ([39]): Suppose A has the ∆-spherical prop-

erty, and X0 ∈ R
n1×n2 satisfies A(X0) = b. If rank(X0) <

∆
2 , then X0 is the unique solution of problem (1).

Lemma 2: Assume A : Rn1×n2 → R
m has the ∆-spherical

section property, and set n = min(n1, n2). Let X be any

element in null(A) and σ1, ..., σn represent its singular values.

Then for any subset I of {1, ..., n} such that |I|+∆ > n,
∑

i∈I σi

(
∑n

i=1 σ
2
i )

0.5
≥
√
∆−

√
n− |I|, (20)

where | · | denotes the cardinality of a set.

Proof: If I = {1, ..., n}, then it is clear that∑
n

i=1
σi

(
∑

n

i=1
σ2

i
)0.5
≥
√
∆, since the ∆-spherical section property

holds. Otherwise, if |I| < n, the ∆-spherical section property

implies that

√
∆ ≤ ‖X‖∗‖X‖F

=

∑n
i=1 σi

(
∑n

i=1 σ
2
i )

0.5
.

For the sake of simplicity, let us define

αi =
σi

(
∑n

i=1 σ
2
i )

0.5
.

This shows that

1 =
n∑

i=1

α2
i ≥

∑

i/∈I

α2
i ≥

(
∑

i/∈I αi)
2

n− |I| ,

where we used the inequality ∀z ∈ R
p, ‖z‖21 ≤ p‖z‖22 [40].

Hence, it can be concluded that
∑

i/∈I

αi ≤
√
n− |I|.
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On the other hand, it is known that

√
∆ ≤

∑

i∈I

αi +
∑

i/∈I

αi ≤
∑

i∈I

αi +
√

n− |I|,

which confirms that
∑

i∈I σi

(
∑n

i=1 σ
2
i )

0.5
=

∑

i∈I

αi ≥
√
∆−

√
n− |I|.

Corollary 3: If A : R
n1×n2 → R

m has the ∆-spherical

section property, n = min(n1, n2), and X ∈ null(A) has at

most ⌈∆− 1⌉ singular values greater than α, then

‖X‖F ≤
nα√

∆−
√
⌈∆− 1⌉

.

Proof: At least n−⌈∆−1⌉ singular values of X are less

than or equal to α. If I denotes the indices of singular values

not greater than α, then by using Lemma 2, we will have
∑

i∈I σi

(
∑n

i=1 σ
2
i )

0.5
≥
√
∆−

√
n− n+ ⌈∆− 1⌉ ⇒

‖X‖F (
√
∆−

√
⌈∆− 1⌉) ≤

∑

i∈I

σi ≤ nα,

which proves that

‖X‖F ≤
nα√

∆−
√
⌈∆− 1⌉

.

Lemma 3: Assume A : Rn1×n2 → R
m has the ∆-spherical

section property, fδ(·) is a member of the class that satisfies

Assumption 1, and define Fδ as in (9) and n = min(n1, n2).
Let X = {X|A(X) = b} contain a solution X0 with

rank(X0) = r0 < ∆
2 . Then for any X̂ ∈ X that satisfies

Fδ(X̂) ≥ n− (⌈∆− 1⌉ − r0) , (21)

we have that

‖X0 − X̂‖F ≤
nαδ√

∆−
√
⌈∆− 1⌉

,

where αδ =
∣∣f−1

δ ( 1n )
∣∣.

Proof: First, note that due to Assumption 1, fδ(x) takes

all the values in ]0, 1[ exactly twice; once with a positive x
and once with a negative one. Because of the symmetry, the

two have the same modulus; therefore, αδ is well-defined.

Let us denote the singular values of X0 and X̂ by σ1 ≥
· · · ≥ σn and σ̂1 ≥ · · · ≥ σ̂n, respectively. Define Iα as the

set of indices i for which σ̂i > αδ . Now, we have that

Fδ(X̂) =
n∑

i=1

fδ(σ̂i)

=
∑

i∈Iα

fδ(σ̂i)︸ ︷︷ ︸
< 1

n︸ ︷︷ ︸
<n 1

n
=1

+
∑

i/∈Iα

fδ(σ̂i)︸ ︷︷ ︸
≤1︸ ︷︷ ︸

≤n−|Iα|

< n− |Iα|+ 1.

