
HAL Id: hal-00960076
https://hal.science/hal-00960076v1

Submitted on 17 Mar 2014 (v1), last revised 19 Mar 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HYPERSPECTRAL SUPER-RESOLUTION OF
LOCALLY LOW RANK IMAGES FROM

COMPLEMENTARY MULTISOURCE DATA
Miguel Angel Veganzones, Miguel Simoes, G. Licciardi, José M. Bioucas-Dias,

Jocelyn Chanussot

To cite this version:
Miguel Angel Veganzones, Miguel Simoes, G. Licciardi, José M. Bioucas-Dias, Jocelyn Chanussot.
HYPERSPECTRAL SUPER-RESOLUTION OF LOCALLY LOW RANK IMAGES FROM COM-
PLEMENTARY MULTISOURCE DATA. 2014. �hal-00960076v1�

https://hal.science/hal-00960076v1
https://hal.archives-ouvertes.fr


HYPERSPECTRAL SUPER-RESOLUTION OF

LOCALLY LOW RANK IMAGES FROM

COMPLEMENTARY MULTISOURCE DATA

M.A. Veganzones1∗, M. Simões1,2, G. Licciardi1, J. Bioucas2 and J. Chanussot1,3

1GIPSA-lab, Grenoble-INP, Saint Martin d’Hères, France
2Instituto de Telecomunicações, Instituto Superior Técnico, Lisbon, Portugal
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Abstract

Remote sensing hyperspectral images (HSI) are quite often locally low
rank, in the sense that the spectral vectors acquired from a given spa-
tial neighborhood belong to a low dimensional subspace/manifold. This
has been recently exploited for the fusion of low spatial resolution HSI
with high spatial resolution multispectral images (MSI) in order to ob-
tain super-resolution HSI. Most approaches adopt an unmixing or a ma-
trix factorization perspective. The derived methods have led to state-of-
the-art results when the spectral information lies in a low dimensional
subspace/manifold. However, if the subspace/manifold dimensionality
spanned by the complete data set is large, the performance of these meth-
ods decrease mainly because the underlying sparse regression is severely
ill-posed. In this paper, we propose a local approach to cope with this
difficulty. Fundamentally, we exploit the fact that real world HSI are
locally low rank, to partition the image into patches and solve the data
fusion problem independently for each patch. This way, in each patch the
subspace/manifold dimensionality is low enough to obtain useful super-
resolution. We explore two alternatives to define the local regions, using
sliding windows and binary partition trees. The effectiveness of the pro-
posed approach is illustrated with synthetic and semi-real data.

1 Introduction
In recent years, there has been a huge improvement of spectral and spatial
resolutions in the design of remote sensing sensors. However, it seems that it
is not possible to achieve both of them simultaneously. This is due, on the
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one hand, to the system trade-off related to data volume and signal-to-noise
ratio (SNR) limitations and, on the other hand, to the specific requirements of
different applications [1]. Then, there is a need for super-resolution techniques
that fuse high spectral resolution images, such as hyperspectral images (HSI),
with high spatial images such as multispectral images (MSI) or panchromatic
images, in order to obtain high spectral and spatial (super-resolution) images.

Recently, some techniques dedicated to the fusion of HSIs and MSIs have
been proposed. A general trend is to associate this problem with either linear
spectral unmixing, which assumes that the underlying data can be described
by a mixture of a relatively small number of ”pure” spectral signatures, corre-
sponding to the materials present in the scene or, with the learning of a spec-
tral dictionary that codifies the information present on the images. Since both
HSIs and MSIs capture the same scene, the underlying materials (the so-called
endmembers) or the dictionaries should be the same. Therefore, the spectral
information extracted from one of the images should also be able to explain the
other one. Due to the high spectral resolution of the HSIs, the endmembers or
the dictionary are extracted from these data, and are then used to reconstruct
the MSI. Since MSIs have high spatial resolution, the final reconstructed image
will be at super-resolution.

