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Abstract: Feature maximization is a cluster quality metric which favors clusters with maximum 
feature representation as regard to their associated data. This metric has already been successfully 
exploited, altogether, for defining unbiased clustering quality indexes, for efficient cluster labeling, as 
well as for substituting to distance in the clustering process, like in the IGNGF incremental clustering 
method. In this paper we go one step further showing that a straightforward adaptation of such metric 
can provide a highly efficient feature selection and feature contrasting model in the context of 
supervised classification. We more especially show that this technique can enhance the performance of 
classification methods whilst very significantly outperforming (+80%) the state-of-the art variable 
selection techniques in the case of the classification of unbalanced, highly multidimensional and noisy 
textual data, with a high degree of similarity between the classes. Our experimental dataset is a 
reference dataset of 7000 publications related to patents classes issued from a reference classification 
in the domain of pharmacology. 
 

Introduction 

Since the 1990s, advances in computing and storage capacity allow the manipulation of very large 
data. Whether in bio-informatics or in text mining, it is not uncommon to have description space 
of several thousand or even tens of thousands of variables. One might think that classification 
algorithms are more efficient if there are a large number of variables. However, the situation is not 
as simple as this. The first problem that arises is the increase in computation time. Moreover, the 
fact that a significant number of variables are redundant or irrelevant to the task of classification 
significantly perturbs the operation of the classifiers. In addition, as soon as most learning 
algorithms exploit probabilities, probability distributions can be difficult to estimate in the case of 
the presence of a very high number of variables. The integration of a variable selection process in 
the framework of the classification of high dimensional data becomes thus a central challenge. 
 

In the literature, three types of approaches for variable selection are mainly proposed: the 
integrated (embedded) approaches, the "wrapper" methods and the filter approaches. An 
exhaustive overview of the state-of-the-art techniques in this domain has been achieved by many 
authors, like Ladha et al. [LAD 11], Bolón-Canedo et al. [BOL 12] Guyon et al. [GUY 03] or 
Daviet [DAV 09]. We thus only provide hereafter a rapid overview of existing approaches and 
related methods.  
 

The integrated (embedded) approaches incorporate the selection of the variables in the learning 
process [BRE 84]. The most popular methods of this category are the SVM based methods and 
the neural based methods. SVM-EFR (Recursive Feature Elimination for Support Vector 
Machines) [GUY 02] is an integrated process that performs the selection of variables an iterative 
basis using a SVM classifier. The process starts with the complete feature set and remove the 
variables given as the least important by the SVM. The original version uses a linear kernel. 
However, some extension using non-linear kernels have been proposed to consider potential non-
linear dependencies between variables. In an alternative way, the basic idea of the approaches of 
the FS-P (Feature Selection-Perceptron) family is to perform a supervised learning based on a 
perceptron neural model and to exploit the resulting interconnection weights between neurons as 
indicators of the feature that may be relevant and provide a ranking [MEJ 06]. 



On their own side, "wrapper" methods explicitly use a performance criterion for searching a 
subset of relevant predictors. More often it's error rate (but this can be a prediction cost or the area 
under the ROC curve). As an example, the WrapperSubsetEval method evaluates the attribute sets 
using a learning approach. Cross-Validation is used to estimate the accuracy of the learning for a 
given set of attributes. The algorithm starts with the empty set of attributes and continues until 
adding attributes does not improve performance [WIT 05]. 
 

Forman presents a remarkable work of methods comparison in [FOR 03]. As other similar works, 
this comparison clearly highlights that, disregarding of their efficiency, one of the main 
drawbacks of embedded and of the wrapper methods is that they are very computationally 
intensive. This prohibits their use in the case of highly multidimensional data description space. A 
potential alternative is thus to exploit filter-based methods in such context. 
 

Filter approaches are selection procedures that are used prior and independently to the learning 
algorithm. They are based on statistical tests. They are thus lighter in terms of computation time 
than the other approaches and the obtained features can generally be ranked regarding to the tests’ 
results.  
 

