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The bandstructure of gold from many-body perturbation theory
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The bandstructure of gold is calculated using ab initio many-body perturbation theory. Different
approximations within the GW approach are considered. Standard single shot G0W0 corrections
modify the sp-like bands while leaving unchanged the 5d occupied bands. Beyond G0W0, quasipar-
ticle self-consistency on the wavefunctions lowers the 5d bands. Globally, many-body effects achieve
an opening of the 5d-6sp interband gap of ∼0.4 to ∼0.8 eV, reducing the discrepancy with the
experiment. Finally, the quasiparticle bandstructure is compared to the one obtained by the widely
used HSE (Heyd, Scuseria, and Ernzerhof) hybrid functional.

INTRODUCTION

The theoretical determination of the bandstructure of
gold has been an open issue for more than four decades.
Early works from the 70s1–3 focused on relativistic ef-
fects which are responsible for its yellow color. There-
after, the band structure calculated by Christensen and
Seraphin1 has been used as a reference to interpret pho-
toemission experiments. More recently, a few discus-
sions on this topic appeared in the literature. The co-
hesive energy in noble metals was shown to contain large
terms arising from dispersion forces, such as van der
Waals interactions,4 pointing to the importance of many-
body correlations for closed shell d electrons. Newer ex-
perimental5 and theoretical6 works confirmed previous
findings.2 The gold bandstructure, calculated by density
functional theory (DFT) within the local density approx-
imation (LDA) or the generalized gradient approxima-
tion (GGA), presents an underestimation of the 5d-6sp
interband gap (see Fig. 1) by ∼ 1.0 eV with respect to the
available experimental data. Similar discrepancies were
encountered for other noble metals. To solve these dis-
agreements, quasiparticle (QP) corrections to the DFT
eigenvalues have been applied with great success. For in-
stance, in silver and copper, the non-self-consistentG0W0

approach corrects the DFT interband gap in a remark-
ably good agreement with the experiments.7–9

In fact, the standard G0W0 approach (i.e., starting
from DFT) relies on the assumption that the QP wave-
functions are close to the DFT ones. In some cases, such
as for the 3d electrons in vanadium dioxide,10 this hy-
pothesis does not hold. Two schemes have thus been
proposed in order to go beyond standard G0W0 by in-
troducing an update of the wavefunctions towards self-
consistency: on the one side, a self-consistent static
GW approximation (COHSEX) calculation followed by
a standard dynamic G0W0 last step of calculation (SC-
COHSEX+G0W0 scheme);11 and, on the other side, the
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FIG. 1. (Color online) Gold DFT-PBE scalar-relativistic
bandstructure (black points). The Fermi level is set to 0
(dashed-black line). Red (grey) lines disentangle 5d-character
topmost occupied bands, while blue (black) lines indicate 6sp-
like lowmost empty bands. The arrows show the interband
gap between the highest occupied 5d band and the lowest
unoccupied 6sp bands.

quasiparticle self-consistent GW (QSGW ) scheme.12,13

Both may improve the DFT wavefunctions and eigenval-
ues.

Hybrid functionals have also been proposed into the
framework of an unrestricted DFT to solve the typical
bandgap underestimation of the LDA and GGA approxi-
mations. In these functionals, a fixed amount of Hartree-
Fock exact non-local exchange is incorporated into the
classical DFT local Kohn-Sham exchange-correlation po-
tential. Among these, the one proposed by Heyd, Scuse-
ria, and Ernzerhof14–16 (HSE) has been widely used
lately. Hybrid functionals have proven to perform well for
improving several properties of solids.14,17 A typical HSE
calculation is usually more computationally demanding
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than LDA or GGA, but more affordable than GW .
In this paper, the bandstructure of gold is calcu-

lated within ab initio many-body perturbation theory
(MBPT) in order to elucidate the role of correlations
and to provide a more reliable theoretical bandstructure
to interpret the experimental findings. Standard G0W0

corrections shift the unoccupied bands up by at most
0.2 eV and the first sp character occupied band down,
while leaving the 5d occupied bands unmodified. Self-
consistency on the wavefunctions by the QSGW scheme
lowers the 5d bands by 0.4 eV, reducing the discrepancy
with the experimental measurements. Inclusion of sp
semicore states is confirmed to be crucial for GW calcu-
lations in d-electron systems, as previously found.7,8 In
contrast, here the plasmon-pole model (PPM) is found to
be overall valid. The importance of relativistic effects in
gold is also confirmed.6 The remaining disagreement with
the experiments might be explained by the lack of rela-
tivistic many-body terms18–20 beyond the single-particle
ones taken into account here.
Finally, we calculate the HSE hybrid functional band-

