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Sparse PLS discriminant analysis: biologically
relevant feature selection and graphical displays
for multiclass problems
Kim-Anh Lê Cao1*, Simon Boitard2 and Philippe Besse3

Abstract

Background: Variable selection on high throughput biological data, such as gene expression or single nucleotide
polymorphisms (SNPs), becomes inevitable to select relevant information and, therefore, to better characterize
diseases or assess genetic structure. There are different ways to perform variable selection in large data sets.
Statistical tests are commonly used to identify differentially expressed features for explanatory purposes, whereas
Machine Learning wrapper approaches can be used for predictive purposes. In the case of multiple highly
correlated variables, another option is to use multivariate exploratory approaches to give more insight into cell
biology, biological pathways or complex traits.

Results: A simple extension of a sparse PLS exploratory approach is proposed to perform variable selection in a
multiclass classification framework.

Conclusions: sPLS-DA has a classification performance similar to other wrapper or sparse discriminant analysis
approaches on public microarray and SNP data sets. More importantly, sPLS-DA is clearly competitive in terms of
computational efficiency and superior in terms of interpretability of the results via valuable graphical outputs. sPLS-
DA is available in the R package mixOmics, which is dedicated to the analysis of large biological data sets.

Background
High throughput technologies, such as microarrays or
single nucleotide polymorphisms (SNPs) are seen as a
great potential to gain new insights into cell biology,
biological pathways or to assess population genetic
structure. Microarray technique has been mostly used to
further delineate cancers subgroups or to identify candi-
date genes for cancer prognosis and therapeutic target-
ing. To this aim, various classification techniques have
been applied to analyze and understand gene expression
data resulting from DNA microarrays ([1-3], to cite only
a few). Genome wide association studies using SNPs
aim to identify genetic variants related to complex traits.
Thousands of SNPs are genotyped for a small number
of phenotypes with genomic information, and clustering
methods such as Bayesian cluster analysis and

multidimensional scaling were previously applied to
infer about population structure [4].

Variable selection
As these high throughput data are characterized by
thousands of variables (genes, SNPs) and a small num-
ber of samples (the microarrays or the patients), they
often imply a high degree of multicollinearity, and, as a
result, lead to severely ill-conditioned problems. In a
supervised classification framework, one solution is to
reduce the dimensionality of the data either by perform-
ing feature selection, or by introducing artificial vari-
ables that summarize most of the information. For this
purpose, many approaches have been proposed in the
microarray literature. Commonly used statistical tests
such as t- or F-tests are often sensitive to highly corre-
lated variables, which might be neglected in the variable
selection. These tests may also discard variables that
would be useful to distinguish classes that are difficult
to classify [5]. Machine Learning approaches, such as
Classification and Regression Trees (CART, [6]),
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Support Vector Machines (SVM, [7]) do not necessarily
require variable selection for predictives purposes. How-
ever, in the case of highly dimensional data sets, the
results are often difficult to interpret given the large
number of variables. To circumvent this problem, sev-
eral authors developed wrapper and embedded
approaches for microarray data: Random Forests (RF,
[8]), Recursive Feature Elimination (RFE, [3]), Nearest
Shrunken Centroids (NSC, [9]), and more recently Opti-
mal Feature Weighting (OFW, [5,10]). Other approaches
were also used for exploratory purposes and to give
more insight into biological studies. This is the case of
Linear Discriminant Analysis (LDA), Principal Compo-
nent Analysis (PCA, see [11,12] for a supervised ver-
sion), Partial Least Squares Regression (PLS, [13], see
also [14-16] for discrimination purposes), to explain
most of the variance/covariance structure of the data
using linear combinations of the original variables. LDA
has often been shown to produce the best classification
results. However, it has numerical limitations. In parti-
cular, for large data sets with too many correlated pre-
dictors, LDA uses too many parameters that are
estimated with a high variance. There is therefore a
need to either regularize LDA or introduce sparsity in
LDA to obtain a parsimonious model. Another limita-
tion of the approaches cited above is the lack of inter-
pretability when dealing with a large number of
variables.
Numerous sparse versions have therefore been pro-

posed for feature selection purpose. They adapt well
known ideas in the regression context by introducing
penalties in the model. For example, a l2 norm penalty
leads to Ridge regression [17] to regularize non inverti-
ble singular matrices. In particular, penalties of type l1
norm, also called Lasso [18], or l0 norm, were also pro-
posed to perform feature selection, as well as a combi-
nation of l1 and l2 penalties [19]. These penalties (l1
and/or l2) were applied to the variable weight vectors in
order to select the relevant variables in PCA [20,21] and
more recently in Canonical Correlation Analysis [22-24]
and in PLS [25-27]. [28,29] also proposed a penalized
version of the PLS for binary classification problems.
Recently, [30] extended the SPLS from [27] for multi-
class classification problems and demonstrated that both
SPLSDA and SPLS with an incorporated generalized fra-
mework (SGPLS) improved classification accuracy com-
pared to classical PLS [31-33].

Multiclass problems
In this study, we specifically focus on multiclass classifi-
cation problems. Multiclass problems are commonly
encountered in microarray studies, and have recently
given rise to several contributions in the literature [34]
and more recently [35,36]. Extending binary classification

approaches to multiclass problems is not a trivial task.
Some approaches can naturally extend to multiclass pro-
blems, this is the case of CART or LDA. Other
approaches require the decomposition of the multiclass
problem into several binary problems, or the definition of
multiclass objective functions. This is the case, for exam-
ple, of SVM one-vs.-one, one-vs.-rest or multiclass SVM.