The Chi-square method exploits a usual statistical test that measures the discrepancy to an 
expected distribution assuming that a variable is independent of a class label. Like any statistical 
test, he is known to have erratic behavior for very low expected frequencies (which is common 
case in text classification) [LAD 11]. 
 

The information gain is also one of the most common methods of evaluation of the attributes. This 
univariate filter provides an ordered classification of all variables. Based on to this approach, 
selected variables are those who obtain a positive value of information gain [HAL 99b]. 
 

In the MIFS (Mutual Information Feature Selection) method, a variable X is added to the subset 
M (of cardinality m) of already selected variables if it maximizes the quantity: 
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Thus, a variable is considered to be interesting if its link with the target Y surpasses his average 
connection with already selected predictors. The method takes into account both the relevance and 
redundancy. The search stops when the best variable is X such I�Y, X∗|M� ≤ 0 [BAT 94]. 
 

The ThemRMR (minimum Redundancy Maximum Relevance) method selects variables that are 
most relevant for the target class and that also have low redundancy: it thus comes to select the 
characteristics that are maximally different from each other. The two optimization criteria 
(maximum relevance and minimum redundancy) are based on mutual information [PEN 05].  
 

In a similar way, the CFS method (Correlation-based Feature Selection) uses a global measure of 
"merit" of a subset M of m variables taking into account both their relevance and their 
redundancy. Then, a relevant subset consists of variables highly correlated with the class, and 
lowly correlated one to another [HAL 99]. 
 

The CBF (Consistency-based Filter) method evaluates the relevance of a subset of variables by 
the resulting level of consistency of the classes when learning samples are projected onto that 
subset [DAS 03]. The FCBF method is based on the "symmetrical uncertainty" criterion. A 
variable is considered to be interesting if: (1) its correlation with the target is high enough (2) it 
does not exist in the base a variable that is more strongly correlated to that latter [YUL 03]. 
 

The MODTREE method is a correlation-based filtering method that relies on the principle of 
pairwise correlation. The method operates in the space of pairs of individuals described by co-
labeling indicators attached to each original variable. For that, a pairwise correlation coefficient 



that represents the linear correlation between two variables is used. Once established the table 
pairwise correlations, the calculation of partial correlation coefficients allows performing a 
stepwise variable selection [LAL 00] [RAK 02]. 
 

The basic assumption of the Relief variable ordering method is to consider that a variable is even 
more relevant that it discriminates well an object from its nearest neighbor out of its own class, 
and conversely, that a variable will be irrelevant if it distinguishes between an object and its class 
nearest neighbor. ReliefF, an extension of Relief, adds the ability to address multiple-class 
problems. It is also more robust and capable of handling of incomplete and noisy data [KIR 92] 
[KON 94]. This technique is considered as one of the most efficient filter-based technique. 
 

In this paper, we show that, despite of their diversity, all the existing filter-based approaches fail 
to successfully solve the variable selection task in the case they are faced with highly unbalanced, 
highly multidimensional and noisy textual data, with a high degree of similarity between the 
classes. We thus propose a new filter-based variable selection approach which relies on the 
exploitation of a class quality measure based on a specific feature maximization metric. Such 
metric already demonstrated high potential in the framework of unsupervised learning. 
 

The paper is structured as follows. The first section presents the feature maximization principle 
along with the new proposed technique. The second section describes our dataset and our 
experiment which is performed experimental is a reference dataset of 7000 publications related to 
patents classes issued from a reference classification in the domain of pharmacology. The last 
section draws our conclusion and our perspectives. 
 
Feature maximization for variable selection 

Feature maximization metric principles in unsupervised learning 
 

Feature maximization is an unbiased cluster quality metrics that exploits the properties of the data 
associated to each cluster without prior consideration of clusters profiles. This metrics has been 
initially proposed in [LAM 04]. Its main advantage is to be independent altogether of the 
clustering methods and of their operating mode. Whenever it is used during the clustering process, 
it can substitute to distance during that process [LAM 11b]. In a complementary way, whenever it 
is used after learning, it can be exploited to set up overall clustering quality indexes 
[LAM 10][GHR 10] or for cluster labeling [LAM 08]. 
 