structure of gold and compare it to the QSGW results.
Around the Fermi energy, HSE (and PBE) bands present
a difference of ∼0.3 eV from the corresponding QSGW
ones. High energy unoccupied HSE bands present a large
discrepancy, by more than 6 eV, with respect to the ex-
perimental data and the GW results.
The article is organized as follows. In section I, the

theoretical background is given. The technical details of
the calculations are shown in section II. In section III,
the bandstructure calculated within the G0W0 approach
is analyzed. The role of semicore orbitals and the validity
of the PPM are discussed here. In section IV, the band-
structure calculated within the QSGW method is pre-
sented. Spin-orbit corrections are discussed in section V.
In section VI we discuss the weight of all our approxima-
tions with respect to the residual discrepancies with the
experiment. An analysis of the HSE results is presented
in section VII. Finally, in section VIII, the conclusions of
this work are drawn. In addition, convergence issues are
discussed in the supplemental material.21

I. THEORETICAL BACKGROUND

In MBPT, the electronic structure is obtained by solv-
ing the quasiparticle (QP) equation:22–27

(

−
1

2
∇2 + vext(r) + vH(r)

)

ψ
QP
nk (r) +

∫

d3r′ Σ(r, r′, ω = ǫ
QP
nk )ψ

QP
nk (r′) = ǫ

QP
nk ψ

QP
nk (r), (1)

where vext(r) is the external potential, vH(r) is the clas-
sical repulsion Hartree term, and Σ(r, r′, ω) is the self-
energy, a non-hermitian, non-local and energy depen-
dent operator. The exact self-energy can be written as
Σ = GWΓ, an expression containing the single particle

Green’s function G, the dynamically screened Coulomb
potential W and the vertex function Γ. Hedin22 pro-
vided a scheme based on a closed set of five Schwinger-
Dyson integro-differential equations for G, W , Γ, Σ and
the polarizability P to be solved iteratively up to the self-
consistent solution for G and Σ. Since the application of
this scheme to real systems is usually computationally
unfeasible, further approximations are required. Setting
Γ = δ, the self-energy operator becomes

Σ(r, r′, ω) =
i

2π

∫

dω′eiω
′ηG(r, r′, ω + ω′)W (r, r′, ω′),

(2)
where η is an infinitesimal positive number. Due to its
form, this is called the GW approximation. Starting from
an initial approximation G0 for the Green’s function (for
example, the one constructed from DFT orbitals), one
can iterate the equations up to self-consistency. Alterna-
tively, one can stop at the first iteration obtaining the so
called G0W0 approximation.
In practice, it is very efficient to get QP energies using

perturbation theory with respect to the DFT electronic
structure, i.e. treating as perturbation the difference be-
tween the self-energy operator and the DFT exchange-
correlation potential, Σ−vxc. The DFT eigenvalues ǫDFT

nk

and eigenstates ψDFT
nk are used as a zeroth-order approx-

imation for their quasiparticle counterparts. Thus, the

QP energy ǫQP
nk is calculated by adding to ǫDFT

nk the first-
order perturbation correction:

ǫ
QP
nk = ǫDFT

nk +Znk〈ψ
DFT
nk |Σ(ω = ǫDFT

nk )−vxc|ψ
DFT
nk 〉, (3)

with Z the quasiparticle renormalization factor,

Z =

[

1− 〈ψDFT
nk |

∂Σ(ω)

∂ω

∣

∣

∣

∣

ω=ǫDFT
nk

|ψDFT
nk 〉

]

−1

, (4)

which accounts for the fact that, in Eq. (1), Σ(ω) should

be calculated at the ǫQP
nk . This procedure has been found

to produce bandstructures in agreement with the experi-
ment, provided that the DFT states are not too far from
the QP states. Otherwise, a self-consistent approach on
the eigenvalues and eigenstates may be necessary.
In the so-called QSGW calculations,12,13 the self-

energy is constrained to be Hermitian and static, so that
it can be diagonalized to update not only the energies,
but also the wavefunctions. Several successive iterations
are needed to achieve the desired accuracy. At the end,
the self-energy does not depend anymore on the DFT
starting point.
The integration of Eq. (2) requires in principle the eval-

uation of W (ω) over a large number of frequencies. By
modeling ℑW (ω) with a single pole in the plasmon-pole
model (PPM),24,28 it is possible to integrate Eq. (2) an-
alytically. In the case of d electrons, the applicability of
this technique has been questioned.7 More accurate inte-
gration methods, such as the contour deformation (CD)
approach, are frequently used. In this technique, the real
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axis integration path of Eq. (2) is modified as to run
along the imaginary axis, picking up contributions com-
ing from the poles of the Green’s function included in the
deformed contour.29–31