Sparse PLS-DA
We introduce a sparse version of the PLS for discrimi-
nation purposes (sPLS-Discriminant Analysis) which is a
natural extension to the sPLS proposed by [25,26].
Although PLS is principally designed for regression pro-
blems, it performs well for classification problems
[37,38]. Using this exploratory approach in a supervised
classification context enables to check the generalization
properties of the model and be assured that the selected
variables can help predicting the outcome status of the
patients. It is also important to check the stability of the
selection, as proposed by [39,40]. We show that sPLS-
DA has very satisfying predictive performances and is
well able to select informative variables. In contrary to
the two-stages approach recently proposed by [30],
sPLS-DA performs variable selection and classification
in a one step procedure. We also give a strong focus to
graphical representations to aid the interpretation of the
results. We show that the computational efficiency of
sPLS-DA, combined with graphical outputs clearly give
sPLS-DA a strong advantage to the other types of one
step procedure variable selection approaches in the mul-
ticlass case.

Outline of the paper
We will first discuss the number of dimensions to
choose in sPLS-DA, and compare its classification per-
formance with multivariate projection-based approaches:
variants of sLDA [41], variants of SPLSDA and with
SGPLS from [30]; and with five multiclass wrapper
approaches (RFE, NSC, RF, OFW-cart, OFW-svm) on
four public multiclass microarray data sets and one pub-
lic SNP data set. All approaches perform internal vari-
able selection and are compared based on their
generalization performance and their computational
time. We discuss the stability of the variable selection
performed with sPLS-DA and the biological relevancy of
the selected genes. Unlike the other projection-based
sparse approaches tested, we show that sPLS-DA pro-
poses valuable graphical outputs, also available from our
R package mixOmics, to guide the interpretation of the
results [42,43].

Results and Discussion
In this section, we compare our proposed sPLS-DA
approach with other sparse exploratory approaches such

Lê Cao et al. BMC Bioinformatics 2011, 12:253
http://www.biomedcentral.com/1471-2105/12/253

Page 2 of 16



as two sparse Linear Discriminant Analyses (LDA) pro-
posed by [41], and three other versions of sparse PLS
from [30]. We also include in our comparisons several
wrapper multiclass classification approaches. Compari-
sons are made on four public cancer microarray data
sets and on one SNP data set. All these approaches per-
form variable selection in a supervised classification set-
ting, i.e. we are looking for the genes/SNPs which can
help classifying the different sample classes.
We first discuss the choice of the number of dimen-

sions H to choose with sPLS-DA, the classification per-
formance obtained with the tested approaches and the
computational time required for the exploratory
approaches. We then perform a stability analysis with
sPLS-DA that can help tuning the number of variables
to select and we illustrate some useful graphical outputs
resulting from the by-products of sPLS-DA. We finally
assess the biological relevancy of the list of genes
obtained on one data set.

Data sets
Leukemia
The 3-class Leukemia version [1] with 7129 genes com-
pares the lymphocytes B and T in ALL (Acute Lympho-
blastic Leukemia, 38 and 9 cases) and the AML class
(Acute Myeloid Leukemia, 25 cases). The classes AML-
B and AML-T are known to be biologically very similar,
which adds some complexity in the data set.
SRBCT
The Small Round Blue-Cell Tumor Data of childhood
(SRBCT, [44]) includes 4 different types of tumors with
23, 20, 12 and 8 microarrays per class and 2308 genes.
Brain
The Brain data set compares 5 embryonal tumors [45]
with 5597 gene expression. Classes 1, 2 and 3 count 10
microarrays each, the remaining classes 4 and 8.
GCM
The Multiple Tumor data set initially compared 14
tumors [46] and 7129 gene expressions. We used the
normalized data set from [47] with 11 types of tumor.
The data set contains 90 samples coming from different
tumor types: breast (7), central nervous system (12),
colon (10), leukemia (29), lung (6), lymphoma (19), mel-
anoma (5), mesotheolima (11), pancreas (7), renal (8)
and uterus (9).
SNP data
The SNP data set considered in our study is a subsam-
ple of the data set studied by [48] in the context of the
Human Genome Diversity Project, which was initiated
for the purpose of assessing worldwide genetic diversity
in human. The original data set of [48] included the
genotypes at 525,910 single-nucleotide polymorphisms
(SNPs) of 485 individuals from a worldwide sample of
29 populations. In order to work on a smaller sample

size data set with still a large number of classes or
populations (K = 7) and with a high complexity classifi-
cation, we chose to keep only the African populations:
Bantu Kenya, Bantu South Africa, Biaka Pygmy, Man-
denka, Mbuty Pygmy, San and Yoruba. We filtered the
SNPs with a Minor Allele Frequency> 0.05. For compu-
tational reasons, in particular to run the evaluation pro-
cedures using the wrapper methods, we randomly
sampled 20,000 SNPs amongst the ones of the original
dataset. The aim of this preliminary analysis is to show
that sPLS-DA is well able to give satisfying results on
biallelic discrete ordinal data (coded 0, 1 or 2, i.e. the
number of mutant alleles at one SNP for one individual)
compared to the other approaches.