1.1 Related work

Zurita et al. [2], introduced one of the first unmixing-based approaches to the fu-
sion of remote sensing multiband images. A related approach is proposed in [3],
where a very high-resolution hyperspectral image is estimated from a lower-
resolution hyperspectral image and a high-resolution RGB image. The method
starts by identifying an unmixing matrix used to represent the hyperspectral
spectra and then uses this matrix in conjunction with the RGB input to com-
pute, via sparse regression, representation coefficients for the high-resolution
hyperspectral image. This methodology can be viewed as a factorization of the
input into a mixing matrix and a set of maximally sparse coefficients. An ap-
proach with similar flavour is proposed in [4]. The main difference is that the
mixing matrix is replaced by a dictionary learnt using a non-negative matrix
factorization with sparsity regularization on the code. In [5], the hyperspec-
tral data is unmixed via the K-SVD algorithm, and the multispsectral data is
reconstructed using orthogonal matching pursuit to induce sparsity. Authors
in [1] proposed a method where two dictionaries were learned from the two
different data, and then used a dictionary-pair learning method to establish
the correspondence between them. A similar and older technique introduced
in [6] alternately unmixes both sources of data to find the signatures and the
abundances of the endmembers.

1.2 Contribution

In real world HSI, it is very likely that in a small spatial neighbourhood the
number of different materials is small, i.e., these images are locally low rank. We
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take advantage of this property to propose a local super-resolution methodology.
Firstly, we propose two approaches, one using a square sliding window of fixed
size and a second using a binary partition tree representation, to obtain a set
of patches from the image, such that the set of pixels with indices in each
patch span a subspace of lower dimensionality than that of the whole image.
Secondly, we exploit the locally low rank property of the pixels of each patch
in two different ways: by using an endmembers induction algorithm (EIA) to
find the low rank subspace spanned by the spectral signatures of the materials
present in each patch; and, by a singular value decomposition (SVD)-based
approach to find the local low-rank subspace of the data of each patch. The
proposed methodology does not need to estimate the spatial blur, as far as it is
constant across bands.

1.3 Outline

The remainder of the paper is organized as follows: in Sec. 2 the super-resolution
problem is formulated, in Sec. 3 the proposed local super-resolution methodology
is introduced and finally, in Sec. 4 experimental results and some conclusion
remarks are provided.

2 Problem formulation

LetX ∈ R
nh×n denote a HSI with nh spectral bands (rows ofX) and n = nx×ny

pixels (columns ofX). We may interpretX either as a collection of nh images (or
bands) of size nx×ny, each one associated to a given wavelength interval, or as a
collection of n spectral vectors of size nh, each one associated with a given pixel.
In this work, we are concerned with the estimation of X, which we term the
original HSI, from two degraded observations of X: a) a low spatial resolution
HSI, Yh ∈ R

nh×(nx/d)×(ny/d), where d > 1 denotes a spatial downsampling
factor, and b) a MSI, Ym ∈ R

nm×nx×ny , where nm ≪ nh. We assume that Yh

is generated as

Yh = XBM+Nh, (1)

where B ∈ R
n×n is a matrix modeling band independent sensor blur, M ∈

R
n×(n/d2) is a masking matrix accounting for spatial downsampling of size d on

both spatial dimensions, and Nh is an additive perturbation. Concerning the
MSI, Ym, we assume the generation model

Ym = RX+Nm, (2)

where the matrix R ∈ R
nm×nh holds in its columns the nh spectral responses

of the multispectral sensor, and Nm is an additive perturbation.
Let us suppose that it is possible to learn a dictionary D ∈ R

nh×nd from
the hyperspectral image Yh, and that the columns X, denoted by xi, for i =
1, . . . , n, may be sparsely represented as linear combinations of the columns of
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D. That is, given xi for i ∈ S, there is a sparse vector αi ∈ R
nd (i.e., only a

few components of αi are non-zero) such that:

xi = Dαi. (3)

By replacing (3) in (2), we obtain:

Ym = RDA+Nm, (4)

where A ≡ [α1, . . . ,αn], is often termed as code in dictionary learning and
sparse regression applications. If equation (4) can be solved with respect to A,
then we may plug its solution into (3) and thereby obtain an estimate of X.

