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Eigenvalues variations for Aharonov-Bohm
operators

Corentin Léna

March 17, 2014

Abstract

We study how the eigenvalues of a magnetic Schrödinger operator of
Aharonov-Bohm type depend on the singularities of its magnetic poten-
tial. We consider a magnetic potential defined everywhere in R2 except
at a finite number of singularities, so that the associated magnetic field
is zero. On a fixed planar domain, we define the corresponding magnetic
Hamiltonian with Dirichlet boundary conditions, and study its eigenvalues
as functions of the singularities. We prove that these functions are contin-
uous, and in some cases even analytic. We sketch the connection of this
eigenvalue problem to the problem of finding spectral minimal partitions
of the domain.

1 Introduction
Aharonov-Bohm operators have been introduced in [1] as models of Schrödinger
operators with a localized magnetic field. In addition to their physical relevance,
it has been shown in [8] that these operators appear in the theory of spectral
minimal partitions (see [9] for a definition of the latter object). In [4, 3, 5], the
eigenvalues and eigenfunctions of an Aharonov-Bohm operator with Dirichlet
boundary condition have thus been studied numerically to find minimal parti-
tions. One of the aim of the present work is to support and generalize some
observations made in these papers.

We define Aharonov-Bohm operators as follows. Let ω be an open and con-
nected set in R2. As usual, we denote by C∞c (ω) the set of smooth functions
compactly supported in ω. Generally speaking, let us consider a magnetic po-
tential, that is to say a vector field A ∈ C∞(ω,R2). We define the sesquilinear
form sA by

sA(u, v) =

∫
ω

(−i∇−A)u · (−i∇−A)v dx

the quadratic form qA by
qA(u) = sA(u, u)

and the norm ‖ · ‖A by

‖u‖2A = ‖u‖2L2(ω) + qA(u)

for u and v in C∞c (ω) .
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The form domain QA associated with A is defined as the completion of
C∞c (ω) under ‖ · ‖A . According to Friedrichs’ Theorem, there exists a unique
self-adjoint extension −∆A of the densely defined, symmetric, and positive dif-
ferential operator (−i∇−A)2 acting on C∞c (ω) whose domain DA is contained
in QA (see e.g. [16]). We call it the magnetic Hamiltonian on ω associated with
A (note that we are imposing a Dirichlet boundary condition).

In the following, we denote by Ω an open, bounded, and connected set in R2

with a Lipschitz boundary ∂Ω . For v = (v1, v2) ∈ R2, we note v⊥ = (−v2, v1) .
For X ∈ R2, α ∈ R , and x = (x1, x2) ∈ R2 \ {X}, we define

AX
α (x) =

α

|x−X|2
(x−X)⊥ , (1.1)

and note AX
α (x) = (AXα,1(x), AXα,2(x)) . In the rest of the paper, N is an integer,

X = (X1, . . . , XN ) an N -tuple of points in R2, with Xi 6= Xj for i 6= j (at
least for now), and α = (α1, . . . αN ) ∈ RN . Let us denote by ΩX the open set
Ω \ {X1, . . . , XN}. We define the Aharonov-Bohm potential associated with X
and α as the vector field

AX
α =

N∑
i=1

AXi
αi . (1.2)

Let us point out that the Xi’s can be in R2 \ Ω, and in particular in ∂Ω. The
Aharonov-Bohm operator associated with X and α is the magnetic Hamiltonian
−∆AX

α
on ΩX. We denote it by −∆X

α , and the associated form domain and
quadratic form by QX

α and qXα respectively. Along the paper, we make frequent
references to the Dirichlet realization of the Laplacian on Ω , and to the sequence
of its eigenvalues. We denote them by −∆D

Ω and (λDk (Ω))k≥1 respectively.
Let us conclude by a few remarks of a more physical nature. To an Aharonov-

Bohm potential is associated a magnetic field

B = CurlAX
α = ∂x1

AXα,2 − ∂x2
AXα,1 =

N∑
i=1

αiδXi , (1.3)

which is a measure. If Bi is a small disk centered at Xi, such that Xj /∈ Bi for
j 6= i ,

αi =
1

2π

∫
Bi

B .