In principle, to fully take into account single-particle
relativistic effects, one should solve the Dirac equation
and work with Dirac spinors. Alternatively, one can use
a non-relativistic limit of the Dirac equation projected
onto a Pauli two-component spinor formalism. This adds
the fine structure terms to the Hamiltonian. In the stan-
dard limit approach, there are three such terms: the p4

relativistic correction to the velocity, the Darwin term,
and the spin-orbit (SO) coupling. The scalar-relativistic
approach includes only the first two terms and drops the
SO coupling term. In some cases, the resulting equation
already accounts for most of the Dirac physics. If needed,
the SO coupling effects can be introduced on top of the
scalar-relativistic approach, using the procedure detailed
in Sec. V. However, in the most severe cases, the SO
coupling effects should be introduced from the beginning
in a fully spinorial formalism.32,33 So far, this formalism
has only been applied to the bandstructure of Hg chemi-
cal compounds,20 finding SO coupling corrections to the
eigenvalues of ∼0.1 eV. This calculation was carried on
only up to the first iteration of Hedin’s equations, i.e.
at the G0W0 level. Going further in the direction of self-
consistency and including relativistic corrections, has not
yet been tried on any real system.
In the case of gold, most of the relativistic effects in the

bandstructure come from the scalar-relativistic terms.1,6

The SO coupling term mainly accounts for band split-
tings, hence, it introduces shape modifications mostly on
the 5d bands.1,6

II. TECHNICAL DETAILS

All calculations are performed using the primitive unit
cell of gold (FCC lattice). Note that in principle van
der Waals interactions are important to determine the
atomic distance in noble metals.4 To avoid this difficulty
the experimental lattice constant (7.71 Bohr34) is used.35

The GW calculations are done using the Abinit code,36

while the HSE ones are carried out with the Vasp code.37

Scalar relativistic effects have been included everywhere.
In the GW calculations, the starting point wave-

functions and energies are obtained from a DFT cal-
culation in which the XC energy is approximated by
the GGA PBE functional.38 Scalar-relativistic norm-
conserving pseudopotentials39,40 are used to account for
core-valence interactions.41 In order to elucidate the role
of semicore states, two pseudopotentials are considered.
The first one contains 11 valence electrons (5d10, 6s1),
while the second contains 19 electrons (5s2, 5p6, 5d10,
6s1). The wavefunctions are expanded on plane-waves
basis sets, up to a cut-off energy of 30 Ha when the semi-
core states are not included, and 50 Ha when they are.
The Brillouin zone (BZ) is sampled using a shifted grid of

10×10×10 k-points following the Monkhorst-Pack (MP)
scheme.42 A total of 110 (100 empty) bands are used to
compute the dielectric matrix43 and the self-energy. The
dielectric matrix is computed for 145 k-points in the irre-
ducible BZ, truncating to an energy cut-off of 4.0 Ha (cor-
responding to 59 plane waves). The Godby-Needs PPM28

is used here because it has demonstrated the best agree-
ment with the methods which take fully into account the
frequency dependence of the dielectric matrix.44,45 In the
CD method, a total of 6 and 20 frequencies are used along
the imaginary and real axis, respectively. All QSGW cal-
culations are performed within the CD method. A total
of 40 bands are considered when diagonalizing the self-
energy.
In the calculations with the hybrid XC functional, only