The success of a dictionary-based approach depends fundamentally on the
ability to solve (4) with respect to A. The difficulty in solving this system comes
from the fact that the system matrix RD ∈ R

nm×nd is often fat, i.e., nm < nd,
yielding an undetermined system of equations. A typical multispectral sensor
has less than 10 bands, quite often 4 in the wavelength interval [0.4, 2.5]microns
where most hyperspectral sensors operate, whilst nd is often of the order of a
few tens. The ill-posedness of (2) when nm < nd may be cured by exploiting
the sparsity of the codes αi, for i ∈ S, which opens the door to all sort of
sparse regression techniques, many of them recently introduced in compressive
sensing [7] applications. Nevertheless, we still face a difficulty: in hyperspectral
applications, the columns of D tend to be highly correlated, implying that the
mutual coherence of the columns of RD is close to 1. This makes (2) ill-posed
even when codes αi, for i ∈ S, are sparse [8, 9].

In the next section, we introduce two local dictionary-based techniques con-
ceived to cope with the ill-posedness with origin in the matrix system RD. The
main idea, in the vein of the local approaches to image restoration, is to de-
compose the HSI into patches and build patch-dependent dictionaries such that
nm ≥ nd in each patch. Thereby, the inverse problem of solving (2) in each
patch is well-posed.

3 Local dictionary based HSI super-resolution

3.1 Local spatial patches definition

Let Pj denote the set of patches obtained from an image, Yh, such that the
set of pixels with indices in each patch, Yj ≡ [yi, i ∈ Pj ], span a subspace of
lower dimensionality than that of Yh. Next, we introduce two approaches to
obtain such patches. The first approach uses a sliding window and the second
approach relies on a binary partition tree (BPT) representation [10].

3.1.1 Using a sliding window of fixed size

The sliding window methodology has been broadly used in image processing.
It consists in defining a square window of fixed size so the pixels lying inside
the window form a patch. The window then slides over the whole image in a
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standard zig-zag way, be it with some overlapping or not, eventually covering
the whole image and defining the image patches, Pj .

3.1.2 Using a BPT representation

The BPT is a hierarchical region-based representation of an image in a tree
structure [10]. In the BPT representation, the leaf nodes correspond to an
initial partition of the image, which can be the individual pixels, or a coarser
segmentation map. From this initial partition, an iterative bottom-up region
merging algorithm is applied until only one region remains. This last region
represents the whole image and corresponds to the root node. All the nodes
between the leaves and the root result of the merging of two adjacent children
regions.

Two notions are of prime importance when defining a BPT, the region model,
MR, which specifies how a region R is modelled, and the merging criterion,
O(MRα

,MRβ
), which is a distance measure between the region models of any

two regions Rα and Rβ . Each merging iteration involves the search of the two
neighbouring regions which achieve the lowest pair-wise similarity among all
the pairs of neighbouring regions in the current segmentation map. Those two
regions are consequently merged. To build the BPT representation from the
hyperspectral image [11, 12, 13], Yh, we use the first-order parametric model
MR:

MR
d
= x̄ =

1

NR

NR∑

i=1

xi,

where NR is the number of pixels on the region; and, in order to merge regions,
the spectral angle distance:

O
(
MRα

,MRβ

) d
= dSAM (x̄α, x̄β) = arccos

(
x̄αx̄β

‖x̄α‖‖x̄β‖

)
.

Once the BPT representation is built, the BPT is pruned to achieve a partition
of the image such that the regions of the partition define the image patches,
Pj . We use the vote-based pruning approach from [14], where each region of
the BPT representation is voted by its children. A region receives a number of
votes equal to the leaves of a children node if the distance between the region
model and the children model is above some threshold. Once all the regions have
collected their number of votes, the BPT is pruned so the partition cardinality
is maximized constrained to the regions of the partition having received at least
half the total number of votes.

