Kaninda Musumbu
email: musumbu@labri.fr

Algorithms Visualization Tool for Students and Lectures in Computer Science

Keywords: algorithm, animations, data-structure, visualizations, compilation, synchronization

The best way to understand complex data structures or algorithm is to see them in action. The present work presents a new tool, especially useful for students and lecturers in computer science. It is written in Java and developed at Bordeaux University of Sciences and Technology. Its purposes is to help students in understanding classical algorithms by illustrating them in different ways: graphical (animated), formal, and descriptive. We think that it can be useful to everyone interested in algorithms, in particular to students in computer science that want to beef up their readings and university lecturers in their major effort to enhance the data structures and algorithms course. The main new thing of this tool is the fact of making it possible to the user to animate their own algorithms.

Introduction

The algorithmic is a fundamental field in data processing, and very studied in the various university formations . However, certain concepts are not always obvious to seize, and the teachers do not have tools to allow them to illustrate their remarks. Though Al Khwarizmi's algorism referred only to the rules of performing arithmetic using Hindu-Arabic numerals, a partial formalization of what would become the modern algorithm began with attempts to solve the "decision problem" posed by David Hilbert in 1928. Subsequent formalizations were framed as attempts to define "effective calculability" or "effective method" those formalizations included the Gödel-Herbrand-Kleene recursive functions of 1930, 1934 and 1935, Alonzo Church's lambda calculus of 1936, Emil Post's "Formulation 1" of 1936, and Alan Turing's Turing machines of 19367 and 1939. Giving a formal definition of algorithms, corresponding to the intuitive notion, remains a challenging problem. The analysis and study of algorithms is a discipline of computer science, and is often practiced abstractly without the use of a specific programming language or implementation. In this sense, algorithm analysis resembles other mathematical disciplines in that it focuses on the underlying properties of the algorithm and not on the specifics of any particular implementation. Usually pseudocode is used for analysis as it is the simplest and most general representation. Knuth advises the reader that "the best way to learn an algorithm is to try it . . . immediately take pen and paper and work through an example". And besides a lot of people, instinctively, to understand an algorithm (to understand how it works) impossible by a simple blow of eye. However, this is not because many people who try to create such applications that we are found our happiness. A good number of them are really very interesting and excellent from a pedagogical point of view, but none is sufficiently complete to can served as teaching tools. And yet such a program would be very useful for the students having difficulties to assimilate precise algorithms, but also for the professors who could use it and improve their courses while making use of it in real time like support.

Our program is thus part of this lineage, and allows you to assist the understanding of algorithms. The user would have two information to enter: the data structure to view, and the algorithm to be used. The objective of our paper is to discuss a number of important issues for the design of Vizualisation tool and to contribute to improve the training of the algorithmic filed.

Motivation

The main objective is the construction of educational softwares adapted to learning. First and foremost, it is essential to have in mind that our application is designed for two very specific public: on the one side the lectures, who will use it as a teaching tool, and another side the students, for learning purposes. Perhaps, animating algorithms , on a screen, is very useful to check our self that what we want is indeed what we wrote! Quite often, by doing this, we discover that our algorithm is not accurate enough.

Animation is a complement of analysis, it is very interesting for students in "auto-formation" and in its understanding of the problem and the development of their algorithmic solution, on the one hand and on the other hand, management of synchronization and visualization of the algorithms,

Technical challenge

The definition of a high level, simple programming language which would make it possible to the users to write their own algorithms and to test the classical ones. Once an algorithm is ready, it can be run in many modes like step-by-step or breakpoint mode, so that the user has control over what he has to see, so that he understands it better.

Data structures managements

The animation of programs through the use of real-time graphic displays will depend on the model's execution of the algorithm which will be chosen by the user. Currently, our software treats all kind of binary trees. In the long term we hope to treat the graphs and finite-state machines.

Compilation

A compiler is a computer program that transforms source code written in (the source language) into another computer language (the target). The preset algorithms as those of the user must be written in an easily comprehensible language as well by a student as by a professor. A source text is known as syntactically correct if there exists a succession of derivations making it possible to build it starting from the axiom of a formal grammar. This sequence of derivations is a description of the text, called: syntactic tree. To avoid expense, we use a synthetic representation (of this syntactic tree) which contens only useful informations. This representation is an abstraction of the syntatic one: it is called abstract tree. This tree is used as support with the semantics analyzer, which visits the part Instructions (rules of derivations) to check of it semantics and also to generate the code targets corresponding. The Declarations part is useful to produce the mechanism of identification. In a compiler, it is a table of the symbols which must be built in complement of the abstracted tree, to memorize the information attached to the declarations of a program. Also, a new high level algorithmic language will have to be developed. Thus, during the execution of our various algorithms, our compiler must be able to detect any lexical, syntactic or semantic error and to announce it to the user. A successful compilation means that the algorithm was indeed translated into a programming language

Design of Interface : multiview editing

The principal window must give us a sight (called the scene) on the chart of the data structure and another sight (zone of text) on the algorithm to be carried out. This simultaneous posting will make it possible to follow the graphic evolution of the algorithm carried out, which is essential on pedagogical point of view. and is more efficient that the classical approach to debugging, (which consistes to go through a program line by line and trace it, by watching every line, and the changes it makes in a window containing information about the contents of each variable or data-structure). This graphic interface would be complete with a menu for a better navigation in the various features of our application, and the tools facilitating the drafting and the excution of algorithms.

Visualisation and synchronisation

For visualization we chose a management by frame. A frame is an object containing: a number of steps, the line to be highlighted, the list of the nodes roots, and the node currently selected. The recovery of the data we chose to use a pattern: Observer/Observable. We worked over again the compiler so that this one not provides us only an evaluation function for the whole program but an evaluation function related to each instruction. We thus obtained an evaluation function of the condition if..then...else, the evaluation of an assignment, etc Thanks to this process, let us succeeded in recovering the data at the convenient period, inserting them in the frames and terminate the visualization and synchronization. The interface is a very important element, especially, as in our case, for a software which people will choose to use (it is not imposed), and which must thus allure its users. We especially wanted to give it an appearance closer to that of the applications of the operating system, and adapted according to the platform: Linux (Gnome), Windows That very allows the user to quickly find his brands. An important part of work on accessibility is the translation of the application in several languages. It is indeed an improvement which will touch a large audience. If the application is not represented in the language of the user, then it will not be used in most case. Documentation must be clear, simply, accessible, fast and to contain examples and assistances for the initial users, we have thus to create a documentation online.

Conclusion and Perspectives

Software visualization is animated 2-D or 3-D visual representation of information about software systems based on their structure or behavior. But it is not because many people test themselves has to create such applications that one finds our happiness. A good amount of between them are really very interesting and excellent from a teaching point of view, but none is sufficiently complete at the pedagagical point of view. The creation of the language jAlgo was a scientific experiment and technological enriching. We thus propose a language jAlgo able to manage the recursivity, the algorithmic loops, conditions and other structures all via the call of functions. we did not implement the whole of the options and taken into account all the extensions of the software Nevertheless, the primary education and paramount objectives were reached we present the limits which we find with the product and the possible extensions of this last. We will like to be able to implement an evolutionary interface which would allow the user to visualize for each node, the affected values. With our taste the instructions suggested were not representative of all the situations with the which future users will have to cope. We would to have additional tools to traverse the binary trees with the algorithms assistance.

Figure 1 :

 1 Figure 1: Global view of the architecture approach