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Wahl conjectured that every quasihomogeneous isolated normal singularity admits a positive grading for which there are no derivations of negative weighted degree. We confirm his conjecture for quasihomogeneous isolated complete intersection singularities of either order at least 3 or embedding dimension at most 5. For each embedding dimension larger than 5 (and each dimension larger than 3), we give a counter-example to Wahl's conjecture.

Introduction

By a singularity we mean a quotient A of a convergent power series ring over a valued field K of characteristic zero (see §1). We use the acronym negative derivation for a derivation of negative weighted degree on a quasihomogeneous singularity. The question of existence of such negative derivations has important consequences in rational homotopy theory (see [START_REF] Meier | Rational universal fibrations and flag manifolds[END_REF]Thm. A]) and in deformation theory (see [Wah82, Thm. 3.8]).

By a result of Kantor [START_REF] Kantor | Rectificatif à la note: "Dérivations sur les singularités quasi-homogènes: cas des courbes[END_REF], quasihomogeneous curve and hypersurface singularities do not admit any negative derivations. J. Wahl [Wah82, Thm. 2.4, Prop. 2.8] reached the same conclusion in (the much deeper) case of quasihomogeneous normal surface singularities. Motivated by his cohomological characterization of projective space in [START_REF] Wahl | A cohomological characterization of P n[END_REF], he formulates the following conjecture in [START_REF] Wahl | Derivations, automorphisms and deformations of quasihomogeneous singularities[END_REF]Conj. 1.4].

Conjecture (Wahl). Let R be a normal graded ring, with isolated singularity. Then there is a normal graded R, with R ∼ = R, so that R has no derivations of negative weight.

In case R is a graded normal locally complete intersection with isolated singularity, R becomes a quasihomogeneous normal isolated complete intersection singularity (ICIS) and Wahl's conjecture can be rephrased as follows (see Lemma 5 and Remark 7).

Conjecture (Wahl, ICIS case). Any quasihomogeneous normal ICIS has no negative derivations with respect to some positive grading.

For quasihomogeneous normal ICIS, there is an explicit description of all derivations due to Kersken [START_REF] Kersken | Reguläre Differentialformen[END_REF]. Based on this description, we prove our main Theorem 1. For any quasihomogeneous normal ICIS of order at least 3 there are no negative derivations with respect to any positive grading.

Proof. This follows from Corollary 12 and Proposition 16.

Our investigations lead to a family of counter-examples to Wahl's Conjecture. In order to describe it, we first fix our notation. A quasihomogeneous singularity can be represented as (0.1) A = P/a, a = g 1 , . . . , g t K x 1 , . . . , x n =: P where g 1 , . . . , g t are homogeneous polynomials of degree p i := deg(g i ) with respect to weights w 1 , . . . , w n ∈ Z + on the variables x 1 , . . . , x n (see §1). We order these weights and degrees decreasingly as

w 1 ≥ • • • ≥ w n > 0, (0.2) p 1 ≥ • • • ≥ p t .
Example 2. Let n ≥ 6 and pick c 7 , . . . , c n ∈ K \ {1} pairwise different such that c 9 i + 1 = 0 for all i. Assigning weights 8, 8, 5, 2, . . . , 2 to the variables x 1 , . . . , x n , the equations

g 1 :=x 1 x 4 + x 2 x 5 + x 2 3 -x 5 4 + n i=7
x 5 i (0.3)

g 2 :=x 1 x 5 + x 2 x 6 + x 2 3 + x 5 6 + n i=7 c i x 5
i define a quasihomogeneous complete intersection A as in (0.1) with isolated singularity. On A there is a derivation

(0.4) η := ∂ 1 ∂ 2 ∂ 3 x 4 x 5 2x 3 x 5 x 6 2x 3 = 2x 3 (x 5 -x 6 )∂ 1 -2x 3 (x 4 -x 5 )∂ 2 + (x 4 x 6 -x 2 5 )∂ 3
of degree -1. We work out the details of this example in §4.

We show that Example 2.8 gives a counter-example to the ICIS case of Wahl's conjecture of minimal embedding dimension n = 6. Theorem 3. Exactly up to embedding dimension 5, all quasihomogeneous ICIS have no negative derivations with respect to some positive grading.

Proof. This follows from Kantor [START_REF] Kantor | Rectificatif à la note: "Dérivations sur les singularités quasi-homogènes: cas des courbes[END_REF], [Wah82, Thm. 2.4, Prop. 2.8], Proposition 18, Example 2 and Corollary 12.