11 valence electrons are treated explicitly by the pro-
jector augmented-wave (PAW) method. The plane-wave
cut-off energy for the wavefunctions is chosen to be 13 Ha.
HF type calculations are performed with the HSE06 func-
tional14, starting from previously converged DFT wave-
functions and energies. These calculations are consider-
ably more costly than standard DFT ones. Hence, we
could only afford to sample the BZ using a 20×20×20
unshifted Γ grid of k-points.
In all cases, the bandstructures are interpolated using

maximally-localized Wannier functions (MLWFs) with
the Wannier90 code46 as explained in Refs. 47 and 48.
The Fermi level is obtained by integrating the density
of states (DOS), calculated with an interpolated grid of
30×30×30 k-points using MLWFs and a low Gaussian
smearing of 0.005 Ha. It was verified that the Fermi
levels obtained with a grid of 30×30×30 and 60×60×60
interpolated k-points were equal within 0.01 eV.
A full study of the convergence with respect to all pa-

rameters of the calculation is provided in the supplemen-
tal material.21

III. THE G0W0 BANDSTRUCTURE OF GOLD

In this section, we investigate the QP bandstructure
of gold within the G0W0 approach, trying to clarify the
influence of two commonly used approximations. First,
the effect of freezing semicore orbitals in the pseudopo-
tential is discussed. Second, the validity of the PPM is
analyzed more thoroughly.
In Fig. 2, the bandstructure of gold calculated within

G0W0 is reported using two different pseudopotentials.
In the first one [solid orange (light grey) lines, labeled
“w/o SC”], the 5s and 5p semicore orbitals are considered
to be frozen in the core (leading to a total of 11 valence
electrons). In the second one [dotted brown (medium
grey) lines, labeled “with SC”], 19 electrons are treated
as valence states. While within DFT the resulting band-
structures are on top of each other (the curves are not
shown here for sake of clarity), the difference becomes
important at the GW level. Indeed, when the semi-
core electrons are excluded (“w/o SC”), the 5d bands
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FIG. 2. (Color online) Effect of the semicore orbitals on
the bandstructure of gold calculated within G0W0 using a
plasmon-pole model. The results obtained when the semicore
states are not considered as valence electrons (w/o SC) are
represented by solid orange (light grey) lines, while those cal-
culated with the semicore states treated as valence electrons
(with SC) are shown as dotted brown (medium grey) lines.
The zero of energy has been set at the Fermi level. The corre-
sponding Brillouin zone is shown on top. All the calculations
in this paper are performed at least at the scalar-relativistic
level.

are shifted up while the 6sp bands are shifted down in
a non-homogeneous way. This leads to a reduction of
the 5d-6sp interband gap. This effect is alarming in the
neighborhood of the X point, where the lowest empty
band is shifted by -1.7 eV while the top-most 5d band is
shifted by +1.1 eV, thus leading to an inversion in the
band ordering. This unphysical shifting of bands is solved
by including the exchange contributions from the 5d to
the 5s and 5p semicore orbitals (“with SC”). Although
5s and 5p states are separated in energy by more than
50 eV from the 5d ones, their spatial overlap with the
5d is important. Hence, they play an important role at
the GW level and cannot be neglected.7,49 In the remain-
der of the paper all the GW calculations are performed
treating explicitly these electrons as valence states.

PPMs are believed not to work satisfactorily in the
presence of d-electrons just below the Fermi level. In-
deed, this may induce strong transitions in ǫ−1

GG′(q, ω).
As a result, this function cannot always be approximated
by a single-pole function at small values of G and G′.7

Fig. 3 shows the bandstructure of gold calculated within
G0W0 using either a PPM [dotted brown (medium grey)
lines] or the more accurate CD method [solid green (light
grey) lines]. For bands located in the energy window go-
ing from the Fermi level to 5 eV below, both methods give
similar results (within a maximum difference of 0.1 eV).
Below this window, the use of the PPM tends to shift the
bands down compared to CD, with a discrepancy which
can be up to 0.2 eV. This PPM inaccuracy on the low-
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FIG. 3. (Color online) Bandstructure of gold calculated
within DFT-PBE [solid blue (black) lines] and G0W0 using
the contour deformation technique [solid green (light grey)
lines] or the Godby-Needs plasmon-pole model [dotted brown
(medium grey) lines]. The zero of energy has been set at the
Fermi level.

est band is also present in other systems, such as in sil-
icon and diamond,23 whose energy-loss function (ELF)
presents a well-defined single plasmon resonance.50 Al-
though in noble metals the ELF has a more complex
structure, the single PPM cannot be considered less valid
in gold than in silicon and diamond. In what follows we
will anyway use the CD method for all GW calculations.
In Fig. 3, the DFT-PBE bandstructure of gold [solid

blue (black) lines] is also reported. It is found to be in
agreement with previous calculations.6 The G0W0 band-
structure [solid green (light grey) lines] is almost on top
of the DFT-PBE one, but the first unoccupied band is
shifted up non-homogeneously by up to ∼0.2 eV and
the first occupied band is shifted down by ∼0.4 eV at
Γ. These bands present a predominant sp character.
The G0W0 corrections are, anyway, not modifying the 5d
manifold of bands: their shape, position and bandwidths
are the same as in the DFT-PBE case. As a consequence,
the G0W0 5d-6sp interband gap does not change com-
pared to the DFT-PBE value, which is smaller than the
experimental evidence.