Let us consider a set of clusters C resulting from a clustering method applied on a set of data D 
represented with a set of descriptive features F, feature maximization is a metric which favors 
clusters with maximum Feature F-measure. The Feature F-measure ������ of a feature f 
associated to a cluster c is defined as the harmonic mean of Feature Recall ������ and Feature 
Precision ������	indexes which in turn are defined as: 
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where ./*	represents the weight of the feature f for data d and Fc represent the set of features 
occurring in the data associated to the cluster c.  
 
An important application of the feature maximization metric is related to the estimation of the 
overall clustering quality. For that purpose, averaged Macro-Recall (MR) and Macro-Precision 
(MP) indexes can be directly derived from the former indexes.  
 



They are expressed as:  
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Macro-Recall and Macro-Precision indexes have opposite behaviors according to the number of 
clusters. Thus, these indexes permit to estimate in a global way an optimal number of clusters for 
a given method and a given dataset. The best data partition, or clustering result, is in this case the 
one which minimizes the difference between their values [LAM 04]. Conversely to classical 
distance-based indexes, they are independent of the clustering process. Moreover, it has been 
demonstrated in [LAM 11] that straightforward adaptations of these indexes permits to detect 
degenerated clustering results, whenever those jointly include a small number of heterogeneous or 
“garbage” clusters with large size and a big number of “chunk” clusters with very small size. 
 
Another important application of feature maximization metric is related to clusters’ labeling 
whose role is to highlight the prevalent features of the clusters associated to a clustering model at 
a given time. Labeling can thus be used altogether for visualizing or synthesizing clustering 
results and for optimizing the learning process of a clustering method [ATT 06]. It can rely on 
endogenous data properties or on exogenous ones. Endogenous data properties represent the ones 
being used during the clustering process. Exogenous data properties represent either 
complementary properties or specific validation properties. Exploiting feature maximization 
metric for cluster labeling results in a parameter-free labeling technique [LAM 08]. As regards to 
this approach, a feature is then said to be maximal or prevalent for a given cluster iff its Feature 
F-measure is higher for that cluster than for any other cluster. Thus the set Lc of prevalent features 
of a cluster c can be defined as: 
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Whenever it has been exploited in combination with hypertree representation, this technique has 
highlighted promising results, as compared to the state-of-the-art labeling techniques, like 
Chi-square labeling, for synthetizing complex clustering output issued from the management of 
highly multidimensional data [LAM 08]. Additionally, the combination of this technique with 
unsupervised Bayesian reasoning resulted in the proposal of the first parameter-free fully 
unsupervised approach for analyzing the textual information evolving over time [LAM 10b]. 
Exhaustive experiments on large reference datasets of bibliographic records have shown that the 
approach is reliable and likely to produce accurate and meaningful results for diachronic 
scientometrics studies [LAM 12]. 
 
Last but not least, a central application of feature maximization metric is related to incremental 
clustering. The IGNGF (Incremental Neural Gas with Feature Maximization) clustering method is 
a neural-based parameter-free incremental clustering algorithm that substitutes feature 
maximization to usual distance in the clustering process. Thanks to this approach, the IGNGF 
clustering process is roughly the following. During learning, an incoming data point d is 
temporary added to every existing cluster, its feature profile is updated (i.e. each cluster is 
associated with its maximal features) and its average Feature F-measure is computed. Then the 
winning cluster is the cluster which maximizes the Kappa criteria given by:  
 

 :�;� = ∆������ ∗ |�� ∩ �/	| − >?�@ABC��D,/�
EFAGHC  (5)	 	 	

 

where ∆����� represents the gain in Feature F-measure for the new cluster and �� ∩ �/	are the 
features shared by cluster c and the data point d. This way, those clusters are preferred which 
share more features with the new data point and clusters which don't have any common feature 
with the data point are ignored. The gain in Feature F-measure multiplied by the number of 
shared features can be optionally adjusted by the Euclidean distance of the new data point d to the 



cluster centroid vector	;D. Clusters with negative Kappa score are ignored. The data point is then 
added to the cluster c with maximal Kappa and Hebbian connections between winner and its 
neighbors are updated. If not such cluster is found, a new cluster is created. 
 