As a consequence of our arguments we obtain a simple special case of the following conjecture due to S. Halperin.

Conjecture (Halperin). On any graded zero-dimensional complete intersection there are no negative derivations.

The following result bounds the degree of negative derivations (see also [START_REF] Aleksandrov | Vector fields on a complete intersection[END_REF]Prop.]). The bound does not require a complete intersection hypothesis and it is independent of further hypotheses as for instance in [Hau02, Thm. 2].

Proposition 4. For any quasihomogeneous zero-dimensional singularity A as in (0.1) there are no derivations of degree strictly less than p n -p 1 . In particular, Halperin's conjecture holds true if p 1 = p n .

Proof. As A is assumed to be zero-dimensional, condition A(k) on page 4 must hold true for all k = 1, . . . , n. Then the claim follows from Remark 14 and Lemma 15.
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Graded analytic algebras

Consider a (local) analytic algebra A = (A, m A ) over a (possibly trivially) valued field K of characteristic zero. We assume in addition that A is non-regular and can be represented as a quotient A = P/a of a convergent power series ring P := K x 1 , . . . , x n a. In the sequel such an A will be referred to as a singularity. We choose n minimal such that n = embdim A and set d := dim A.

A K + -grading on A is given by a diagonalizable derivation χ ∈ Der K A =: Θ A which means that m A is generated by eigenvectors x 1 , . . . , x n (see [START_REF] Scheja | Über Derivationen von lokalen analytischen Algebren[END_REF](2.2),(2.3)]). Such a derivation is also called an Euler derivation. We refer to w 1 , . . . , w n defined by w i := χ(x i )/x i as the eigenvalues of χ. More generally, we call χ-eigenvectors f ∈ A homogeneous and define their degree to be the corresponding eigenvalue denoted by deg(f ) := χ(f )/f ∈ k. We denote by A a the K-vector space of all such eigenvector f ∈ A with deg(f ) = a. This defines a K-subalgebra

(1.1) Ā := a∈K A a ⊂ A ⊂ Â.
The derivation χ ∈ Θ A lifts to χ ∈ Θ P := Der K P (see [SW73, (2.1)]). In particular, P is K + -graded and a P is a χ-invariant ideal and hence homogeneous (see [START_REF] Scheja | Über Derivationen von lokalen analytischen Algebren[END_REF] (2.4)]). Pick homogeneous g 1 , . . . , g t ∈ a inducing a K-vector space basis of a/m A a. Then a = g 1 , . . . , g t by Nakayama's Lemma. We set p i := deg(g i ) ordered as in (0.2). To summarize, we can write A as in (0.1).

A K + -grading is called a positive grading if w i ∈ Z + for all i = 1, . . . , n (see [SW73, §3, Def.]). We call A quasihomogeneous if it admits a positive grading. In this case, we shall always normalize χ to make the w i coprime and order the variables according to (0.2). Positivity of weights enforces

g i ∈ P = K[x 1 , . . . , x n ] and that (1.2) Ā = i≥0 A i = P /ā, ā = g 1 , . . . , g t K[x 1 , . . . , x n ] = P , is a (positively) graded-local k-algebra with completion (1.3) Â = Â
and graded maximal ideal m Ā = mA := i>0 A i . The preceding discussion enables us to reformulate Wahl's Conjecture in the language of Scheja and Wiebe as follows.

Lemma 5. The following supplementary structures on a singularity A are equivalent:

(1) an Euler derivation χ on A with positive eigenvalues, (2) a positive grading on A, (3) a positive grading on Â, (4) a (positively) graded K-algebra Ā such that  = Â.

Proof. The equivalences of (1), (2), and (3) are due to Scheja and Wiebe (see [START_REF] Scheja | Über Derivationen von lokalen analytischen Algebren[END_REF] (2.2),(2.3)] and [SW77, (1.6)]). For the equivalence with (4), note that the obvious Euler derivation on a graded K-algebra Ā lifts to an Euler derivation on the completion  = Â. The converse follows from from (1.1), (1.2) and (1.3).

Let us assume now that A is an isolated complete intersection singularity (ICIS). We may then take g 1 , . . . , g t to be a regular sequence and d + t = n. The isolated singularity hypothesis can be expressed in terms of the Jacobian ideal (1.4)

J A := ∂g ∂x ν | |ν| = t A of A as follows.
Proposition 6. A complete intersection singularity A is isolated if and only if J A is m A -primary. An analogous statement holds for Ā.