On the other hand, Fδ(X̂) ≥ n− (⌈∆− 1⌉ − r0); therefore,

n− (⌈∆− 1⌉ − r0) < n− |Iα|+ 1

⇒ |Iα| < (⌈∆− 1⌉ − r0) + 1

⇒ |Iα| ≤ ⌈∆− 1⌉ − r0.

This means that at most ⌈∆ − 1⌉ − r0 singular values of X̂

are greater than αδ . Define

H0 =

[
0 X0

XT
0 0

]
, Ĥ =

[
0 X̂

X̂T 0

]
.

In fact, H0 and Ĥ are symmetric matrices that contain the

singular values of X0 and X̂, respectively, as their n largest

eigenvalues and their negatives as the n smallest eigenvalues

[40]. Next, we apply Weyl’s eigenvalue inequality [40] as

λ⌈∆−1⌉+1(H0 − Ĥ) ≤ λr0+1(H0) + λ⌈∆−1⌉−r0+1(−Ĥ)

= σr0+1 + σ̂⌈∆−1⌉−r0+1

= σ̂⌈∆−1⌉−r0+1 ≤ αδ,

where λi(·) stands for the i-th largest eigenvalue. This reveals

the fact that (X0 − X̂) has at most ⌈∆ − 1⌉ singular values

greater than αδ . Since (X0 − X̂) is in the null space of A,

Corollary 3 implies that

‖X0 − X̂‖F ≤
nαδ√

∆−
√
⌈∆− 1⌉

.

Corollary 4: For the Gaussian function family given in (8),

if (21) holds for a solution X̂ ∈ X , then

‖X̂−X0‖F ≤
nδ
√
2 lnn√

∆−
√
⌈∆− 1⌉

.

Lemma 4: Let fδ, Fδ,X , and,X0 be as defined in Lemma 3

and assume Xδ be the maximizer of Fδ(X) on X . Then Xδ

satisfies (21).

Proof: One can write that

Fδ(Xδ) ≥ Fδ(X0)

≥ n− r0

≥ n− (⌈∆− 1⌉ − r0) .

The first inequality comes from the fact that Xδ is the

maximizer of the Fδ(X), and the second one is true because

X0 has (n − r0) singular values equal to zero; thus, in the

summation Fδ(X) =
∑n

i=1 fδ(σi), there are (n − r0) ones.

Hence, Fδ(X0) ≥ n− r0. To see the last inequality, note that

2r0 < ∆ and ∆ ≤ ⌈∆ − 1⌉ + 1. Thus, it can be concluded

that 2r0 < ⌈∆ − 1⌉ + 1 which results in 2r0 ≤ ⌈∆ − 1⌉
because r0 ∈ N. Finally, r0 ≤ ⌈∆ − 1⌉ − r0 which implies

that n− (⌈∆− 1⌉ − r0) ≤ n− r0.

Lemma 4 and Corollary 4 together prove that for the

Gaussian family,

lim
δ→0

argmax{Fδ(X) | A(X) = b} = X0.

In Theorem 4, we extend this result to all function classes that

satisfy Assumption 1.
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Theorem 4: Suppose A : R
n1×n2 → R

m has the ∆-

spherical property and {fδ} satisfies Assumption 1, and define

X , Fδ, and X0 as in Lemma 3. If Xδ represents the maxi-

mizer of Fδ(X) over X , then

lim
δ→0

Xδ = X0.

Proof: By combining Lemma 3 and Lemma 4, we obtain

that

‖X0 −Xδ‖F ≤
nαδ√

∆−
√
⌈∆− 1⌉

, (22)

where αδ =
∣∣f−1

δ ( 1n )
∣∣. The consequence of Assumption 1 in

(7) shows that for any ǫ > 0 and 0 < x < 1, one can set δ
sufficiently small such that

∣∣f−1
δ (x)

∣∣ < ǫ. Therefore,

lim
δ→0

αδ = lim
δ→0

∣∣∣∣f
−1
δ

(
1

n

)∣∣∣∣ = 0.