The coefficient αi can therefore be called the normalized (magnetic) flux at Xi .
Let finally note that for any closed loop γ in R2 \ ∪Ni=1{Xi} ,∮

γ

AX
α (s) ds = 2π

N∑
i=1

indγ(Xi)αi , (1.4)

where indγ(Xi) is the winding number of γ around Xi.
We use in this paper the following characterization of the form domain QX

α ,
which follows from Hardy-type inequalities proved in [12, 2, 14].

Proposition 1.1. Let HX
α be defined as

HX
α = {u ∈ L2(Ω); (−i∇−AX

α )u ∈ L2(Ω)}
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with the natural scalar product. Then HX
α is a Hilbert space compactly embedded

in L2(Ω). Furthermore, there exists a continuous mapping γ0 : HX
α → L2

loc(∂Ω)
such that for any u ∈ C∞c (Ω \ {X1, . . . , XN}), γ0u = u|∂Ω . A function u in
L2(Ω) belongs to QX

α if, and only if, u ∈ HX
α and γ0u = 0 .

As a consequence of the compact embedding, the spectrum of −∆X
α consists

in a sequence of real eigenvalues converging to +∞. Let (λk(X,α))k≥1 be this
sequence, the eigenvalues being arranged in non-decreasing order and counted
with multiplicity. We are interested in the functions X 7→ λk(X,α). Let us note
that according to our definition of AX

α , λk(X,α) is defined only for X ∈ R2N

such that Xi 6= Xj for i 6= j. To state the following result, it is convenient
to extend the function X 7→ λk(X,α) to R2N . We define λk(X,α) as the
k-th eigenvalue of the operator −∆Y

β , where the M -tuple Y = (Y1, . . . , YM )
contains once, and only once, each point appearing in X = (X1, . . . , XN ) and
where β = (β1, . . . , βM ) with

βj =
∑

i,Xi=Yj

αi, ∀1 ≤ j ≤M .

For instance, with this definition, λk((X1, X2, X3), (α1, α2, α3)) , with X1 = X2

and X1 6= X3, is λk((X1, X3), (α1 + α2, α3)) .

Theorem 1.2. For any given k ≥ 1 and α ∈ RN , the function X 7→ λk(X,α)
is continuous in R2N .

Let us note that this result has more implications than it may appear at first
glance. In particular, it implies continuity of the eigenvalues in the case of one
point tending to the boundary of Ω, or in the case of coalescing points.

Additional regularity is easily obtained when the poles are distinct and far
from the boundary. We prove the following result.

Theorem 1.3. Let e1 = (1, 0) and e2 = (0, 1) be the vectors of the canonical
basis of R2 . Assume that X ∈ R2N and k ≥ 1 are such that Xi /∈ ∂Ω for
1 ≤ i ≤ N , Xi 6= Xj for i 6= j , and λk(X,α) is a simple eigenvalue. Then the
function

(t1, t2, . . . , t2N−1, t2N ) 7→ λk((X1 + t1e1 + t2e2, . . . , XN + t2N−1e1 + t2Ne2),α)

is analytic in a neighborhood of 0 in R2N .

In general, an eigenfunction u of the operator −∆X
α is complex-valued and

the set u−1({0}) consists in isolated points of Ω. However, in the case where
αi ∈ Z+ 1/2 for all 1 ≤ i ≤ N , we can define a class of eigenfunctions for which
the notion of nodal set is meaningful. To this end, as in [7], we define a suitable
unitary antilinear operator KX (see Section 4) and call KX-real a function u
such thatKXu = u . If u is aKX-real eigenfunction, the set u−1({0}) is locally a
regular curve, except at the poles and maybe at a finite number of points where
curves cross. By analogy with the terminology used for real eigenfunctions of
the operator −∆D

Ω , we call u−1({0}) the nodal set and its component curves
the nodal lines. Following a suggestion of Susanna Terracini, we have studied
the derivatives of an eigenvalue with respect to a pole when at least three nodal
lines of an associated KX-real eigenfunction meet at this pole. It has already
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been shown in [15] that if the function Y 7→ λk(Y, 1/2) has a critical point at X
and if λk(X, 1/2) is simple, an associated KX-real eigenfunction u has at least
three nodal lines meeting at X. By modifying our proof of Theorem 1.3 and
using results from [2] on the structure of the nodal set, we prove the converse.