Proof. We denote by Ω 1 A/k the universally finite module of differentials of A over k. By the standard sequence

a/a 2 / / A ⊗ P Ω 1 P/k / / Ω 1 A/k / / 0, the Jacobian ideal J A is the 0th Fitting ideal F 0 A Ω 1 A/k
. By [SS72, (6.4),(6.9)], reducedness of

A is equivalent to rk Ω 1 A/k = d and A p is regular if and only if Ω 1 Ap/k is free. Hence, A p being regular is equivalent to p ⊃ F 0 A Ω 1 A/k = J A by [BH93, Lem. 1.4.9].
In particular, A having an isolated singularity means exactly that A/J A is supported at m A and hence that J A is m A -primary as claimed. The analogous statement for Ā is proved similarly.

Remark 7. Let A be a quasihomogeneous singularity. By (1.2), (1.5)

J Ā := JA = ∂g ∂x ν | |ν| = t Ā
is the Jacobian ideal of Ā defined analogous to (1.4 Scheja and Wiebe [SW77, (3.1)] (see also [Sai71, Satz 1.3]) proved that any K + -graded ICIS is quasihomogeneous unless t = 1 and g 1 / ∈ m 3 P . Their starting point (see [SW77, (2.5)] and [Sai71, Lem. 1.5]) is that A being an ICIS implies, by Proposition 6, that for each k = 1, . . . , n one of the following two conditions must holds true.

A(k) For some m ≥ 2 and 1 ≤ j ≤ t, the monomial x m k occurs in g j . B(k) For some pairwise different 1 ≤ ν 1 , . . . , ν t ≤ n, each g j contains a monomial x m j k x ν j for some m j ≥ 1. The following result gives numerical constraints for A to be a quasihomogeneous ICIS.

Lemma 8. If A is a quasihomogeneous ICIS then (1.6) p 1 + • • • + p j ≥ w 1 + • • • + w j + j
for all j = 1, . . . , t.

Proof. We proceed by induction on j. Assume that

p 1 +• • •+p j-1 ≥ w 1 +• • •+w j-1 +j -1 but p 1 + • • • + p j ≤ w 1 + • • • + w j + j -1.
Then p j ≤ w j and hence g i = g i (x j+1 , . . . , x n ) for all i = j, . . . , n. Then J A maps to zero in A/ x j+1 , . . . , x n = K x 1 , . . . , x j / g 1 , . . . , g j-1

and hence J A cannot be m A -primary as required by Proposition 6.

Negative derivations

Let A be a quasihomogeneous singularity as in §1. The target of our investigations is the positively graded A-module Θ A = Der K A of K-linear derivations on A. More precisely, we are concerned with the question whether its negative part

Θ A,<0 = Θ Ā,<0 = i<0 Θ A,i
is trivial. A priori this condition depends on the choice of a grading. In Proposition 9 below, we shall prove the independence of this choice for a general singularity under a strong hypothesis satisfied in the ICIS case (see Corollary 12). To this end, we write (see [SW73, (2.1)]) Proposition 9. Let A be a quasihomogeneous singularity with positive grading given by χ and assume that Θ a⊂P = P χ + Θ ′ P + aΘ P , (2.2)

for some Θ ′ P ⊂ m 2 P Θ P . (2.3)
Then the condition Θ A,<0 = 0 and the p 1 , . . . , p t in (0.2) are independent of the chosen positive grading.

Proof. Consider a second positive grading with corresponding Euler derivation χ ′ (see Lemma 5). By (2.1) and (2.2), any δ ∈ Θ A lifts to an element of Θ a⊂P of the form (2.4) δ = cχ + δ + , δ + = aχ + η, c ∈ K, a ∈ m P , η ∈ Θ ′ P , denoted by the same symbol. By (2.3) and the Leibniz rule, (2.5)

χm k P ⊂ m k P , δ + m k P ⊂ m k+1 P
for all k ≥ 1. Specializing to δ = χ, this implies that χ + = 0 and χ ′ = cχ on m A /m 2 A = m P /m 2 P and hence c = 1 by the definition of a positive grading and our normalization of weights.