The IGNGF method was shown to outperform other usual neural and non neural methods for 
clustering tasks on relatively clean data, and especially if said data are sparse and/or highly 
multidimensional [Lam 11]. The first applications of the IGNF method for clustering of textual 
data revealed very promising results. Especially, this method was exploited for the automatic 
classification of the French verbs using syntactic and semantic features issued from several 
reference lexicons. The method showed significantly better performance (+20%) than the best 
state-of-the-art methods of the field, including the reference methods based on spectral clustering 
[FAL 12]. In the context of the websites’ classification, it has been also shown that the IGNGF 
method allowed, in an unattended way, to obtain better results (in terms of sensibility and purity) 
than those provided by the supervised methods this by automatically isolating latent, not 
originally labeled, classes [LAM 12b]. 
  
Adaptation of feature maximization metric for feature selection in supervised learning 
 

Taking into consideration the basic definition of feature maximization metric presented in the 
former section, its exploitation for the task of feature selection in the context of supervised 
learning becomes a straightforward process, as soon as this generic metric can apply on data 
associated to a class as well as to those associated to a cluster. The feature maximization-based 
selection process can thus be defined as a class-based process in which a class feature is 
characterized using both its capacity to discriminate a given class from the others (������	index� 
and its capacity to accurately represent the class data (FRP�f�	index�.  
 
The set Sc of features that are characteristic of a given class c belonging to an overall class set C 
results in: 
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and C/f represent the restriction of the set C to the classes in which the feature f is represented. 
 
Finally, the set of all the selected features SC is the subset of F defined as: 
 

  	R1 = ⋃ R��∈1  (7) 	
 
Features that are judged relevant for a given class are the features whose representation is 
altogether better than their average representation in all the classes including those features and 
better than the average representation of all the features, as regard to the feature F-measure metric. 
 

In the specific framework of the feature maximization process, a contrast enhancement step can 
be exploited complementary to the former feature selection step. The role of this step is to fit the 
description of each data to the specific characteristic of its associated class which have been 
formerly highlighted by the feature selection step. In the case of our metric, it consists in 
modifying the weighting scheme of the data specifically to each class by taking into consideration 
the information gain provided by the Feature F-measures of the features, locally to that class. 
This step more precisely operates as described in Algorithm 1. 
 

Thanks to the former strategy, the information gain provided by a feature in a given class is 
proportional to the ratio between the value of the Feature F-measure of this feature in the class 
and the average value of the Feature F-measure of the said feature on all the partition. For a given 



data and a given feature describing this data, the resulting gain acts a contrast weight factorizing 
with any existing feature weight that can be issued from data preprocessing. Moreover, each data 
description can be optionally reduced to the features which are characteristic of its associated 
class. If it is present, normalization of the data description is discarded by those operations. 
Optional renormalization can also be performed in the curse of the algorithm. 
 
 

Algorithm 1: feature maximization-based data descriptions contrasting 
 

Data: 
C: set of data classes 
F: set of descriptive features (variables) 
D: set of learning data (vectors on F) 
 
Output: 
D’: set of updated learning data 
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Experimental data and results 

Data extraction and preprocessing 
 

The data is a collection of patent documents related to pharmacology domain. The bibliographic 
citations in the patents are extracted from the Medline database1. The source data contains 6387 
patents in XML format, grouped into 15 subclasses of the A61K class (medical preparation). 
25887 citations have been extracted from 6387 patents [HAL 12]. Then the Medline database is 
queried with extracted citations for related scientific articles. The querying gives 7501 articles 
with 90% recall. Each article is then labeled by the class code of the citing patent. The set of 
labeled articles represents the final document set on which the training is performed. The final 
document set is unbalanced, with smallest class containing 22 articles (A61K41 class) and largest 
class containing 2500 articles (A61K31 class). Inter-class similarity computed using cosine 
correlation indicates that more than 70% of classes' couples have a similarity between 0.5 and 0.9. 
Thus the ability of any classification model to precisely detect the right class is curtailed. A 
common solution to deal with unbalance in dataset is undersampling majority classes and 
oversampling minority classes. However sampling that introduces redundancy in dataset does not 
improve the performance in this dataset, as it has been shown in [HAL 12]. So that bootstrapping 
of train and test data may solve problems of classification sensibility, stability, scalability and 
dimensionality but does not improve accuracy computation over the sampled correlations. 
Conversely, pruning irrelevant features and contrasting the relevant ones has we propose hereafter 
seems thus to be a good alternative. 
 