Theorem 1.4. Let α ∈ RN and X ∈ R2N . Let us fix 1 ≤ i ≤ N with Xi ∈ Ω.
For v ∈ R2, t ∈ R , and k ≥ 1, we define

X(t) = (X1, . . . , Xi + tv, . . . , XN )

and λk(t) = λk(X(t),α) . Let us assume that λk(0) is simple and has a KX-real
eigenfunction u with at least three nodal lines that meet at Xi . Then λ′k(0) = 0 .

During the writing of this work, S. Terracini showed us a preliminary version
of the paper [6]. It contains a similar continuity result, restricted to the case
of one pole and assuming Ω to be simply connected with a C∞-boundary. It
also contains a stronger version of Theorem 1.4. The main contribution of our
paper is in the generality of Theorem 1.2, which allows us to treat coalescing
poles, and in the use of the Kato-Rellich regular perturbation theory to give a
simpler proof of Theorem 1.4.

The paper is organized as follows. We first recall the definition of a gauge
transformation of the magnetic potential, and the fact that it preserves the
spectrum of the associated magnetic Hamiltonian. We then give a criterion for
−∆X

α to be unitarily equivalent to −∆D
Ω . We recall a Hardy-type inequality

from [12, 2], some of its consequences, and a non-concentration inequality for
functions in QX

α . We give some indications on the proof and the usefulness of
Proposition 1.1. In a second part, we show the continuity of the eigenvalues
with respect to the poles (Theorem 1.2). We then apply this theorem to some
examples: we study the limits of the eigenvalues when the operator has a pole
moving toward the boundary of the domain (Corollary 3.4) or two poles moving
toward one another (Corollary 3.5). We show the analyticity of the eigenvalues
with respect to the poles under some restrictive conditions (Theorem 1.3), and
consider their critical points (Theorem 1.4). In the last section, we discuss the
connection of these results with spectral minimal partitions.

I would like to thank my advisors, Virginie Bonnaillie-Noël and Bernard
Helffer, for directing me toward this subject, and for many suggestions and
corrections. Virginie Bonnaillie-Noël also sent me the numerical computations
and pictures used in Section 5. I benefited greatly from exchanges with Susanna
Terracini and Luc Hillairet. In particular, Lemma 2.7 and the method used to
prove Theorem 1.2 are taken from unpublished notes kindly communicated by
Luc Hillairet.

2 Gauge invariance and form domain
This section consists in a review of some useful results. We first recall how
Aharonov-Bohm operators are modified under a gauge transformation. We only
need a few classical properties of these transformations (see for instance [13]),
that we state without proof. We recall a Hardy-type inequality taken from
[12, 2]. We prove that functions in the from domain satisfy a non-concentration
property. Finally, we sketch the proof Proposition 1.1 and describe how it is
used in proving the continuity of the eigenvalues.
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2.1 Gauge transformation
Definition 2.1. A gauge transformation acts on pairs vector field-function as
(A, u) 7→ (A∗, u∗) , with {

A∗ = A− i∇ψψ ,

u∗ = ψu ,

where ψ ∈ C∞(ω,C) satisfies |ψ| = 1. The function ψ is called a gauge function
on ω. Two magnetic potentials are said to be gauge equivalent when the second
one can be obtained from the first by a gauge transformation.

We see immediately from the definition that a gauge transformation does
not change the magnetic field B = curlA , nor the probability distribution |u|2 .

As a consequence of [13, Theorem 1.2], we also have the following result.

Proposition 2.2. If A and A∗ are two gauge equivalent magnetic potentials
in C∞(ω,R2) , the operators −∆A∗ and −∆A are unitarily equivalent.

Due to the possible multi connectedness of the open set ω, the equation
curlA = 0 is a necessary but not sufficient condition for the magnetic potential
A to be gauge equivalent to 0 . This is the basis of the so-called Aharonov-Bohm
effect, studied in [1]. We now give a criterion for the gauge equivalence, taken
from [7].

Lemma 2.3. Let A ∈ C∞(ω,R2). It is gauge equivalent to 0 if, and only if,

1

2π

∮
γ

AX
α (s) ds (2.1)

is an integer for any loop γ contained in ω .