Using (2.1), we equip Θ A with the decreasing m P -adic filtration F • induced from Θ P which is defined as follows F k Θ A = (Θ a⊂P ∩ m k P Θ P )/(aΘ P ∩ m k P Θ P ). Due to (2.3), (2.4) and (2.5) this is a filtration by (k, P )-Lie ideals and

δ + F k Θ A ⊂ F k+1 Θ A
for the adjoint action of δ + . Therefore, for any k ≥ 1, the adjoint action of χ ′ = χ + χ + on the truncation

F ≤k Θ A := Θ A /F k+1 Θ A
is triangularizable with semisimple part equal to that of χ. Thus, χ ′ and χ have the same eigenvalues on F ≤k Θ A for any k ≥ 1. The first claim then follows by choosing k sufficiently large. A similar argument yields the second claim.

For a Gorenstein singularity A, there is a natural way to produce elements of Θ A . The A-submodule Θ ′ A ⊂ Θ A of trivial derivations is by definition the image of the inclusion

(2.6) Ω d-1 A/K ֒→ ω d-1 A/K = Hom A (Ω 1 A/K , ω d A/K ) = Θ A ⊗ A ω d A/K ∼ = Θ A .
We return to the case of an ICIS singularity A. For 1

≤ ν 0 < • • • < ν t ≤ n with complementary indices 1 ≤ µ 1 < • • • < µ d-1 ≤ n, the lift to P of the image of dx µ 1 ∧ • • • ∧ dx µ d-1
can be written (up to sign) explicitly as

(2.7)

δ ν := ∂ ν 0 • • • ∂ νt ∂ ν 0 g 1 • • • ∂ νt g 1 . . . . . . ∂ ν 0 g t • • • ∂ νt g t . Note that deg δ ν = p 1 + • • • + p t -w ν 0 -• • • -w νt , (2.8) δ ν g j = 0
(2.9) for all j = 1, . . . , t and ν. Consider the P -module (2.10)

Θ ′ P := δ ν | 1 ≤ ν 0 < • • • < ν t ≤ n P ⊂ Θ P .
The key to our investigations is the following result due to Kersken [Ker84, (5.2)]. From now on we assume in addition that A is quasihomogeneous and normal, that is, dim A ≥ 2.

Theorem 10 (Kersken). Let A be a quasihomogeneous normal ICIS. Then the module Θ A of K-linear derivations on A is generated by the Euler derivation χ and the trivial derivations Θ ′ A .

Although Kersken only states that Θ ′

A is minimally generated by the δ ν in (2.7), his arguments show that together with χ they form a minimal set of generators of Θ A . We denote by µ(-) the minimal number of generators.

Corollary 11. Let A be quasihomogeneous normal ICIS. Then Θ A is minimally generated by the Euler derivation χ and the trivial derivations δ ν in (2.7). In particular,

µ(Θ A ) = n t + 1 + 1.
Proof. Since the case d = 2 is covered by [Wah87, Prop. 1.12], we may assume that d ≥ 3. In this case, the inclusion (2.6) fits into the following commutative diagramm with exact rows and columns (see [Ker84, Proof of (4.8)] or [Wah87, Prop. 1.7]).

(2.11) 0 0

0 / / H 1 m A (Ω d A/K ) O O χ ∼ = / / H 1 m A (Ω d-1 A/K ) O O / / 0 0 / / ω d A/K O O χ / / ω d-1 A/K O O χ / / ω d-2 A/K O O 0 / / Ω d A/K O O χ / / Ω d-1 A/K O O χ / / Ω d-2 A/K ∼ = O O 0 O O 0 O O It follows that χ(ω d-1 A/K ) ∼ = χ(Ω d-1 A/K ) ∼ = Ω d-1 A/K /χ(Ω d A/K ) where χ(Ω d A/K ) ⊂ m A Ω d-1 A/K and hence µ(χ(Ω d-1 A/K )) = µ(Ω d-1 A/K ) = µ(Θ ′ A ).
Now the middle row of (2.11) yields an exact sequence

0 / / A χ / / Θ A / / χ(ω d-1 A/K ) ⊗ (ω d A/K ) -1 / / 0 Since χ / ∈ m A Θ A , the claim follows.
Note that Θ ′ P in (2.10) satisfies (2.3) due to (2.7) unless t = 1 and g 1 / ∈ m 3 P . As a consequence of Proposition 9 and Theorem 10 we therefore obtain the following result. It is crucial for Example 2 to be a counter-example to Wahl's Conjecture.