                                                           
1
 http://www.ncbi.nlm.nih.gov/pubmed/ 



The document set is converted to a bag of words model [SAL 71] using the TreeTagger tool 
[SCH 94] developed by the Institute for Computational Linguistics of the University of Stuttgart. 
This tool is both a lemmatizer and a tagger. A lemmatizer associates a lemma, or a syntactic root, 
to each word in the text and a tagger automatically annotates text with morpho-syntactic 
information. In our case, the documents are firstly lemmatized and the tagging process is 
performed on lemmatized items (in the case when a word is unknown to the lemmatizer, its 
original form is conserved). The punctuation signs and the numbers identified by the tagger are 
deleted. The feature selection according to grammatical categories allows identifying salient 
features for the documents classification according to document types or opinions.  
 

Every document is represented as a term vector filled with keyword frequencies. The description 
space generated by the tagger has dimensionality 31214. To reduce noise generated by the 
TreeTager tool, a frequency threshold of 45 (i.e. an average threshold of 3/class) is applied on the 
extracted descriptors. It resulted in a thresholded description space of dimensionality 1804. The 
whole text collection is then represented as a (N+1) x J matrix where J is number of articles in the 
collection in a N-dimensional space. Each line j of this matrix is an N-dimensional bag of words 
vector for article j, plus its class label. The Term Frequency-Inverse Document Frequency 
(TF-IDF) weighting scheme [SAL 88] gives a sparse matrix representation of the text collection. 
 
Testing process 
 

To perform our experiments we firstly take into consideration different classification algorithms 
which are implemented in the Weka toolkit:  
 

– Weka’s Decision Tree algorithm: weka.classifiers.trees.J48 [QUI 93] ; 
– Weka’s Random Forest algorithm: weka.classifiers.trees.RandomForest [BRE 01] ; 
– Weka’s KNN algorithm: weka.classifiers.lazy.IBk [AHA 91] ; 
– Weka’s Bayesian Network algorithm: weka.classifiers.bayes.DMNBtext [SU 08] ; 
– Weka’s SVM algorithm: weka.classifiers.functions.SMO [SCH 98], [KEE 01]. 
 
Most of these algorithms are general purpose classification algorithms, except from DMNBtext 
which is a Discriminative Multinomial Naïve Bayes classifier especially developed for text 
classification. As compared to classical Multinomial Naïve Bayes classifier this algorithm 
cumulate the computational efficiency of Naïve Bayes approaches and the accuracy of 
Discriminating approaches by taking into account both the likelihood and the classification 
objectives during the frequency counting. Other general purpose algorithms whose accuracy has 
especially been reported for text classification are SMO and KNN [ZHA 02]. Default parameters 
are used when executing these algorithms, except for KNN for which the number of neighbors is 
optimized. 
 

To more especially focus on the efficiency testing of the variable (i.e. feature) selection 
approaches including our new proposal. We include in our test a panel of filter-based approaches 
which are computationally tractable with high dimensional data, making again use of their Weka 
toolkit implementation. The panel of tested methods includes: 
 

– Weka’s Chi-square method: weka.attributeSelection.ChiSquaredAttributeEval [LAD 11] ; 
– Weka’s Information gain method: weka.attributeSelection.InfoGainAttributeEval [HAL 99b] ; 
– Weka’s CBF method: weka.attributeSelection.ConsistencySubsetEval [DAS 03] ; 
– Weka’s SU method: weka.attributeSelection.SymmetricalUncertaintyAttributeEval [YUL 03] ; 
– Weka’s ReliefF algorithm: weka.attributeSelection.ReliefFAttributeEval [KIR 92] ; 
– Weka’s Principal Component Analysis: weka.attributeSelection.PrincipalComponents [PER 01] ; 
– Feature maximization based method including contrasting (our current proposal). 
 