2.2 A Hardy-type inequality
Let us now recall a useful result from [12], which we express in the formulation
of [2].

Lemma 2.4. Let X ∈ R2 and α ∈ R \ Z . For every 0 ≤ ρ1 < ρ2 and
u ∈ C∞c (R2 \ {X}),∫
C(X,ρ1,ρ2)

|u|2

|x−X|2
dx ≤ dist(α,Z)−2

∫
C(X,ρ1,ρ2)

∣∣(−i∇−AX
α

)
u
∣∣2 dx , (2.2)

with
C(X, ρ1, ρ2) = {x ∈ R2; ρ1 < |x−X| < ρ2} .

We can prove the preceding statement by using polar coordinates, expanding
the integrand in Fourier series in the angular variable, and applying Parseval’s
formula. The details can be found in [2].

Corollary 2.5. If αi /∈ Z for each 1 ≤ i ≤ N , then HX
α is continuously

embedded in H1(Ω).

Proof. Let u ∈ QX
α . Far from the poles, u is locally in H1 . In the neighborhood

of one pole, we can bring the flux of all the other poles to zero thanks to a
local gauge transformation, and prove that u is locally in H1 with the help of
Inequality (2.2). Using these ideas, we obtain an explicit control on theH1-norm
of u and thus prove the embedding.
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2.3 A non-concentration inequality
We now establish a non-concentration result. It is a slight variant of an inequal-
ity that was communicated to us by Luc Hillairet. A similar result is proved in
[10, Lem. 3.2.]. Let us first give it for H1-functions.

Lemma 2.6. For any 0 < ν < 1, there exists a constant Cν ≥ 0 such that, for
all u ∈ H1(R2) , x0 ∈ Ω , and r > 0 ,

‖u‖L2(B(x0,r)) ≤ Cν r
ν ‖u‖H1(R2) (2.3)

where
B(x0, r) = {x ∈ R2; |x− x0| < r} .

Proof. The proof is a direct application of the continuous embedding H1(R2) ⊂
Lp(R2) , valid for any 2 ≤ p < ∞. Let u ∈ H1(R2) . According to the Hölder
inequality,∫
B(x0,r)

|u|2 dx ≤ |B(x0, r)|1/q
(∫

B(x0,r)

|u|2q
′
dx

)1/q′

≤ |B(x0, r)|1/q‖u‖2L2q′ (R2)

for any q and q′ greater than 1 such that 1/q + 1/q′ = 1 . We chose q = 1/ν ,
and obtain ∫

B(x0,r)

|u|2 dx ≤ C1 r
2ν ‖u‖2

L
2

1−ν (R2)
,

where C1 is a constant depending only on ν. Since H1(R2) is continuously
embedded in L

2
1−ν (R2), we finally get∫

B(x0,r)

|u|2 dx ≤ C2 r
2ν ‖u‖2H1(R2) ,

where C2 is a constant depending only on ν .

We now extend this result to functions in the form domain QX
α in the case

ν = 1/2 .

Lemma 2.7. There exists a constant C ≥ 0 such that, for any x0 ∈ Ω, r > 0,
and u ∈ QX

α ,

‖u‖2L2(B(x0,r))
≤ C r

(
‖u‖2L2(R2) + ‖(−i∇−AX

α )u‖2L2(R2)

)
. (2.4)

Proof. Let us first consider the case where u ∈ C∞c (ΩX) . Then |u| ∈ H1(R2)
and inequality (2.3) yields

‖u‖2L2(B(x0,r))
≤ C r

(
‖u‖2L2(R2) + ‖∇|u|‖2L2(R2)

)
for some constant C independent of u and r. According to the diamagnetic
inequality, |∇|u|(x)| ≤

∣∣(−i∇−AX
α )u(x)

∣∣ for almost every x ∈ R2. We obtain

‖u‖2L2(B(x0,r))
≤ Cr

(
‖u‖2L2(R2) + ‖(−i∇−AX

α )u‖2L2(R2)

)
.

Since QX
α is defined as the closure of C∞c (ΩX) for the norm ‖·‖αX , the inequality

still holds for functions in QX
α .
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2.4 Characterization of the form domain
Since the characterization of Proposition 1.1 is standard, we do not give the
details of its proof. The reader can refer to [15, Lemma 2.1.] for the case of one
pole with a non-integer flux. The poles having integer flux can be dealt with
using a local gauge transformation, and the fact that a point has H1-capacity
zero in R2 . The operator γ0 appearing in the statement of Proposition 1.1
is simply the classical boundary trace operator, or possibly its conjugate by a
gauge transformation.