IV. SELF-CONSISTENCY EFFECTS WITHIN

THE QSGW APPROXIMATION

Fig. 4 shows the bandstructure for different ap-
proaches: DFT-PBE [solid blue (black) lines], G0W0

[solid green (light grey) lines] and QSGW [dotted pink
(grey) lines]. The transition energies at high symmetry
k-points can also be read in Table I.
When recalculating the QP wavefunctions within the

QSGW approach, the 5d bands are shifted with respect
to DFT-PBE by −0.4 eV. This is the major difference
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FIG. 4. (Color online) Bandstructure of gold calculated
within DFT-PBE [solid blue (black) lines], G0W0 [solid green
(light grey) lines], and QSGW [dotted pink (grey) lines]. All
GW calculations are done within the CD method. The zero
of energy has been set at the Fermi level.

PBE G0W0 QSGW
Γ1 → Γ25′ 5.2 5.6 5.0
Γ25′ → Γ12 1.5 1.5 1.5
X3 → X2 4.8 4.8 4.7
X5 → X4′ 2.6 2.3 3.1
X4′ → X1 4.8 5.4 5.2
L3 → L3′ 2.8 2.9 2.8
L3′ → L2′ 1.0 0.4 1.2
L2 → L1 4.0 4.8 4.6

TABLE I. Transition energies of gold (in eV) calculated within
scalar-relativistic DFT-PBE, G0W0, and QSGW .

with respect to one shot G0W0. In addition, the first
unoccupied bands are further shifted, achieving +0.3 eV
from DFT-PBE. As a consequence, the interband gap
between the 5d and the unoccupied bands is opened by
0.4 to 0.8 eV with respect to the DFT-PBE energies. For
instance, the transition energies X5 → X4′ and L3′ → L1

are opened by 0.45 and 0.75 eV, respectively. This points
out to the significance of correcting the DFT-PBE wave-
functions in order to obtain a more accurate bandstruc-
ture.
To understand the effect of quasiparticle self-

consistency, the QP and DFT-PBE wavefunctions are
compared in Fig. 5. It is found that QSGW introduces
a mixing of DFT-PBE states which corresponds to ro-
tations and small relocalizations of the wavefunctions.
These changes depend on the k-point k and the band
index n.
In Fig. 5(a), we plot the square of overlap between the

QP and DFT-PBE wavefunctions at k-points L and A,
the latter being a random low symmetry k-point with
reduced coordinates (0.5, 0.3, 0.1). This is a direct in-
dication of the band mixing resulting from the QSGW
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FIG. 5. (Color online) Illustration of the DFT band mixing
at the QSGW level. Panel (a) represents the square of the
overlap between the QP and DFT-PBE wavefunctions at the
L (left) and A (right) k-points. The A point is a random
low symmetry k-point with reduced coordinates (0.5,0.3,0.1).
The square modulus of the QP and DFT-PBE wavefunctions,
|ψQP

nk
|2 and |ψDFT

nk |2, for band index n=4 at k-point L are
shown in panels (b) and (c), respectively. Panel (d) shows

the difference |ψQP

nk
|2 − |ψDFT

nk |2 for band index n=6 at k-
point A. Gold atoms in the FCC lattice are represented by
yellow [light grey] spheres. In panels (b)-(d), the isosurfaces
correspond to +1ρ in red (grey) and −1ρ in blue (black), with
ρ = 6× 10−4e-/Å3 for panels (b) and (c), while for panel (d),
ρ = 3× 10−5e-/Å3.

procedure. The square modulus of the QP and DFT-

PBE wavefunctions, |ψQP
nk |2 and |ψDFT

nk |2, for band index
n=4 at the L point are shown in Fig. 5(b), and panel (c)
respectively. Finally, in Fig. 5(d), we report the differ-

ence |ψQP
nk |2−|ψDFT

nk |2 for band index n=6 at the A point.
Regardless of the k-point, the strongest mixing is always
found between degenerate bands (see top panel). It gives
rise to rotations of the wavefunctions associated to indi-
vidual bands. For example, the QP wavefunction associ-
ated to band index n=4 at the L point [Fig. 5(c)] corre-
sponds simply to a spatial rotation of the corresponding
DFT-PBE wavefunction [Fig. 5(b)] around the center of
a gold atom. In fact, bands n=4 and 5 are degener-
ate in energy and the corresponding wavefunctions have
the same symmetry with a different orientation. There-
fore, the mixing of these bands just induces a change in
the orientation of the wavefunctions. The wavefunctions
associated to other degenerate bands may also undergo
similar rotations, without any noticeable effect on the
bandstructure.51