Defaults parameters are also used for most this methods, except for PCA for which the percentage 
of explained variance is tuned for optimization. 



We first experiment the methods separately. In a second phase we combine the feature selection 
provided by the method with the feature contrasting technique we have proposed.  10-fold cross 
validation is used on all our experiments. 
 
Results 
 

The different results are reported in tables 1 to 5 and in figure 1. Tables present standard 
performance measures (True Positive, False Positive, Precision, Recall, F-measure and ROC) 
weighted and averaged over all classes. For each table, and each combination of selection and 
classification methods, a performance increase indicator is computed using the DMNBtext True 
Positive results on the original data as the reference. Finally, as soon as the results are identical for 
Chi-square, Information Gain and Symmetrical Uncertainty, they are thus reported only once in 
the tables as Chi-square results. 
 

Table 1 highlights that performance of all classification methods are low on the considered dataset 
if no feature selection process is performed. They also confirm the superiority of the DMNBtext, 
SMO and KNN methods on the two other tree-based methods in that context. Additionally, 
DMNBtext provides the best overall performance in terms of discrimination as it is illustrated by 
its highest ROC value. 
 

Whenever a usual feature selection process is performed in combination with the best method, 
that is DMNBtext method, the exploitation of the usual feature selection strategies slightly alters 
the quality of the results, instead of bringing up an added value, as it is shown in table 2. 
Alternatively, same table highlights that even if the feature reduction effect is less with the F-max 
selection method, its combination with F-max data description contrasting boosts the performance 
of the method (+81%), leading to excellent classification results (Accuracy of 0.96) in a very 
complex classification context. 
 

Even if the benefit of the former use of F-max selection and contrasting approach is very high 
with the DMNBtext method, table 3 shows that the added value provided by this preprocessing 
approach also concerns, to a lesser extent, all the other classifiers, leading to an average increase 
of their performance of 45% as compared to the reference result. Another interesting phenomenon 
that can be observed is that, with such help, tree-based classification methods significantly, and 
unusually, outperform the KNN method on text. 
 

The results presented in table 4 more specifically illustrates the efficiency of the F-max 
contrasting procedure that acts on the data descriptions. In the experiments related to that table, 
F-max contrasting is performed individually on the features extracted by each selection method 
and, in a second step, DMNBtext classifier is applied on the resulting contrasted data (see algo 1). 
The results show that, whatever is the kind of feature selection technique that is used, resulting 
classification performance is enhanced whenever is a former step of F-max data description 
contrasting is performed. The average performance increase is 44%. 
 

 
 TP 

Rate 
FP 

Rate 
Precision Recall F-

measure 
ROC TP 

Incr. /Ref 
J48 0.42 0.16 0.40 0.42 0.40 0.63 -23% 
Random Forest 0.45 0.23 0.46 0.45 0.38 0.72 -17% 
SMO 0.54 0.14 0.53 0.54 0.52 0.80 0% 
DMNBtext 0.54 0.15 0.53 0.54 0.50 0.82 0% (Ref) 
KNN (k=3) 0.53 0.16 0.53 0.53 0.51 0.77 -2% 

Table 1: classification results on initial data. 
 
Table 5 and figure 1 illustrate the capabilities of the F-max approach to efficiently cope with the 
class imbalance problem. Hence, examination of the confusion matrices of figure 1 shows that the 
data attraction effect of the majority class that occurs at a high level in the case of the exploitation 



of the original data (figure 1(a)) is quite completely overcome whenever the F-max approach is 
exploited (figure 1(b)). The capability of the approach to correct class imbalance is also clearly 
highlighted by the homogeneous distribution of the selected variables in the classes it provides, 
despite of their very different sizes (table 5). 