This yields

lim
δ→0
‖X0 −Xδ‖F = 0.

V. NUMERICAL SIMULATIONS

In this section, the performance of the SRF algorithm is

evaluated empirically through simulations and is compared

to some other algorithms. In the first part of numerical

experiments, effects of the algorithm parameters (L, c, and ǫ)
in reconstruction accuracy are studied. Next, in the second

part, the so called phase transition curve [1] between per-

fect recovery and failure is experimentally obtained for the

SRF algorithm and is compared to that of the nuclear norm

minimization. In the third part of simulations, accuracy and

computational load of the SRF algorithm in solving the matrix

completion problem are compared to five well known matrix

completion algorithms. Finally, in the fourth part, robustness

of the SRF against the measurement noise is experimentally

verified.

To generate a testing random matrix X ∈ R
n1×n2 of rank

r, the following procedure is used. We generate two random

matrices XL ∈ R
n1×r and XR ∈ R

r×n2 whose entries

are independently and identically drawn from a Gaussian

distribution with zero mean and unit variance. Then X is

constructed as the product of XL and XR, i.e., X = XLXR.

Let A ∈ R
m×n1n2 denote the matrix representation of A

introduced in (2). In the affine rank minimization problems,

all entries of A are drawn independently and identically from

a zero-mean, unit-variance Gaussian distribution. Moreover,

in the matrix completion simulations, the index set Ω of

revealed entries is selected uniformly at random. We denote the

result of the SRF algorithm by X̂ and measure its accuracy

by SNRrec = 20 log10(‖X‖F /‖X − X̂‖F ) in dB, which is

referred to as the reconstruction SNR. In addition, by term

easy problems, we mean problems in which the ratio m/dr is

greater than 3, where dr = r(n1+n2−r) denotes the number

of degrees of freedom in a real-valued rank–r matrix [2].

When this ratio is lower than or equal to 3, it is called a

hard problem.

In all experiments, the parameter µ is fixed at 1, and we use

a decreasing sequence of δ’s according to δj = cδj−1, j ≥ 2,

where 0 < c < 1 denotes the rate of decay. The value of δ1
is set twice as large as the largest singular value of the initial

estimate. For the sake of simplicity, square matrices are tested,

so n1 = n2 = n.

Our simulations are performed in MATLAB 8 environment

using an Intel Core i7, 2.6 GHz processor with 8 GB of RAM,

under Microsoft Windows 7 operating system.

A. Parameters Effects

Experiment 1. As already discussed in Section III-A, it is

not necessary to wait for complete convergence of the internal

optimization loop. Instead, a few iterations suffice to only

move toward the global maximizer for the current value of δ.

Thus, we suggested to do the internal loop for fixed L times.

However, the optimal choice of L depends on the aspects of

the problem at hand. As a rule of thumb, when the problem

becomes harder, i.e., the number of measurements decreases

toward the degrees of freedom, larger values of L should

be used. Likewise, for easier problems, smaller values of L
decrease the computational load of the algorithm, while the

accuracy will not degrade very much.

To see the above rule, the affine rank minimization problem

defined in (1) is solved using the SRF algorithm, while

changing the parameter L. We put n = 30, r = 3, ǫ = 10−5,

and c = 0.9. The number of measurements changes from

250 to 500 to cover both easy and hard problems. To obtain

accurate SNRrec estimates, the trials are repeated 100 times.

Fig. 2 shows the effects of changing L from 1 to 10. It can

be concluded from Fig. 2 that for easy and hard problems,

there is a threshold value for L, which choosing L beyond

it can only slightly improves reconstruction SNR. However,

in our simulations, we found that increasing the L boosts the

computation time almost linearly. For instance, when m = 500
and L = 1, the average computation time is about 0.5 sec,

while this time increases to about 1.2 sec for L = 5 and to

about 2.2 sec for L = 10.

Experiment 2. The next experiment is devoted to the depen-

dence of the accuracy of the SRF algorithm on the parameter

c. In this experiment, the dimensions of the matrix are the

same as the in previous experiment, and L and ǫ are fixed to

8 and 10−5, respectively. Affine rank minimization and matrix

completion problems are solved with two different number of

measurements to show the effect on different conditions. c is

changed from 0.15 to 0.95, SNRrec’s are averaged on 100 runs.