Choosing the number of sPLS-DA dimensions
In the case of LDA or sparse LDA (sLDA), it is of con-
vention to choose the number of discriminant vectors H
≤ min(p, K - 1), where p is the total number of variables
and K is the number of classes. The p-dimensional data
will be projected onto a H-dimensional space spanned
by the first H discriminant vectors, also called dimen-
sions in the case of sPLS.
To check if the same applies to sPLS-DA, we have

plotted the mean classification error rate (10 cross-vali-
dation averaged 10 times) for each sPLS-DA dimension
(Figure 1 for the Brain and SNP data sets, see Addi-
tional file 1 for the other data sets). We can observe
that the estimated error rate is stabilized after the first
K - 1 dimensions for any number of selected variables
for the microarray data sets. For the SNP data set, H
should be set to K - 2. The latter result is surprising,
but can be explained by the high similarity between two
of the classes: the Bantu Kenya and Banty South Africa
populations, as illustrated later in the text.
Therefore, according to these graphics, reducing the

subspace to the first K - 1 (K - 2) dimensions is suffi-
cient to explain the covariance structure of the micro-
array (SNP) data. In the following, we only record the
classification error rate obtained after K - 1 (K - 2)
deflation steps have been performed with sPLS-DA -
this also applies to the tested variants of SPLS from
[30].

Comparisons with other multiclass classification
approaches
We compared the classification performance obtained
with state-of-the-art classification approaches: RFE [49],
NSC [9] and RF [8], as well as a recently proposed
approach: OFW [10] that has been implemented with
two types of classifiers, CART or SVM and has also
been extended to the multiclass case [5]. These wrapper
approaches include an internal variable selection proce-
dure to perform variable selection.
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We compared the classification performance of sPLS-
DA to sLDA variants proposed by [41] based on a
pooled centroids formulation of the LDA predictor
function. The authors introduced feature selection by
using correlation adjusted t-scores to deal with highly
dimensional problems. Two shrinkage approaches were
proposed, with the classical LDA (subsequently called
sLDA) as well as with the diagonal discriminant analysis
(sDDA). The reader can refer to [41] for more details
and the associated R package sda.
Finally, we included the results obtained with 3 other

versions of sparse PLS proposed by [30]. The SPLSDA
formulation is very similar to what we propose in sPLS-
DA, except that the variable selection and the classifica-
tion is performed in two stages - whereas the prediction
step in sPLS-DA is directly obtained from the by-pro-
ducts of the sPLS - see Section Methods. The authors in
[30] therefore proposed to apply different classifiers
once the variable selection is performed: Linear Discri-
minant Analysis (SPLSDA-LDA) or a logistic regression
(SPLSDA-LOG). The authors also proposed a one-stage
approach SGPLS by incorporating SPLS into a general-
ized linear model framework for a better sensitivity for
multiclass classification. These approaches are imple-
mented in the R package spls.
Figure 2 displays the classification error rates esti-

mated on each of the five data sets for all the tested
approaches and Table 1 records the computational time
required by the exploratory approaches to train the data
on a given number of selected variables. Table 2 indi-
cates the minimum estimated classification error rate
obtained on each data set and for most of the
approaches. Note that this table should be interpreted in
conjunction with the results displayed in Figure 2 to
obtain a better comprehensive understanding of how all
approaches perform in relation with each other.
Details about the analysis
The aim of this section is to compare the classification
performance of different types of variable selection

approaches that may require some parameters to tune.
We performed 10 fold cross-validation and averaged the
obtained classification error rate accross 10 repetitions,
and this for different variable selection sizes (Figure 2).
The wrapper approaches were run with the default

parameters or the parameters proposed by the authors
[8,50]. The sDDA and sLDA approaches are actually
two-stages approaches as variables need to be ranked
first before sLDA/DDA can be applied, but they do not
require any other input parameter than the number of
variables to select. sPLS-DA, SPLSDA-LOG/LDA and
SGPLS require as input the number of PLS dimensions
as discussed above. In addition, while sPLS-DA requires
the number of variables to select on each dimension as
an input parameter, SPLSDA-LOG/LDA and SGPLS
require to tune the h parameter that varies between 0
and 1 - the closer to 1 the smaller variable selection
size, so that it matched the variable selection sizes with
the other approaches. SPLSDA-LOG/LDA are per-
formed in two steps: one step for variable selection with
SPLS and one step for classification.
Complexity of the data sets
All data sets differ in their complexity. For example, the
4-class SRBCT data set is known to be easy to classify
[5] and most approaches - except NSC, have similar
good performances. Analogously, the GCM data set that
contains numerous classes (11) gives similar overall clas-
sification error rates for all approaches. The Brain and
Leukemia data sets with 5 and 3 classes respectively
seem to increase in complexity, and, therefore, lead to
more accentuated discrepancies between the different
approaches. The SNP data set is more complex due to
the discrete ordinal nature of the data (3 possible values
for each variable), a high number of populations (7) that
have similar characteristics - some of them, for instance
Bantu Kenya and Bantu South Africa, are closely related.
Consequently, it can be expected that a large number of
SNP may be needed to discriminate at best the different
populations. This is what we observe, but, nonetheless,

Figure 1 Choosing the number of dimensions in sPLS-DA. Estimated classification error rates for Brain and SNP (10 cross-validation averaged
10 times) with respect to each sPLS-DA dimension. The different lines represent the number of variables selected on each dimension (going
from 5 to p).
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most approaches (except OFW) perform well, in parti-
cular NSC.
Computational efficiency
We only recorded the computational time of the
exploratory approaches sDDA, sLDA, SPLSDA-LOG,
SPLSDA-LDA, SGPLS and sPLS-DA as the wrapper
approaches are computationally very greedy (the training
could take from 15 min up to 1 h on these data). Some

computation time could not be recorded as a R memory
allocation problem was encountered (SNP data for
sLDA and SGPLS).
The fastest approach is sDDA (except for Leukemia).