 
 

TP 
Rate 

FP 
Rate 

Precision Recall 
F-

measure 
ROC 

Nbr. of 
select. 

features 

TP 
Incr./Ref 

ChiSquare (+..) 0.52 0.17 0.51 0.52 0.47 0.80 282 -4% 
CBF 0.47 0.21 0.44 0.47 0.41 0.75 37 -13% 
PCA (50% vr.) 0.47 0.18 0.47 0.47 0.44 0.77 483 -13% 
Relief 0.52 0.16 0.53 0.52 0.48 0.81 937 -4% 
F-max sel. + contrast 0.96 0.01 0.96 0.96 0.96 0.999 1419 +81% 

Table 2: classification results after feature selection (DMNBtext classification). 

 
 

 
TP 

Rate 
FP 

Rate 
Precision Recall 

F-
measure 

ROC 
TP 

Incr./Ref 
J48 0.80 0.05 0.79 0.80 0.79 0.92 +48% 
Random Forest 0.76 0.09 0.79 0.76 0.73 0.96 +40% 
SMO 0.92 0.03 0.92 0.92 0.91 0.98 +70% 
DMNBtext 0.96 0.01 0.96 0.96 0.96 0.999 +81% 
KNN (k=3) 0.66 0.14 0.71 0.66 0.63 0.85 +22% 

Table 3: classification results after F-max + contrast feature selection (all classification methods). 

 

 
TP 

Rate 
FP 

Rate 
Precision Recall 

F-
measure 

ROC 
Nbr. 

select. 
features 

TP 
Incr./Ref 

ChiSquare (+..) 0.79 0.08 0.82 0.79 0.78 0.98 282 +46% 
CBF 0.63 0.15 0.69 0.63 0.59 0.90 37 +16% 
PCA (50% vr.) 0.71 0.11 0.73 0.71 0.67 0.53 483 +31% 
Relief 0.79 0.08 0.81 0.79 0.78 0.98 937 +46% 
F-max sel. + contrast 0.96 0.01 0.96 0.96 0.96 0.999 1419 +81% 

Table 3: classification results after feature selection by all methods  
and F-max contrasting (DMNBtext classification). 

 
 

Class label 
Class 
size 

Selected 
features  

TP Rate 

a61k31 2533 223 0.999     
a61k33 60 276 0.77 
a61k35 459 262 0.97      
a61k36 212 278 0.89      
a61k38 1110 237 0.99     
a61k39 1141 240 0.99     
a61k41 22 225 0.14     
a61k45 304 275 0.83      
a61k47 304 278 0.91     
a61k48 140 265 0.76      
a61k49 90 302 0.76      
a61k51 78 251 0.90      
a61k6 47 270 0.55     
a61k8 87 292 0.74 
a61k9 759 250 0.97 

Distinct 
features 

 1419  

Table 5: class data and F-max selected features/class. 



 
 

 
 

Figure 1: confusion matrices of the optimal results - before (1) and after (2) feature selection 
(Classification: DMNBtext – Feature selection: F-max + Contrast). 

 
 
Conclusion 

Feature maximization is a cluster quality metric which favors clusters with maximum feature 
representation as regard to their associated data. In this paper, we have proposed a straightforward 
adaptation of such metric, which has already demonstrated several generic advantages in the 
framework of unsupervised learning, to the context of supervised classification. Our main goal 
was to build up an efficient feature selection and feature contrasting model that could overcome 
the usual problems arising in the supervised classification of large volume of data, and more 
especially in that of large full text data. These problems relate to classes’ imbalance, high 
dimensionality, noise, and high degree of similarity between classes. Through our experiments on 
a large dataset constituted of bibliographical records extracted from a patents’ classification, we 
more especially showed that our approach can naturally cope with the said handicaps. Hence, in 
such context, whereas the state-of-the-art variable selection techniques remain inoperative, feature 
maximization-based variable selection and contrasting can very significantly enhance the 
performance of classification methods (+80%). Another important advantage of this technique is 
that it is a parameter-free approach and it can thus be used in a larger scope, like in the one of 
semi-supervised learning. 
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