Fig. 3 depicts the reconstruction SNR versus the parameter c
for different problems. It is obvious that SNR increases as c
approaches 1. However, when c exceeds a critical value, SNR

remains almost constant.

Generally, the optimal choice of c depends on the criterion

which aimed to be optimized. When accuracy is the key

criterion, c should be chosen close to 1, which results in slow

decay in the sequence of δ and a higher computational time.

Experiment 3. In this experiment, the effect of ǫ on the

accuracy of the algorithm is analyzed. All dimensions and

parameters are the same as in the experiment 2 except c and
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Fig. 2. Averaged SNRrec of the SRF algorithm in solving the ARM problem
versus L. Matrix dimensions are fixed to 30 × 30, and r is set to 3. The
parameter c and ǫ are set to 0.9 and 10−5, respectively, to have small effect
on this analysis. SNR’s are averaged over 100 runs.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

c

R
ec
o
n
st
ru
ct
io
n
S
N
R
(d
B
)

 

 
MC, m=550
MC, m=450
RM, m=400
RM, m=300

Fig. 3. Averaged SNRrec of the SRF algorithm as a function of c. Matrix
dimensions are fixed to 30× 30 and r is set to 3. The parameter L and ǫ are
set to 8 and 10−5, respectively, to have small effect on this analysis. SNR’s
are averaged over 100 runs. ‘MC’ and ‘RM’ denote the matrix completion
and affine rank minimization problems, respectively. For two MC problems,
m is set to 450 and 550, and for two RM problems, m is set to 300 and
400.

ǫ. c is fixed to 0.9, and ǫ is changed from 10−1 to 10−6. The

result of this experiment is shown in Fig. 4. It is seen that

after passing a critical value, logarithmic reconstruction SNR

increases almost linearly as ǫ decreases linearly in logarithmic

scale. Hence, it can be concluded that ǫ controls the closeness

of the final solution to the minimum rank solution.

B. Phase Transition Curve

Experiment 4. To the best of our knowledge, the tight-

est available bound on the number of required samples for

the NNM to find the minimum rank solution is two times

greater than that of the rank minimization problem [16].

More precisely, for the given linear operator which has a

null space with ∆-spherical section property, (1) has a unique
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Fig. 4. Averaged SNRrec of the SRF algorithm as a function of ǫ. Matrix
dimensions are fixed to 30 × 30 and r is set to 3. The parameter L and c
are set to 8 and 0.9, respectively, to have small effect on this analysis. SNR’s
are averaged over 100 runs. ǫ is changed from 10−1 to 10−6. ‘MC’ and
‘RM’ denote the matrix completion and affine rank minimization problems,
respectively. For two MC problems, m is set to 450 and 550, and for two
RM problems, m is set to 300 and 400.

solution if rank(X0) < ∆/2, while (4) and (1) share a

common solution if rank(X0) < ∆/4. Our main goal, in this

experiment, is to show that the SRF algorithm can recover the

solution in situations where nuclear norm minimization fails.

In other words, this algorithm can get closer to the intrinsic

bound in recovery of low-rank matrices. The computational

cost of the SRF algorithm will be compared to an efficient

implementation of the nuclear norm minimization in the next

experiment.

Like compressive sensing literature, the phase transition can

be used to indicate the region of perfect recovery and fail-

ure [1]. Fig. 5 shows the results of applying the proposed algo-

rithm on the affine rank minimization. A solution is declared to

be recovered if reconstruction SNR is greater than 60 dB. The

matrix dimension is 40 × 40, ǫ = 10−5, L = 6, and c = 0.9.

Simulations are repeated 50 times. The gray color of cells

indicates the empirical recovery rate. White denotes perfect

recovery in all trials, and black shows unsuccessful recovery

for all experiments. Furthermore, the thin trace on the figure

shows a theoretical bound in recovery of low rank solutions

via the nuclear norm minimization found in [17]. In [17], it

is shown that this bound is very consistent to the numerical

simulations; thus, we use it for the sake of comparison. One

can see in Fig. 5 that there is a very clear gap between this

bound and phase transition of the SRF algorithm.