This approach is not necessarily the one that performs
the best, but is certainly the most efficient on large data
sets. sPLS-DA is the second fastest one. The SPLSDA
approaches were efficient on SRBCT but otherwise
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performed third, while SGPLS computation time was
similar to sPLSDA except for large multiclass data set
such as GCM.
Wrapper approaches
Amongst the wrapper approaches, RFE gave the best
results for a very small selection of variables in most
cases. The performance of RFE then dramatically
decreased when the number of selected variables
becomes large. This is due to the the backward elimina-
tion strategy adopted in the approach: the original vari-
ables are progressively discarded until only the
‘dominant’ mostly uncorrelated variables remain. RF
seemed to give the second best performance for a larger
number of variables. OFW-cart also performed well, as
it aggregates CART classifiers, whereas OFW-svm per-
formed rather poorly. This latter result might be due to
the use of the one-vs-one multiclass SVM. NSC seemed

affected by a too large number of variables, but per-
formed surprisingly well on the SNP data.
sDDA/sLDA
Both variants gave similar results, but we could observe
some differences in the GCM data set. In fact, [41]
advised to apply sDDA for extremely high-dimensional
data, but when a difference was observed between the
two approaches (GCM, Leukemia), it seemed that sLDA
performs the best. However, in terms of computational
efficiency, sDDA was the most efficient.
SPLSDA-LOG/SPLSDA-LDA
SPLSDA-LDA gave better results than SPLSDA-LOG
except for SRBCT where both variants performed simi-
larly. On Leukemia, Brain and SNP, SPLSDA-LDA had
a similar performance to sPLS-DA but only when the
selection size became larger.
SGPLS
SGPLS performed similarly to sPLS-DA on SRBCT and
gave similar performance to sPLS-DA on Leukemia when
the selection size was large. However, it performed poorly
in Brain where the number of classes becomes large and
very unbalanced. SGPLS could not be run on GCM data
as while tuning the h parameter, the smallest variable
selection size we could obtain was 100, which did not
make SGPLS comparable to the other approaches. On the
SNP data SGPLS encountered R memory allocation issues.
sPLS-DA
sPLS-DA gave similar results to sDDA and sLDA in the
less complex data sets SRBCT and GCM. The

Table 1 Computational time

Data set sDDA sLDA sPLS-DA SPLS-LDA SPLS-LOG SGPLS

Leukemia 10 32 6 31 29 8

SRBCT 1 3 2 3 3 6

Brain 1 39 6 22 23 29

GCM 1 34 11 52 53 252

SNP 2 NA 17 749 731 NA

Computational time in seconds on a Intel(R) Core (TM) 2 Duo CPU 2.40 GHz
machine with 4 GB of RAM to run the approaches on the training data for a
chosen number of selected variables (50 for the microarray data and 200 for
the SNP data).

Table 2 Minimum classification error rate estimated for each data set for the first best approaches (percentage) and
the associated number of genes/SNPs that were selected

Data set rank 1 rank 2 rank 3 rank 4 rank 5 rank 6 rank 7 rank 8 rank 9

Leukemia RFE SPLSDA-
LDA

LDA SPLSDA-
LOG

RF DDA sPLS NSC SGPLS

error rate 20.55 22.36 22.78 23.33 24.17 24.31 24.30 26.25 26.67

# genes 5 200 7129 500 200 50 10 500 500

SRBCT RF OFW-
cart

DDA LDA sPLS NSC SGPLS RFE SPLSDA-
LDA

error rate 0.00 0.00 0.00 0.00 0.16 0.63 1.27 1.58 1.90

# genes 30 50 30 100 100 500 50 5 200

Brain RFE DDA LDA sPLS RF SPLSDA-
LDA

NSC OFW-
cart

SPLSDA-
LOG

error rate 10.56 10.78 11.11 11.22 11.89 14.45 15.11 15.56 17.00

# genes 10 25 30 6144 500 35 20 35 50

GCM RFE LDA RF SGPLS-
LDA

sPLS OFW-
svm

SGPLS-
LOG

OFW-
cart

NSC

error rate 0.81 1.14 1.22 1.63 3.41 4.01 4.71 4.88 7.23

# genes 5 500 500 200 200 500 500 7129 10

SNP NSC DDA SPLS RFE SPLSDA-
LDA

RF SPLSDA-
LOG

OFW-
cart

OFW-
svm

error rate 6.50 11.54 11.71 12.36 13.01 17.40 31.22 49.96 51.67

# SNPs 5000 1000 2000 20000 2000 20000 200 20000 20000

The approaches are ranked by their performances.
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performance obtained on Brain was quite poor, but
results were very competitive in Leukemia for a number
of selected genes varying between 5 and 30. Note that
the number of selected variables is the total number of
variables selected accross the K - 1(K - 2) chosen
dimensions (SNP data). In overall, sPLS-DA gave better
results than the wrapper approaches, and remained very
competitive to the other exploratory approaches. One
winning advantage of sPLS-DA is the graphical outputs
that it can provide (see next Section), as well as its com-
putational efficiency.