Corollary 12. Let A be a quasihomogeneous normal ICIS. Unless t = 1 and g 1 / ∈ m 3 P , the condition Θ A,<0 = 0 and the p 1 , . . . , p t in (0.2) are independent of the choice of a positive grading.

We shall now derive numerical constraints for minimal negative trivial derivations. To this end, suppose that 0 = η ∈ Θ A,<0 . For reasons of degree (see (0.2)), η can be written as (2.12)

η = q 1 ∂ 1 + • • • q n ∂ n , q i = q i (x i+1 , . . . , x n )
By Theorem 10, we may assume that η = δ ν = 0 is a trivial derivation as in (2.7). By (0.2) and (2.8), we may further assume that ν i = i + 1 for i = 0, . . . , t. Explicitly, we may write (2.13)

q i = (-1) i-1 ∂ 1 g 1 • • • ∂ i g 1 • • • ∂ t+1 g 1 . . . . . . . . . ∂ 1 g t • • • ∂ i g t • • • ∂ t+1 g t , q t+2 = • • • = q n = 0.
Now (2.8) and (2.9) specialize to the following simple Lemma 13. For η as in (2.12) with (2.13), we have

(2.14) ηg j = 0 for all j = 1, . . . , t. If Θ A,<0 = 0 for a quasihomogeneous normal ICIS then

(2.15)

p 1 + • • • + p t < w 1 + • • • + w t+1 .
Remark 14. For degree reasons (see (0.2)), the identity (2.14) holds true for any η ∈ Θ A,<pt-p 1 and any quasihomogeneous singularity A as in (0.1).

We now link the conditions A(k) and B(k) from page 4 to the existence of a negative derivation as in (2.12).

Lemma 15. Assume that the identity (2.14) holds true for all j = 1, . . . , t. Then A(k) implies q k = 0 in (2.12) for a suitable choice of coordinates.

Proof. Pick k ∈ {1, . . . , t + 1} such that A(k) holds. Then some g j contains x m k , m > 1, and all other monomials in g j contain only strictly lower powers of x k by homogeneity. Let t k,j = t k,j (x 1 , . . . , x k , . . . , x n ) denote the coefficient of x m-1 k in g j , and assume, without loss of generality, that the coefficient of x m k is 1 m . Note that t k,j is independent of variables of weight larger than w k . Expanding (2.14) with respect to the variable x k and taking the terms involving x m-1 k gives

q k x m-1 k = q k ∂ k 1 m x m k = - i =k q i ∂ i (t k,j x m-1 k ) = - i =k q i ∂ i (t k,j )x m-1 k and hence (2.16) η = i =k q i • (∂ i -∂ i (t k,j )∂ k ).
The χ-homogeneous coordinate change

x ′ i = x k + t k,j , if i = k, x i , else. replaces ∂ i -∂ i (t k,j )∂ k in (2.16
) by ∂ ′ i , and thus q k in (2.12) by 0. Iterating this process yields the claim.

Our main technical result is the following Proposition 16. Let A be a quasihomogeneous normal ICIS such that Θ A,<0 = 0. Then B(k) holds for at least two indices k ≤ t + 1. Each such k satisfies k ≥ t -d + 2 and g k , . . . , g t / ∈ m 3 P . Proof. By hypothesis and Lemma 15, B(k) holds for some k ≤ t+1 with q k = 0. Assuming that k is unique, (2.9) reads q k ∂ k g j = 0 which would imply that g j is independent of x k for all j = 1, . . . , t. By the isolated singularity hypothesis, this is impossible.

Combining (1.6) and (2.15), we obtain (2.17)

p j + • • • + p t + j ≤ w j + • • • + w t+1
for all j = 1, . . . , t. Using (0.2), B(k) and (2.17) for j = k, we compute

m k w k + • • • + m t w t ≤ (m k + • • • + m t )w k = deg(∂ ν k g k • • • ∂ νt g t ) = p k + • • • + p t -w ν k -• • • -w νt ≤ w k + • • • + w t+1 -k -w ν k -• • • -w νt .
and hence

(m k -1)w k + • • • + (m t -1)w t ≤ w t+1 -k -w ν k -• • • -w νt .
By (0.2), this forces

m k = • • • = m t = 1, (2.18) w t+1 ≥ w ν k + • • • + w νt + k.
In particular,

(2.19) ν k , . . . , ν t ≥ t + 2 and hence k ≥ t -d + 2.