C. Matrix Completion

Experiment 5. The accuracy and computational costs of the

proposed algorithm in solving the matrix completion problem

are analyzed and compared to five other methods. Among

many available approaches, IALM [41], APG [42], LMaFit

[20], BiG-AMP [21], and OptSpace [22] are selected as

competitors. IALM and APG are efficient implementations

of the NNM and can obtain very accurate results with low
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Fig. 5. Phase transition of the SRF algorithm in solving the ARM problem.
n = 40, ǫ = 10−5, L = 6, c = 0.9, and simulations are performed 50 times.
Gray-scale color of each cell indicates the rate of perfect recovery. White
denotes 100% recovery rate, and black denotes 0% recovery rate. A recovery
is perfect if the SNRrec is greater than 60 dB. The red trace shows the so
called weak bound derived in [17] for the number of required measurements
for perfect recovery of low rank matrix using the nuclear norm heuristics.

complexity [41], [42], while other selected methods are only

applicable to the MC setting and exploit other heuristics

rather than the nuclear norm to find a low-rank solution.

LMaFit, which is known to be very fast in completing partially

observed matrices, uses a nonlinear successive over-relaxation

algorithm [20]. BiG-AMP extends the generalized approxi-

mate message passing algorithm in the compressive sensing

to the matrix completion and outperforms many state-of-the-

art algorithms [21]. OptSpace is based on trimming rows and

columns of the incomplete matrix followed by truncation of

some singular values of the trimmed matrix [22].

LMaFit, BiG-AMP, and OptSpace require an accurate esti-

mate of the rank of the solution. MATLAB implementation of

OptSpace6 is provided with a function for estimating the rank

of the solution, and we use it in running OptSpace. Moreover,

LMaFit7 should be initialized with an upperbound on the

rank of the solution which, in our numerical experiments, this

upperbound is set to 1
2n. Also, BiG-AMP8 needs a similar

upperbound to learn the underlying rank, and we pass 1
2n as

the upperbound to the Big-AMP algorithm too.

IALM9, LMaFit, and OptSpace are run by their default

parameters except for tol = 10−9. For APG10, we use default

parameters and set tol and mu_scaling to 10−9 to have

the best achieved SNRrec on the same order of other methods.

SRF is run with ǫ = 10−9, L = 8, and c = 0.95.

Matrix dimensions are fixed to 100×100, and r is set to 8,

16, and 32. To see the performance of the aforementioned

algorithms, SNRrec and execution time are reported as a

6MATLAB code: web.engr.illinois.edu/̃ swoh/software/optspace/code.html
7MATLAB code: lmafit.blogs.rice.edu/
8MATLAB code: sourceforge.net/projects/gampmatlab/
9MATLAB code: perception.csl.illinois.edu/matrix-rank/sample code.html
10MATLAB code: math.nus.edu.sg/̃ mattohkc/NNLS.html

function of m/dr for the three values of the rank. Although

CPU time is not an accurate measure of the computational

costs, we use it as a rough estimate to compare algorithm

complexities. Every simulation is run 100 times, and the

results are averaged.

Fig. 6 demonstrates the results of these comparisons for the

three matrix ranks as a function of number of measurements.

In comparison to BiG-AMP, while SRF starts completing

low-rank matrices with a good accuracy approximately with

the same number of measurements when the rank equals

to 8, once r increases to 16, it needs smaller number of

measurements to successfully recover the solutions. This gap is

widen when r = 32. Furthermore, in all simulated cases, SRF

has lower running time when compared to BiG-AMP except

for starting values of m/dr. SRF also outperforms IALM and

APG, which implement NNM, in terms of accuracy, whereas

its computational complexity is very close to that of APG.

Finally, although the execution time of LMaFit is considerably

lower than that of SRF, it needs much larger number of

measurements to start recovering low-rank solutions. Note

that, here, c is set to 0.95 to accommodate the worst case

scenario of hard problems. However, it can be tuned to speed

up the SRF method, if the working regime is a priori known.