3.2 Local dictionary-based super-resolution

3.2.1 EIA-based approach

Given a set of patches Pj , j = 1, . . . , P ; for each Pj , we identify a mixing matrix
Dj by applying an EIA to extract a set of endmembers from the set of pixels
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Table 1: Mean and standard deviation values of the average RMSE, average
SAM, ERGAS and average Q quality measures for super-resolution methodolo-
gies comparison using the synthetic dataset.

Synthetic
RMSE SAM ERGAS Q

HSR-GDL-EIA 0.0552± 0.0230 4.7777± 3.5114 4.7583± 1.6699 0.9629± 0.0252

HSR-LDL-EIA
Windows 0.0294± 0.0007 2.3944± 0.0610 2.1254± 0.0450 0.9877± 0.0007

BPT 0.0290± 0.0008 2.2067± 0.0714 2.0574± 0.0447 0.9878± 0.0008

HSR-LDL-SVD
Windows 0.0295± 0.0009 2.3877± 0.0751 2.1093± 0.0468 0.9875± 0.0009

BPT 0.0288± 0.0008 2.1810± 0.0691 2.0429± 0.0535 0.9881± 0.0008

Xj , identified by the corresponding patch. Having identified the dictionaries,
Dj , the code A is estimated by solving the following constrained least squares
(CLS) problems:

min
Aj≥0

‖Ym,j −RDjAj‖
2
F j = 1, . . . , P, (5)

where Aj ∈ R
nd×|Pj | and Ym,j ∈ R

nm×|Pj | gathers, respectively, the columns
of A and Ym with indices corresponding to the pixels Xj in Pj . The inequality
Aj ≥ 0 is to be understood in the component-wise sense, and ‖ · ‖F denotes
the Frobenius norm. The constraint Aj ≥ 0 in (5) is used because, in the
linear mixing model, the codes Aj represent abundances of materials which
are necessarily non-negative [15]. It is possible to add the abundances sum-
to-one constraint, AT

j I = 1|Pj |, but this constraint is usually dropped due to
possible scale model mismatches [9]. We remark that, since our observations
are spectral vectors and thus non-negative (apart from the noise contribution),
the non-negativity constraint in (5) is equivalent to a form of constrained ℓ1
regularization and therefore, to some kind of sparsity enforcement (see [16] for
the details).

In order to solve (5), we use the SUnSAL algorithm [17], which is an in-
stance of the C-SALSA methodology introduced in [18] to effectively solve a
large number of CLS problems sharing the same matrix system. Fig. 1 shows
the pseudocode of the proposed HSI Super Resolution via Local Dictionary
Learning using EIAs (HSR-LDL-EIA). The algorithm operates on each patch
independently. Each patch indexes the set of pixels in the hyperspectral image,
Yh,j , and in the multispectral image, Ym,j . From the hyperspectral set of pix-
els, the subspace matrix, Dj , is obtained using any EIA. Then, the SUnSAL

algorithm is used to estimate the fractional abundances, Âj , from the multi-
spectral set of pixels. The fractional abundances are linearly combined with
the estimated subspace to estimate the super-resolution pixels of the patch, X̂j .
The estimated super-resolution pixels of all the patches are combined to form
the estimated super-resolution image, X.
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Algorithm HSR-LDL-EIA
Input:

1. Yh, Ym, R, Pj , nd

2. for j = 1 to P

3. Ym,j := [Ym,i, i ∈ Pj ]
4. Yh,j := [Yh,i, i ∈ Pj ]
5. Dj := EIA(Yh,j , nd)

6. Âj := argminAj≥0 ‖Ym,j −RDjAj‖
2
F

7. X̂j := DjÂj

8. X̂ :=
{
X̂j

}
, j = 1, . . . , P

Figure 1: HSI Super Resolution via Local Dictionary Learning using Endmem-
ber Induction Algorithms (HSR-LDL-EIA).

Table 2: Mean and standard deviation values of the average RMSE, average
SAM, ERGAS and average Q quality measures for super-resolution methodolo-
gies comparison using the real Pavia University dataset.