Stability analysis of sPLS-DA
It is useful to assess how stable the variable selection is
when the training set is perturbed, as recently proposed
by [39,40]. For instance, the idea of bolasso [40] is to
randomize the training set by drawing boostrap samples
or drawing n/2 samples in the training set, where n is
the total number of samples. The variable selection
algorithm is then applied on each subsample with a
fixed number of variables to select and the variables that
are selected are then recorded [40]. proposed to keep in
the selection only the variables that were selected in all
subsamples, whereas [39] proposed to compute a rela-
tive selection frequency and keep the most stable vari-
ables in the selection.
We chose to illustrate the latter option as we believe

that the stability frequency, or probability, gives a better
understanding of the number of stable discriminative
variables that are selected in sPLS-DA. The highly cor-
related variables will get a higher probability of being
selected in each subsample, while the noisy variables
will have a probability close to zero. This stability mea-
sure can also guide the user in the number of variables
to choose on each sPLS-DA dimension. Once the num-
ber of variables to select has been chosen for the first
dimension, the stability analysis should be run for the
second dimension and so on. Note that [39] proposed
an additional perturbation by introducing random
weights in the Lasso coefficients, called random lasso.
This latter approach could not, however, be directly
applied in the sPLS-DA algorithm due to its iterative
nature.
Figure 3 illustrates the stability frequencies for the first

two dimensions of the sPLS-DA for the GCM and SNP
data sets using bootstrap sampling (i.e. of size n). The
frequencies obtained on the GCM data set clearly show
that the first 3 variables are often selected accross
numerous bootstrap samples on the first dimension. We
can see that while most microarray data could achieve a
reasonably high stability frequency (see Additional file
2), this was not the case, however, for the SNP data.
Several SNPs may contain similar information, this may
induce a lower stability across the bootstrap samples for

a small variable selection. Once the variable selection
size grows larger, then there is enough stable informa-
tion to be retained.
We also noticed that once we reached too many

dimensions (i.e. close K - 1), then the frequencies of all
variables dropped, which clearly showed that sPLS-DA
could not distinguish between discriminative variables
and noisy variables any more (not shown).

Data visualization with sPLS-DA
Representing the samples and the variables
Data interpretation is crucial for a better understanding of
highly dimensional biological data sets. Data visualization
is one of the clear advantage of projection-based methods,
such a Principal Component Analysis (PCA), the original
PLS-DA or sPLS-DA, compared to the other tested
approaches (wrapper methods, SPLSDA and SGPLS). The
decomposition of the data matrix into loading vectors and
latent variables provide valuable graphical outputs to easily
visualize the results. For example, the latent variables can
be used to represent the similarities and dissimilarities
between the samples: Figure 4 illustrates the difference in
the sample representation between classical PLS-DA (no
variable selection) and sPLS-DA (26 genes selected on the
first 2 dimensions) for the Brain data set. Variable selec-
tion for highly dimensional data sets can be beneficial to
remove the noise and improve the samples clustering. A
3D graphical representation can be found in Additional
file 3 with sPLS-DA. Figures 5, 6 and 7 compare the sam-
ple representation on the SNP data set using PCA (SNP
data set only), classical PLS-DA and sPLS-DA on several
principal components or PLS dimensions. On the full data
set, PCA is able to discriminate the African hunter gath-
erers populations San, Mbuti and Biaka from the 4 other
populations that are very similar (Mandeka, Yoruba, Bantu
South Africa and Bantu Kenya). This is a fact that was pre-
viously observed [48] and it indicates a good quality of the
data. With PCA however, the differentiation between the
4 populations Mandeka, Yoruba, Bantu South Africa and
Bantu Kenya is not very clear, even for further dimensions
(Figure 5). On the contrary to PCA, PLS-DA (Figure 6)
and sPLS-DA (Figure 7) are able to discriminate further
these 4 populations on dimensions 4 and 5. In particular,
the Mandeka population is well differentiated on dimen-
sion 4, and so is the Yaruba population on dimension 5. In
terms of sample representation and in contrary to what
was obtained with the Brain data set (Figure 4), the differ-
ence between PLS-DA and sPLS-DA is not striking on
this particular data set. This is probably because the SNP
variables, although containing redundant information, are
all informative and mostly not noisy. This also explains
the good population clusters obtained with PCA (Figure
5). However, the variable selection performed in sPLS-DA
has two advantages: firstly it reduces the size of the data
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set for further investigation and analyses; secondly, since
each (s)PLS dimension focuses on the differentiation of
some particular populations (Figures 5 and 6) and since
sPLS selects an associated subset of variables on each on
these dimensions, each of these subsets of variables is well
able to differentiate these particular populations. This vari-
able selection therefore gives more insight into the data
(see [25] for more details). Figure 8 illustrates the weights
in absolute value of the sparse loading vectors for each
sPLS-DA dimension in the Brain data set. Only the genes
with a non-zero weight are considered in the sPLS-DA
analysis and were included in the gene selection (50 genes
in total for this example). Generally, the sparse loading
vectors are orthogonal to each other, which permits to
uniquely select genes across all dimensions. The latent
variables can also be used to compute pairwise correla-
tions between the genes to visualize them on correlation
circles and better understand the correlation between the
genes on each dimension (Figure 9(a)). Note that this type
of output is commonly used for Canonical Correlation
Analysis.