In summary, the significant advantage of SRF is in solv-

ing hard problems where the number of measurements is

approaching to dr. Especially, when the matrix rank increases

(see Fig. 6(b) and 6(c)), SRF can recover the low-rank solution

with at least 20% less number of measurements than other

competitors.

D. Noisy Measurements

Experiment 6. Although the SRF algorithm is designed for

noiseless measurements, we show experimentally that it is

robust against noise. The measurement model can be updated

as

A(X) = b+ ν

in the existence of an additive noise vector ν. To check

the robustness, we set up an experiment with n = 30, r =
3, c = 0.9, ǫ = 10−5. We generate entries of ν as i.i.d.

realizations of a zero-mean Gaussian random variable with unit

variance. We also vary m from dr to 3dr and average SNRrec

over 100 trials. Fig. 7 shows the results of SNRrec vs. the

number of measurements for various measurement SNR values

(SNRmeas = 20 log10(‖b‖2/‖ν‖2)). Except for the noiseless

case where SNRmeas = ∞, we observe that the curves of

SNRrec stagnate almost at the same level as SNRmeas.

VI. CONCLUSION

In this work, a rank minimization technique based on ap-

proximating the rank function and successively improving the

quality of the approximation was proposed. We theoretically

showed that the proposed iterative method asymptotically

achieves the solution to the rank minimization problem, pro-

vided that the middle-stage minimizations are exact. We fur-

ther examined the performance of this method using numerical

simulations. The comparisons against five common methods
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(c) r = 32.

Fig. 6. Comparison of the SRF algorithm with the IALM [41], APG [42], LMaFit [20], BiG-AMP [21], and OptSpace [22] algorithms in terms of accuracy
and execution time in completing low-rank matrices. Averaged SNRrec and execution time of all algorithm are plotted as a function of m/dr . Matrix
dimensions are fixed to 100× 100, and r is set to 8, 16, and 32. Trials are repeated 100 times, and results are averaged.
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Fig. 7. SNRrec versus number of measurements when there is measurement
noise. n = 30, r = 3, c = 0.9, ǫ = 10−5, m is changed from dr to 3dr ,
and results are averaged on 100 runs.

reveal superiority of the proposed technique in terms of

accuracy, especially when the number of affine measurements

decreases toward the unique representation lower-bound. By

providing examples, we even demonstrate the existence of sce-

narios in which the conventional nuclear norm minimization

fails to recover the unique low rank matrix associated with the

linear constraints, while the proposed method succeeds.

APPENDIX A

In this appendix, the closed form least-squares solution of

the orthogonal back projection onto the feasible set is derived.

Let us cast the affine constraints A(X) = b as A vec(X) = b.

The goal is to find the nearest point in the affine set to the

result of the j-th iteration, Xj . Mathematically,

min
X
‖X−Xj‖2F subject to A(X) = b, (23)

or equivalently,

min
X
‖ vec(X)− vec(Xj)‖2 subject to A vec(X) = b, (24)

where ‖ · ‖ denotes vector ℓ2-norm. By putting y = vec(X)−
vec(Xj), the problem (24) can be easily cast as the following

least-squares problem

min
y
‖y‖22 subject to Ay = b−A vec(Xj).

Let A† = AT (AAT )−1 be the Moore-Penrose pseudoin-

verse of A. Then the least-squares solution of (23) will be

X = matn1,n2

(
A†b+ [I−A†A] vec(Xj)

)
, where I denotes

the identity matrix, and matn1,n2
(·) reverses the operation of

vectorization, i.e., matn1,n2

(
vec(X)

)
= X.

APPENDIX B

PROOF OF THEOREM 2

Proof: Let Xδ = argmax{Fδ(X) | A(X) = b}.
To prove limδ→∞ Xδ = X̃, we first focus on singular

values σi(Xδ). Due to Assumption 1, it is known that
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limδ→∞ Fδ(X̃) = n. Thus, for any ǫ ≥ 0, one can set δ large

enough such that Fδ(X̃) ≥ n−ǫ. Note that for any 1 ≤ i ≤ n,

we have that

n− 1 + fδ
(
σi(Xδ)

)
≥ Fδ(Xδ) ≥ Fδ(X̃) ≥ n− ǫ,

or

fδ
(
σi(Xδ)

)
≥ 1− ǫ.