ICIS of embedding dimension 5

Lemma 17. Let A be a quasihomogeneous normal ICIS such that Θ A,<0 = 0. Then A(k 1 ) and B(k 2 ) for {k 1 , k 2 } = {1, 2} is impossible.

Proof. Assuming the contrary, one of the g j has a monomial divisible by x 2 k 1 by A(k 1 ) and each of the g j has a monomial divisible by x k 2 by B(k 2 ). In particular,

p 1 + • • • + p t ≥ 2w k 1 + (t -1)w k 2 ≥ w 1 + • • • + w t+1 contradicting (2.15).
Proposition 18. For any quasihomogeneous ICIS A as in (0.1) with n = 5 and t = 2, we have Θ A,<0 = 0.

Proof. Assume that Θ A,<0 = 0. By Proposition 16 and Lemma 17, we must have B(1) and B(2). Using (0.2), (2.18), and (2.19), we may write

g 1 = x 1 x 4 + c 1 x j 2 x k 1 + • • • g 2 = x 1 x 5 + c 2 x 2 x k 2 + • • •
with {k 1 , k 2 } = {4, 5} and c 1 , c 2 ∈ K * . As in the proof of Lemma 17, the inequality (2.15) can only hold true if j = 1. In this case, A/(J A + x 3 , . . . , x n ) = K x 1 , x 2 / ∂g ∂(x 4 , x 5 ) .

for degree reasons (see (0.2)), and hence J A is not m A -primary. This contradicts to the isolated singularity hypothesis.

Counter-examples

Proof of Example 2. The sequence g is clearly regular and defines a complete intersection as in (0.1). Note that η in (0.4) agrees with η = δ 1,2,3 in (2.12). Since deg(g 1 ) = 10 = deg(g 2 ), (2.9) shows that η has negative degree deg η = -1.

It remains to check that A has an isolated singularity, that is, the Jacobian ideal J A from (1.4) is m A -primary. To this end, we may assume that K = K which enables us to argue geometrically on the variety X := Spec Ā ⊂ A n K with Ā as in (1.2) using the Nullstellensatz. The ideal J A is the image in A of the Jacobian ideal Jg P of g generated by the 2 × 2-minors M i,j := ∂g ∂(x i x j )

  (2.1) Θ A = Θ a⊂P /aΘ P as a quotient of a (k, P )-Lie algebra Θ a⊂P := {δ ∈ Θ P | δa ⊂ a} aΘ P of logarithmic derivations along a by the (k, P )-Lie ideal aΘ P .
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of the Jacobian matrix of g which reads

With this notation we have to show that Sing X = V (g, Jg ) = {0}.

Due to those 2 × 2-minors of ∂g ∂x which involve only the columns 3, 7, 8, 9, . . . , n, only one of components x 3 , x 7 , x 8 , x 9 , . . . , x n of any x ∈ Sing X can be non-zero. We may therefore reduce to the case n ≤ 7.

Because of the 3rd column of ∂g ∂x , we have Jg ∩ K[x 1 , . . . , x 6 ] ⊇ x 3 I where

4 , x 2 + 5x 4 6 . Note that V (I) is the x 3 -axis which is not contained in V (g). It follows that Sing X∩V (x 7 ) is contained in the hyperplane V (x 3 ). Similarly because of the 7th column of ∂g ∂x and setting c := c 7 , we have Jg ∩ K[x 1 , . . . , x 3 , . . . , x 7 ] ⊇ x 7 I ′ where

4 , x 2 + 5x 4 6 . Using c 9 + 1 = 0, we find that V (I ′ ) is the x 7 -axis and conclude Sing X ∩ V (x 3 ) ⊂ V (x 7 ) as before. Summarizing the two cases, Sing X is in fact contained in V (x 3 , x 7 ).

Fix a point (x 1 , x 2 , 0, x 4 , x 5 , x 6 , 0) ∈ Sing X. Successively using the the equations

Similarly x 6 = 0 leaves no possibility except x = 0 and x 5 = 0 reduces to one of these two cases by M 1,2 = 0. Assume now that x 4 , x 5 , x 6 are all non zero. Then the minors M 1,5 , M 2,4 , M 2,5 , M 2,6 give equations

6 . Substituting into g, we obtain g 1 = 2x 1 x 4 -x 5 4 = 9x 5 4 , g 2 = 2x 2 x 6 + x 5 6 = -9x 5 6 and hence x 4 = x 6 = 0 contradicting our assumption.