More importantly, numerous small hybridizations oc-
cur between the occupied bands and the higher empty
bands [Fig. 5(a)]. This is more evident at low-symmetry
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FIG. 6. (Color online) DFT-PBE bandstructure of gold
calculated within the scalar-relativistic (SR) approximation
[solid blue (black) lines] and including also the spin-orbit cou-
pling (SR+SO) [dotted red (grey) lines]. The zero of energy
is set at the Fermi level.

k-points, such as the A point. These small hybridiza-
tions may have an important effect on the shape and
localization of the wavefunctions. To illustrate this, we
calculate the difference between the square modulus of
the QP and DFT-PBE wavefunctions. This is done for
the first unoccupied band at A. For this particular band
and k-point, a relocalization of the wavefunction is ob-
served: the 5d character is reduced [blue (black) lobes]
while the 6s character close to the atom is slightly aug-
mented [red (grey) lobes]. The nature of these changes
depends on the k-point and the band index n. The effect
of these changes of the wavefunctions is that the diago-
nal elements of the self-energy 〈ψnk|Σ|ψnk〉 and Hartree
〈ψnk|v

H|ψnk〉 operators are modified, inducing an almost
rigid shift of about 0.4 eV downward of the 5d bands.

V. SPIN ORBIT COUPLING EFFECTS

In order to fully take into account relativistic effects at
least at the single-particle level, in principle one should
solve the Dirac equation and work with Dirac spinors. Al-
ternatively, one can continue to work with Pauli spinors
by choosing an appropriate non-relativistic limit of the
Dirac equation which adds some relativistic corrections
to the Schrödinger equation Hamiltonian. In the scalar-
relativistic (SR) approximation, one solves a Schrödinger
equation including the relativistic correction to the veloc-
ity by the mass and the Darwin terms. These terms may
cause important band-shifts and they should already cap-
ture most of the relativistic effect.52–54 In addition, one
can include the spin-orbit (SO) coupling term which may
cause important band-splitting and changes to the band-
shape. Hereafter, this procedure is referred to as SR+SO.
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FIG. 7. Square of the overlap between the scalar-relativistic
(SR) and full relativistic (SR+SO) DFT-PBE wavefunctions.

In Fig. 6 we show the comparison between the bandplot
of a DFT-PBE calculation which only includes the SR
terms in the Kohn-Sham Hamiltonian with that one of a
fully relativistic (SR+SO) DFT-PBE calculation, which
also includes the SO coupling. In the case of gold, most of
the relativistic effects in the bandstructure come from the
scalar-relativistic terms.1,6 The SO coupling term mainly
accounts for band splittings, as shown in Fig. 6. To illus-
trate the effect of the SO coupling on the wavefunctions,
the overlap between the SR and SR+SO DFT-PBE wave-
functions is calculated at the Γ point, as shown in Fig. 7.
The overlap is close to 1 for the occupied bands 1, 5 and
6, meaning that these bands are almost unaffected by
the SO coupling term. However, the d bands 2, 3 and
4 are strongly changed by the SO coupling term. The
Γ25′ state found in the scalar-relativistic calculation is
split into the Γ7+ and Γ8+ states, once the SO coupling
term is taken into account. Similar effects are observed
in other k-points as explained in Ref. 6.
Within MBPT, relativistic fine structure effects should

in principle be calculated within a fully spinorial GW
formalism.32,33 So far, this formalism has been applied
only to Hg compounds20 at the G0W0 level. However,
at the self-consistent level, this method has not yet been
applied to real systems.
In this work, we add SO effects perturbatively on top

of the QSGW and HSE bandstructures by the following
procedure:

1. We evaluate the SO corrections to DFT-PBE eigen-
values by a fully spinorial Kohn-Sham calculation;

2. We compute ΣSO
nk = ǫSR+SO

nk − ǫSRnk , the difference
between the SR and SR+SO DFT-PBE eigenvalues
at a given k-point and band index n.