Pavia University
RMSE SAM ERGAS Q

HSR-GDL-EIA 0.0136± 0.0017 2.9654± 0.3068 2.2056± 0.2994 0.9897± 0.0024

HSR-LDL-EIA
Windows 0.0169± 0.0001 2.9804± 0.0077 2.6302± 0.0082 0.9832± 0.0001

BPT 0.0138± 0.0030 2.6766± 0.4147 2.1924± 0.3118 0.9887± 0.0051

HSR-LDL-SVD
Windows 0.0901± 0.1101 2.7874± 0.1449 15.042± 19.988 0.8445± 0.1345

BPT 0.0153± 0.0015 3.1503± 0.1907 2.9803± 0.3274 0.9844± 0.0037

3.2.2 SVD-based approach

In this method, we carry out the dictionary learning by solving the following
optimization problem:

min rank(Dj) | min
βj ,Dj

∥∥Yh,j −Djβj

∥∥2
F
≤ δ, (6)

where Yh,j are the observed hyperspectral vectors with indexes in Pj , and
βj are weighting coefficients (the code). The optimization problem (6) aims
at finding the dictionary Dj of lower rank, desirably lesser than nm, yielding a
representation error for Yh,j smaller than δ. Using the local low rank argument,
the range of the subspace spanned by the super-resolution pixels Xj in patch
Pj should be close to that of Dj and thus, we may obtain the code for Xj by
solving:

min
Aj

‖Ym,j −RDjAj‖
2
F + τ‖Aj‖

2
F j = 1, . . . , P. (7)

Comparing (7) with (5), we have discarded the non-negativity constraint and
have introduced the quadratic term τ‖Aj‖

2
F , where τ ≥ 0 is a regularization pa-

rameter. We have discarded the non-negativity constraint because the columns
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Algorithm HSR-LDL-SVD
Input:

1. Yh, Ym, R, Pj

2. for j = 1 to P

3. Ym,j := [Ym,i, i ∈ Pj ]
4. Yh,j := [Yh,i, i ∈ Pj ]
5. Ukmax

:= SVD(Yh,j , kmax)

6. Dj := Uk̂, k̂ := min
{
k :

∥∥UT
kYh,j

∥∥2
F
≤ δ

}

7. Âj :=
(
DT

j R
TRDj + τI

)−1
DT

j R
TYm,j

8. X̂j := DjÂj

9. X̂ :=
{
X̂j

}
, j = 1, . . . , P

Figure 2: HSI Super Resolution via Local Dictionary Learning using the Singular
Value Decomposition (HSR-LDL-SVD).

of Dj are no more interpretable as spectra of pure materials and thus Aj are no
more interpretable as abundances. The introduction of a quadratic regularizer
aims at improving the noise-amplification we may have owing to the very low
singular vectors of RDj .

Although problem (6) is nonconvex, it can easily be solved based on the
SVD of Yh,j . Let Uk ∈ R

nh×k be a matrix holding the k left singular vectors
of Yh,j ordered by decreasing value of the corresponding singular values. Then,
for rank(Di) = k, it holds that the solution to:

min
βj ,Dj

∥∥Yh,j −Djβj

∥∥2
F
=

∥∥UT
kYh,j

∥∥2
F

(8)

is achieved for Dj = Uk [19]. Therefore, the solution of (6) is given by:

Dj := Uk̂ | k̂ = argk min
∥∥UT

kYh,j

∥∥2
F
≤ δ

Fig. 2 shows the pseudocode of the proposed HSI Super Resolution via Local
Dictionary Learning using Single Value Decomposition (HSR-LDL-SVD). The
algorithm works in a similar way to the HSR-LDL-EIA algorithm. The main
difference is that the subspace matrix, Dj , is obtained from the k̂ columns of the
singular value decomposition of the hyperspectral pixels. Then, the fractional
abundances, Âj , are calculated from the multispectral pixels using the analytic
solution to the regularized inversion problem (8). Finally, the super-resolution

pixels of the patch, X̂j , are calculated; and, the estimated super-resolution
pixels of all the patches are combined to form the estimated super-resolution
image, X.
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4 Experimental Results and conclusions