On the contrary, the pooled centroid formulation used
in sDDA and sLDA do not provide such latent variables,
and, therefore, lack of such useful outputs. The same
can be said about the wrapper approaches, which often
have a much higher computational cost than the sparse
exploratory approaches applied in this study.

Brain data set: biological interpretation
Comparisons between the gene lists
The ultimate aim when performing variable selection is
to investigate whether the selected genes (or SNPS)
have a biological meaning. We saw for example that
some of the tested approaches gave similar perfor-
mances, even though they select different variables.
We therefore compared the lists of 50 genes selected

with the different approaches on the Brain data set.
Note that the selection size has to be large enough to
extract known biological information from manually
curated databases.
Unsurprisingly, given the variety of approaches used,

there were not many genes in common: there were

Figure 3 Stability analysis. Stability frequency using bolasso for the first two dimensions of sPLS-DA for GCM (top) and SNP data (bottom).
One has to sequentially choose the most stabler genes/SNPs in the first dimension in order to pursue the stability analysis for the next sPLS-DA
dimension.
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between 12 and 30 genes shared between sPLS-DA,
sDDA, sLDA and SPLDA - sDDA and sLDA shared the
most important number of genes (30). The gene selec-
tion from SGPLS grandly differed from the other multi-
variate approaches (between 2 and 9 genes). This may
explain why the performance of SGPLS was pretty poor
compared to the other approaches on the Brain data set.
RF seemed to be the approach that selected the highest
number of genes in common with all approaches except
with NSC (between 10 and 23 genes). A fact to be
expected was that there were very few commonly
selected genes between the exploratory approaches and
the wrapper approaches (between 2 and 10 genes).
We then investigated further the biological meaning of

the selected genes. This analysis was performed with the
GeneGo software [4] that outputs process networks,
gene ontology processes as well as the list of diseases
potentially linked with the selected genes.

It was interesting to see that in all these gene lists
(except NSC and RFE), between 3 to 5 genes were
linked to networks involved in neurogenesis, apoptosis,
as well as DNA damage (sPLS-DA, sDDA) and neuro-
physiological processes (OFW-cart). Most of the lists
that were selected with the wrapper approaches gener-
ated interesting gene ontology processes, such as degen-
eration of neurons (RF), synaptic transmission or
generation of neurons (OFW-svm). On the contrary, the
sparse exploratory approaches seemed to pinpoint
potential biomarkers linked with relevant diseases: cen-
tral nervous system and brain tumor (sPLS-DA), Sturge
Weber syndrome, angiomatosis, brain stem (sDDA,
sLDA), neurocutaneous syndrome (sDDA), neurologic
manifestations and cognition disorders (SGPLS).
This preliminary analysis shows that the different

approaches are able to select relevant genes linked to
the biological study and are able to select complemen-
tary information. This was also the conclusion drawn in
[10].
Further biological interpretation with the sPLS-DA list
Using the GeneGo software, known biological networks
were generated from the list of genes selected with
sPLS-DA - 26 genes in total for the first two dimen-
sions. For example, the network represented in Figure 9
(b) is based on 12 of these selected genes (indicated
with a red dot), which are involved in biological func-
tions such as cell differentiation, cellular developmental
process and central nervous system development. These
genes are organised around two transcription factors,
ESR1 and SP1. SP1 can activate or repress transcription
in response to physiological and pathological stimuli
and regulates the expression of a large number of genes
involved in a variety of processes such as cell growth,
apoptosis, differentiation and immune responses.
Interestingly, all 12 genes present in the network were

also found to be highly correlated to the sPLS-DA
dimensions 1 and 2 (indicated in green for the ESR1
network, magenta for the SP1 network and red for com-
mon genes in both subgraphs). This latter result sug-
gests a. that the first (second) dimension of sPLS-DA
seems to focus on the SP1 (ESR1) network and b. that
the genes selected with sPLS-DA are of biological rele-
vance (see Table 3 for a description of most genes).
Further investigation would be required to give more
insight into the sPLS-DA gene selection.

Conclusions
In this article, we showed that sPLS could be naturally
extended to sPLS-DA for discrimination purposes by
coding the response matrix Y with dummy variables.
sPLS-DA often gave similar classification performance
to competitive sparse LDA approaches in multiclass
problems. Undoubtedly, the sparse approaches that we

Figure 4 Brain data: sample representation and comparison
with classical PLS-DA. Comparisons of the sample representation
using the first 2 latent variables from PLS-DA (no variable selection)
and sPLS-DA (26 genes selected).
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Figure 5 SNP data: sample representation with PCA. Sample representations using the first 5 principal components from PCA.