This implies that σi(Xδ) ≤ |f−1
δ (1 − ǫ)| = δ|f−1(1 − ǫ)|.

Hence,

0 ≤ lim
δ→∞

σi(Xδ)

δ
≤

∣∣f−1(1− ǫ)
∣∣, ∀ 0 < ǫ < 1.

By considering the above inequality for ǫ → 0, we conclude

that

lim
δ→∞

σi(Xδ)

δ
= 0, 1 ≤ i ≤ n.

Using the Taylor expansion, we can rewrite f(·) as

f(s) = 1− γs2 + g(s),

where γ = − 1
2f

′′(0) and

lim
s→0

g(s)

s2
= 0. (25)

In turn, Fδ(·) can be rewritten as

Fδ(X) =
n∑

i=1

fδ
(
σi(X)

)

= n− γ

δ2

n∑

i=1

σ2
i (X) +

n∑

i=1

g(σi(X)/δ). (26)

This helps us rewrite Fδ(Xδ) ≥ Fδ(X̃) in the form

γ

δ2

n∑

i=1

σ2
i (Xδ)−

n∑

i=1

g(σi(Xδ)/δ) ≤

γ

δ2

n∑

i=1

σ2
i (X̃)−

n∑

i=1

g(σi(X̃)/δ),

or similarly,

‖σ(Xδ)‖2 − ‖σ(X̃)‖2 ≤
∑n

i=1 g
(
σi(Xδ)/δ

)
− g

(
σi(X̃)/δ

)

γ δ−2

≤ ‖σ(Xδ)‖2
γ

n∑

i=1

∣∣g
(
σi(Xδ)/δ

)∣∣
(
σi(Xδ)/δ

)2

+
‖σ(X̃)‖2

γ

n∑

i=1

∣∣g
(
σi(X̃)/δ

)∣∣
(
σi(X̃)/δ

)2 .

Recalling ‖σ(X)‖2 = ‖X‖2F , we can write that

‖Xδ‖2F ≤ ‖X̃‖2F
1 + 1

γ

(∑n
i=1

∣∣∣ g
(
σi(X̃)/δ

)
(
σi(X̃)/δ

)
2

∣∣∣
)

∣∣∣∣1− 1
γ

(∑n
i=1

∣∣∣ g
(
σi(Xδ)/δ

)
(
σi(Xδ)/δ

)
2

∣∣∣
)∣∣∣∣

. (27)

We also have

lim
δ→∞

σi(X̃)/δ = 0
(25)

==⇒ limδ→∞
g
(
σi(X̃)/δ

)
(
σi(X̃)/δ

)
2 = 0, (28)

lim
δ→∞

σi(Xδ)/δ = 0
(25)

==⇒ limδ→∞
g
(
σi(Xδ)/δ

)
(
σi(Xδ)/δ

)
2 = 0. (29)

Application of (28) and (29) in (27) results in

lim
δ→∞

‖Xδ‖2F ≤ ‖X̃‖2F . (30)

According to the definition of X̃, we have ‖Xδ‖2F ≥
‖X̃‖2F and limδ→∞ ‖Xδ‖2F ≥ ‖X̃‖2F . Combining this result

with (30), we obtain

lim
δ→∞

‖Xδ‖2F = ‖X̃‖2F .

Also, any matrix in null(A) is perpendicular to X̃ since it is

the minimum Frobenius norm solution of the A(X) = b. To

see this, let A∗ : Rm → R
n1×n2 denote the adjoint operator

of A and let B : Rm → R
m denote the inverse of the operator

A(A∗(·)). Then, similar to the vector case, one can show that

X̃ = A∗(B(b)) and ∀Z ∈ null(A), 〈X̃,Z〉 = trace(X̃TZ) =
0. Thus,

‖Xδ‖2F = ‖X̃‖2F + ‖Xδ − X̃‖2F .
In summary, we conclude that limδ→∞ ‖Xδ − X̃‖2F = 0

which establishes limδ→∞ Xδ = X̃.
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