3. We add ΣSO
nk to the corresponding QP (HSE) eigen-

value.

Fig. 8 shows the PBE+SO [dotted red (grey) lines],
QSGW+SO [solid black lines], and HSE+SO [dashed
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green (light-grey) lines] bandstructures including SO cou-
pling effects. The experimental bandstructure along the
L → Γ k-path taken from Ref. 5 is also shown. The
experimental and theoretical eigenvalues are listed in Ta-
ble II.

The QP occupied bands are in good agreement with
the available experimental measurements with an average
difference of 0.06 eV. In fact, the 5d bands are shifted by
−0.4 eV, improving the agreement with the experimen-
tal data. Indeed, this shift has been suggested before in
Refs. 2 and 5. Nevertheless, the occupied L−

6 band is low-
ered by 0.26 eV with respect to the DFT-PBE value, in
the wrong direction with respect to the experiment [this
is also the case in the bandstructures obtained within
one-shot GW (see Fig. 3)]. A disagreement of up to
0.6 eV in the first unoccupied band still remains. To
illustrate, for band 7 the discrepancy is of 0.4 and 0.6 eV
at L+

6 and Γ−

7 (see Table II). Moreover, for higher energy
bands, such as Γ−

6 at 18 eV above the Fermi level, the
deviations from the experimental data can be as large
as 0.8 eV.

VI. RESIDUAL DISCREPANCIES

The inclusion into the QP bandstructure of spin-orbit
effects by the present perturbative treatment might be
considered as the source of the residual non-negligible
discrepancies. However, a more correct treatment within
GW of such effects, as in Ref. 20, was found to affect the
result by not more than 0.1 eV.

The error due to the use of QSGW instead of a full
GW self-consistency is presently unknown. However,
the use of a different self-consistent scheme, namely SC-
COHSEX+G0W0, seems to provide results in agreement
with QSGW .11 Of course, one cannot exclude that both
schemes at the same time provide deviations from full
self-consistent GW larger than 0.1 eV.

Other possible sources of these discrepancies might be
vertex corrections beyondGW . Here we checked the local
vertex correction55 and a non-local vertex correction to
W only56. These account for small corrections of no more
than 0.1 eV, as explained in Ref. 57.

Intraband q → 0 Drude peak contributions to the po-
larizability, which were neglected in our calculations, may
lead to a spurious gap at the Fermi level in simple (al-
kali) metals58. However, no spurious gaps were observed
here. In fact, the neglect of the Drude peak in slightly
more complex metals, such as aluminium, does not lead
to significant errors.58

The relativistic corrections taken into account here, as
well as in Ref. 20, are only at the single-particle level. At
present, the effect of many-body relativistic terms18,19,
such as the Breit interaction or the spin-of-one-electron
orbit-of-the-second18, etc., is unknown. In systems like
gold, where relativistic effects are important, these terms
might explain the remaining discrepancies.
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FIG. 8. (Color online) Bandstructure of gold calculated
within PBE+SO [dotted red (grey) lines], QSGW+SO [solid
black lines] and HSE+SO [dashed green (light grey) lines].
The zero of energy has been set at the Fermi level. These
theoretical results are compared to various experimental mea-
surements. The blue (black) circles are taken from Ref. 5. At
the L point, the blue (black) squares correspond to the mea-
surements listed in Table II. The dashed blue (black) line
gives the experimental final-band consistent with all data
points from angle-resolved ultraviolet photoelectron spec-
troscopy (ARUPS) in Refs. 5, 59, and 60 and from low-
electron reflectance in Ref. 61.

VII. THE HSE BANDSTRUCTURE OF GOLD

Within HSE, the partially-occupied bands close to the
Fermi level are in good agreement with the QP and ex-
perimental energies. For instance, the position of L−

6 is
within 0.1 eV of the experimental data (see Table II).
For this particular point, HSE presents a better agree-
ment with the experimental data than QSGW does. The
QP and HSE bands along the W to X and Γ to L paths
agree almost perfectly from -1 to 3 eV [the Fermi level
is at zero] (see Fig. 8). However, in this energy range, a
disagreement of ∼0.4 eV is found in the vicinity of the
X point. Moreover, the HSE 5d bands are ∼0.3 eV be-
low the QSGW results and the experimental data. This
shows that HSE opens the interband gap between the
unoccupied and the 5d bands too much . For higher en-
ergy bands, the agreement is quite poor. For instance,
the HSE eigenvalues at the Γ−

7 and Γ−

6 points are ∼6 to
7 eV above the GW and experimental data.