In order to assess the performance of the proposed local super-resolution meth-
ods, we used the following experimental methodology: 1) Given a super-resolution
image, X, we simulate a low-spatial resolution hyperspectral image, Yh, by ap-
plying a Gaussian blurring (B) and downsampling the blurred image by a factor
of four (M). 2) We also simulate a high-spatial resolution multispectral image,
Ym, by applying a spectral response matrix (R) to the original super-resolution
image. 3) White noise was added to both images, Yh and Ym, with 30db and

40db respectively. 4) Then, we estimate the super-resolution image, X̂, by ap-
plying a super-resolution methodology to both images, Yh and Ym. 5) Finally,
we compare the original and the estimated super-resolution images, using the
RMSE, the SAM, the ERGAS and the Q quality measures [1].

We compared the two proposed local super-resolution approaches, the HSR-
LDL-EIA and the HSR-LDL-SVD, to the global approach based on EIAs, HSR-
GDL-EIA. The SVD-based approach has been defined explicitly for the local
approach. Its global version performs poorly and thus, there is no point in
showing the comparison. For the proposed local approaches, we also compared
the sliding window and BPT-based approaches to obtain the image patches. In
the case of the EIA-based approach, we used the Vertex Component Analysis
(VCA) EIA [20]. We made the comparison over two datasets:

1. A synthetic image composed of multiple geometric shapes (ellipses and
rectangles) of different sizes and orientations, where each geometrical el-
ement and the background are formed using a different linear mixture of
5 endmembers from the USGS spectral library, for a total of 45 different
endmembers in the image. This image simulates a high spectral variability
scenario. In this case, we fixed the number of induced endmembers and
selected SVD components to p = 2 for the local approaches, and p = 45
for the global one.

2. The well-known Pavia University dataset. This dataset is a real image
representing an urban area mainly composed of buildings, urban vegeta-
tion and parking lots. The multi-spectral image was simulated using the
spectral response of the first three bands of the Ikonos sensor. For the lo-
cal approaches, we fixed the number of induced endmembers and selected
SVD components to p = 3. For the global approach, this value was set to
p = 10.

Tables 1-2 show the results obtained for the synthetic and Pavia University
datasets respectively. For each quality measure, it is shown the mean and stan-
dard deviation of Monte Carlo runs. Results show that the local approaches
outperform the global one in the synthetic scene, and that the EIA-based local
approach does the same in the real scene. From the point of view of the patches
definition, the BPT representation shows a slightly higher performance, hinting
at the relevance of the patching definition process. However, the windowing
approach shows slightly lower standard deviation probably due to the effects
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of noise in the BPT partitioning. The lack of space prevents us from showing
the obtained super-resolution images for visual comparison. We encourage the
interested reader to access the results extended report at first author’s website1.
We’ll further work on the validation of the proposed methodologies and on the
study of the patches definition by means of other BPT pruning strategies. We’ll
also face the problem of estimate the spectral response matrix, R, from the
data.

Figs. 3 and 4 show false color representations of the actual Pavia University
dataset and the super-resolution estimated images obtained by the compared
approaches.

Figure 3: False color representations of the Pavia University dataset.

Acknowledges

Thanks for funding to Fundação para a Ciência e Tecnologia (FCT), Portuguese
Ministry of Science and Higher Education, projects PEst-OE/EEI/0008/2013
and PTDC/EEI-PRO/1470/2012, and grant SFRH/BD/87693/2012.

1http://www.gipsa-lab.grenoble-inp.fr/page pro.php?vid=1728

10



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4: False color representations of the super-resolution images obtained
from the simulated hyperspectral and multispectral observations of the Pavia
University dataset. Top and bottom rows respectively show the best and the
worst images obtained by: (a,f) HSR-GDL-EIA, (b,g) HSR-LDL-EIA (win-
dows), (c,h) HSR-LDL-EIA (BPT), (d,i) HSR-LDL-SVD (windows) and, (e,j)
HSR-LDL-SVD (BPT)
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