Figure 6 SNP data: sample representation with classical PLS-DA. Sample representation using the first 5 latent variables from PLS-DA (no
SNPs selected).
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tested are extremely competitive to the wrapper meth-
ods, which are often considered as black boxes with no
intuitive tuning parameters (such as the kernels to use
in the SVM). The preliminary biological analysis showed
that some tested approaches brought relevant biological
information. The PLS-based approaches such as the
sPLS-DA approach that we propose have a well estab-
lished framework for class prediction. The computa-
tional efficiency of sPLS-DA as well as the valuable
graphical outputs that provide easier interpretation of
the results make sPLS-DA a great alternative to other
types of variable selection techniques in a supervised
classification framework. We also showed that a stability
analysis could guide the parameter tunings of sPLS-DA.
On the Brain data set, we showed that sPLS-DA selected
relevant genes that shed more light on the biological
study. For these reasons, we believe that sPLS-DA pro-
vides an interesting and worthwhile alternative for fea-
ture selection in multiclass problems.

Methods
In this section, we introduce the sparse Partial Least
Squares Discriminant Analysis (sPLS-DA) to perform
feature selection. sPLS-DA is based on Partial Least
Squares regression (PLS) for discrimination analysis, but
a Lasso penalization has been added to select variables.
We denote X the n × p sample data matrix, where n is

the number of patients or samples, and p is the number
of variables (genes, SNPs, ...). In this supervised classifi-
cation framework, we will assume that the samples n
are partitioned into K groups.

Introduction on PLS Discriminant Analysis
Although Partial Least Squares [13] was not originally
designed for classification and discrimination problems,
it has often been used for that purpose [38,51]. The
response matrix Y is qualitative and is recoded as a
dummy block matrix that records the membership of
each observation, i.e. each of the response categories are
coded via an indicator variable. The PLS regression (now
PLS-DA) is then run as if Y was a continuous matrix.
Note that this might be wrong from a theoretical point of
view, however, it has been previously shown that this
works well in practice and many authors have used
dummy matrice in PLS for classification [30,37,51,52].
PLS constructs a set of orthogonal components that

maximize the sample covariance between the response
and the linear combination of the predictor variables.
The objective function to be solved can be written as

arg max
u′

h uh=1,v′
hvh=1

cov2(u′
hX, v′

hY)

where uh and vh are the hth left and right singular vector
of the singular value decomposition (SVD) of XT Y

Figure 7 SNP data: sample representation with sPLS-DA. Sample representation using the first 5 latent variables from sPLS-DA (1000 SNPs
selected on each dimension).
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respectively [53] for each iteration or dimension h of the
PLS. These singular vectors are also called loading vectors
and are associated to the X and Y data set respectively.
In the case of discrimination problems, the PLS model

can be formulated as follows:

Y = Xβ + E,

where b is the matrix of the regression coefficients and
E is the residual matrix. To give more details, b = W*V T,
where V is the matrix containing the loading vectors (or
right singular vectors from the SVD decomposition) (v1,
..., vH ) in columns, W* = W (UT W )-1, where W is the
matrix containing the regression coefficients of the
regression of X on the latent variable th = v′

hY , and U is
the matrix containing the loading vectors (or left singular
vectors from the SVD decomposition) (u1, ..., uH ) in col-
umns. More details about the PLS algorithm and the PLS
model can be found in the reviews of [53,54]. The predic-
tion of a new set of samples is then

Ynew = Xnewβ ,

The identity of the class membership of each new
sample (each row in Ynew ) is assigned as the column
index of the element with the largest predicted value in
this row.

Discriminant PLS for large data sets
Numerous variants of PLS-DA have been proposed in
the literature to be adapted to classification problems
for large data sets such as microarray. Iterative
Reweighted PLS was first proposed by [31] to extend
PLS into the framework of generalized linear models. In
the same context, [51,55,56] proposed a two-stage
approach, first by extracting the PLS-DA latent variables
to reduce the dimension of the data, and then by apply-
ing logistic discrimination or polychotomous discrimina-
tion in the case of multiclass problems. To avoid infinite
parameters estimates and non convergence problems,
other authors [32] extended the work of [31] by apply-
ing Firth’s procedure to avoid (quasi) separation,
whereas [33] combined PLS with logistic regression
penalized with a ridge parameter. The response variables
Y is modelled either as a dummy matrix [51,55,56], or as
a pseudo-response variable whose expected value has a
linear relationship with the covariates [33]. The
approach proposed by [32] updates the adjusted depen-
dent variable as the response rather than working with
the original outcome. While these authors propose to
address the problem of dimension reduction, they still
require to perform gene filtering beforehand, with, for
example, t-statistics or other filtering criterion such as
the BSS/WSS originally proposed by [2].
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sparse PLS Discriminant Analysis
sparse PLS for two data sets
The sparse PLS proposed by [25,26] was initially
designed to identify subsets of correlated variables of
two different types coming from two different data sets
X and Y of sizes (n × p) and (n × q) respectively. The
original approach was based on Singular Value Decom-
position (SVD) of the cross product Mh = XT

h Yh . We
denote uh (vh) the left (right) singular vector from the
SVD, for iteration h, h = 1 ... H where H is the number
of performed deflations - also called chosen dimensions
of the PLS. These singular vectors are named loading
vectors in the PLS context. Sparse loading vectors were
then obtained by applying l1 penalization on both uh
and vh. The optimization problem of the sPLS mini-
mizes the Frobenius norm between the current cross
product matrix and the loading vectors:

min
uh,vh

||Mh − uhv′
h||

2
F +Pλ1(uh) + Pλ2(vh), (1)

where Pl1 (uh) = sign(uh)(|uh| - l1)+, and Pl2 (vh) =
sign(vh)(|vh| - l2)+ are applied componentwise in the
vectors uh and vh and are the soft thresholding functions
that approximate Lasso penalty functions [21]. They are
simultaneously applied on both loading vectors. The
problem (1) is solved with an iterative algorithm and the
Xh and Yh matrices are subsequently deflated for each
iteration h (see [25] for more details). For practical pur-
poses, sPLS has been implemented in the R package
mixOmics such that the user can input the number of
variables to select on each data set rather than the pena-
lization parameters l1 and l2.
sPLS extended to sPLS-DA
The extension of sparse PLS to a supervised classifica-
tion framework is straightforward. The response matrix
Y of size (n × K) is coded with dummy variables to

indicate the class membership of each sample. Note that
in this specific framework, we will only perform variable
selection on the X data set, i.e., we want to select the
discriminative features that can help predicting the
classes of the samples. The Y dummy matrix remains
unchanged. Therefore, we set Mh = XT

h Yh and the opti-
mization problem of the sPLS-DA can be written as:

min
uh,vh

||Mh − uhv′
h||2F + Pλ(uh),

with the same notation as in sPLS. Therefore, the
penalization parameter to tune is l. Our algorithm has
been implemented to choose the number of variables to
select rather than l for practical reasons. For the class
prediction of test samples, we use the maximum dis-
tance as presented above for the PLS case as it seemed
to be the one that worked better in practice for multi-
class problems. Note that other distances such as the
centroids or Malhanobis distances are also implemented
in the mixOmics package [42,43]. In the results section,
we illustrated how to tune the PLS dimension H as well
as the number of X variables to select.
sPLS-DA for multiclass classification
In binary problems, sPLS-DA was shown to bring rele-
vant results in microarray cancer data sets (see [57]). In
this paper, we investigated the use of sPLS-DA in the
more complex multiclass case, as PLS-DA and sPLS-DA
are naturally adapted to multiclass problems. In this
paper, we did not attempt to address the specific pro-
blem of unbalanced classes, that would require the
development of appropriately weighted multiclass objec-
tive functions for wrapper classification approaches (see
for example [58]).
Parameters to tune in sPLS-DA
There are two parameters to tune in sPLS-DA: the
number of dimensions H, and the number of variables
to select on each dimension. In the Results Section, we

Table 3 Brain data: Biological relevance of some of the selected genes

Bard1 Plays a central role in the control of the cell cycle in response to DNA damage

PGDH Possibly involved in development and maintenance of the blood-brain, blood-retina, blood-aqueous humor and blood-testis barrier. It is
likely to play important roles in both maturation and maintenance of the central nervous system and male reproductive system

Na(v)
Beta1

Involved in the generation and propagation of action potentials in muscle and neuronal cells

NDF1 Differentiation factor required for dendrite morphogenesis and maintenance in the cere bellar cortex

Neuronatin May participate in the maintenance of segment identity in the hindbrain and pituitary development, and maturation or maintenance of
the overall structure of the nervous system

PEA15 death effector domain (DED)-containing protein predominantly expressed in the central nervous system, particularly in astrocytes

CD97 Receptor potentially involved in both adhesion and signalling processes early after leukocyte activation. Plays an essential role in
leukocyte migration

ALDOC is expressed specifically in the hippocampus and Purkinje cells of the brain

Cyclin D1 The protein encoded by this gene has been shown to interact with tumor suppressor protein Rb Mutations, amplification and
overexpression of this gene, which alters cell cycle progression, are observed frequently in a variety of tumors and may contribute to
tumour genesis

Description of the genes or proteins encoded by the genes selected by sPLS-DA and present in the known GeneGO biological network.
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showed that for most cases, the user could set H = K -
1, similar to what is advised in a LDA case. The number
of variables to select is more challenging given the com-
plexity of such data sets and is still as an open question.
The tuning of such parameter can be guided through
the estimation of the generalisation classification error
and a stability analysis. However, these analyses might
be seriously limited by the small number of samples.
Most importantly, the user should keep in mind that a
close interaction with the biologists is necessary to care-
fully tune this parameter in order to answer biological
questions. Sometimes, an optimal but too short gene
selection may not suffice to give a comprehensive biolo-
gical interpretation, and experimental validation might
be limited in the case of a too large gene selection.

Additional material

Additional file 1: Tuning the number of dimensions in sPLS-DA.
Estimated classification error rates for Leukemia, SRBCT and GCM (10
cross-validation averaged 10 times) with respect to each sPLS-DA
dimension. The different lines represent the number of variables selected
on each dimension (going from 5 to p).

Additional file 2: Stability analysis. Stability frequency using bolasso
for the first two dimensions of sPLS-DA for Brain (top) and SRBCT data
(bottom). One has to sequentially choose the most stabler genes/SNP in
the first dimension in order to go on to the next sPLS-DA dimension.

Additional file 3: Brain data: sample representation in 3D. Example
of 3D samples plot using the first 3 latent variables from sPLS-DA with
the R mixOmics package.
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