Our findings, and in contemporary those of other au-
thors66, show that the HSE functional does not systemat-
ically predict reliable band widths and gaps. In fact, the
amount of exact exchange in the HSE functional is cho-
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Symmetry PBE QSGW HSE Expt.
label +SO +SO +SO

(band index)

Γ+
6 (1) -10.19 -10.39 -10.30

Γ+
8 (2,3) -5.67 -6.02 -6.31 -5.90a,-6.0b,-6.01 (0.02)c

Γ+
7 (4) -4.46 -4.85 -4.82 -4.45a,-4.6b,-4.68 (0.05)c

Γ+
8 (5,6) -3.27 -3.67 -4.00 -3.55a,-3.65b,-3.71 (0.02)c

Γ−

7 (7) 15.76 15.36 23.27 16.0 (0.1)c,15.9d

Γ−

6 (8) 18.08 17.97 24.38 18.8 (0.5)c

L+
6 (1) -7.74 -8.01 -8.15 -7.80 (0.15)b

L+
4,5 (2) -5.79 -6.16 -6.40 -6.23 (0.15)b,-6.20 (0.05)c

L+
6 (3) -4.61 -4.97 -5.36 -4.88 (0.1)b,-5.0 (0.05)c

L+
6 (4) -2.61 -2.95 -3.25 -3.2 (0.1)c

L+
4,5 (5) -1.90 -2.24 -2.60 -2.3 (0.1)c,-2.5e

L−

6 (6) -1.37 -1.63 -1.12 -1.0e,-1.0 (0.1)f,
-1.01 (0.04)g,-1.1 (0.1)h

L+
6 (7) 2.93 3.19 3.29 3.6e,3.65 (0.05)f,

3.56 (0.02)g,3.4 (0.1)h

a Angle resolved ultraviolet photoelectron spectroscopy (Ref. 59)
b Angle resolved ultraviolet photoelectron spectroscopy (Ref. 60)
c Angle resolved ultraviolet photoelectron spectroscopy (Ref. 5)
d Low-energy-electron reflectance (Ref. 61)
e Piezoreflectance62
f Electro tunneling (Ref. 63)
g Piezooptical response (Ref. 64)
h Bremsstrahlung isochromat spectroscopy (Ref. 65)

TABLE II. Experimental and theoretical values (in eV) for
the energy bands of gold at the high-symmetry points Γ and
L. The theoretical results include SO coupling corrections (see
the text). Experimental errors are shown in parentheses (eV).

sen so to provide good structural, thermochemical and
bonding properties of solids67,68. For metals, our results,
in agreement with Refs. 67 and 68, show that HSE over-
estimate transition energies. Moreover, the modification
in the d wavefunctions as provided by self-consistent GW
are not catched by HSE, and the corresponding physics
is not reproduced.

VIII. CONCLUSIONS

In summary, we have studied the bandstructure of gold
using MBPT with several flavors of the GW approxima-
tion and using the HSE hybrid functional. While the
inclusion of semicore 5s and 5p states in the valence

shell has negligible effects in DFT, it becomes crucial
in GW , leading to a wrong inverse ordering of bands at
the Fermi level when they are neglected. Within G0W0,
the plasmon-pole model is found to be a good approx-
imation for gold. The PPM provides the same results,
within 0.1 eV, as the full contour-deformation integration
method, except for the lowest bands where deviations can
be up to 0.2 eV. With respect to DFT-PBE, the single-
shot G0W0 shifts the empty bands up by ∼0.2 eV and the
lowest sp occupied band down by 0.4 eV, while leaving
the 5d occupied bands unchanged. Updating the DFT-
PBE wavefunctions, as in the QSGW approach, is impor-
tant to shift down by 0.4 eV the occupied 5d bands, thus
improving the agreement with the experiment. A resid-
ual discrepancy of up to 0.6 eV in the 5d-6sp interband
gap is still present, probably due to relativistic effects be-
yond those included here, as well as, the lack of a unified
relativistic many-body approach. Finally, the position of
the 5d bands calculated within HSE ends up ∼0.3 eV be-
low the experimental data. HSE becomes more and more
off for higher states, with an error of ∼6 eV at 16 eV from
the Fermi level.
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25 R. W. Godby, M. Schlüter, and L. J. Sham, Phys. Rev.
Lett. 56, 2415 (1986);
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