Let us comment in more details on the condition (−i∇−AX
α )u ∈ L2(Ω) for

a function u ∈ QX
α . Far from the poles, it simply means that u is locally in H1.

In a neighborhood of a pole Xi, its meaning depends on the normalized flux αi .
If αi /∈ Z , Inequality (2.2) shows that u is locally in H1 (as seen in the proof of
Corollary 2.5), with the additional integrability condition u/|x−Xi| ∈ L2(Ω) .
If αi ∈ Z , the condition means that there is a local gauge transformation ψ such
that u∗ = ψu is locally in H1, but does not mean that u is locally in H1 . Indeed
this is not the case as soon as αi 6= 0, because then the function (r, θ) 7→ e2iπαiθ

(expressed in polar coordinates) is not H1 in a neighborhood of 0.
Most of the quoted authors have restricted themselves to the case where no

αi is an integer, and the form domain is contained inH1(Ω) . This is for example
the case in [2, 15, 6]. This does not introduce any restriction for fixed poles,
since an integer flux can be brought to zero by a gauge transformation defined
on ΩX . However we want to prove in this paper, among other results, the
continuity of the eigenvalues when several poles, each with a non-integer flux,
coalesce into a single pole whose flux that can be an integer (see for instance
Corollary 3.5). The formulation of Proposition 1.1, which does not distinguish
between integer and non-integer fluxes, allows us to do this.

3 Continuity with respect to the poles

3.1 Main statement
Let us first restate Theorem 1.2.

Proposition 3.1. Let (Xn)n≥1 be a sequence of points in R2N such that Xn →
X when n→ +∞. Then, for each k ≥ 1, λk(Xn,α)→ λk(X,α) as n→ +∞.

The proof is based on two key lemmas which will be stated and proved in
the next subsections.

3.2 An extraction lemma
The following lemma is the central part of the proof of Proposition 3.1. Its
proof uses the weak compactness of the unit ball of H1, the non-concentration
result of Lemma 2.7, and the characterization of the form domain QX

α given in
Proposition 1.1.

Lemma 3.2. Let (λn)n≥1 be a sequence of eigenvalues associated with −∆Xn

α

and (un)n≥1 a sequence of corresponding normalized eigenfunctions. Assume
that λn → λ when n → +∞. Then there is a strictly increasing sequence of
integers (np)p≥1 and a function u ∈ QX

α such that
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i) u is an eigenfunction of −∆X
α associated with the eigenvalue λ,

ii) unp → u when p→∞ in L2(Ω) (strongly),

iii) unp(x)→ u(x) when p→∞ for almost every x in Ω.

Proof. For m ≥ 1, we define Sm = ∪Ni=1B(Xi,
1
m ) and Ωm = Ω \ Sm. Let us fix

m ≥ 1. Then, for any integer n large enough so that Ωm does not contain any
point of Xn,

‖un‖L2(Ωm) ≤ 1

and

‖(−i∇−AX
α )un‖2L2(Ωm)

≤ 2‖(−i∇− iAXn

α )un‖2L2(Ωm) + 2‖AXn

α −AX
α‖2L∞(Ωm)‖un‖

2
L2(Ωm) .

We have

‖(−i∇−AXn

α )un‖2L2(Ωm) ≤ ‖(−i∇−AXn

α )un‖2L2(Ω) = λn ≤ sup
q≥1

λq ,

lim
n→∞

‖AXn

α −AX
α‖L∞(Ωm) = 0 ,

and
‖AX

α‖L∞(Ωm) <∞ .

As a consequence, the sequence (un)n≥1 is bounded in H1(Ωm). Due to the
weak compactness of the unit ball of H1(Ωm), we can extract from (un)n≥1

a subsequence that converges weakly to u ∈ H1(Ωm). According to Rellich’s
Theorem, H1(Ωm) is compactly embedded in L2(Ωm). We can therefore extract
from the preceding subsequence a subsequence that converges strongly to u in
L2(Ωm), and also (up to one further extraction) that converges to u almost
everywhere in Ωm.

After applying a diagonal extraction procedure, we obtain a subsequence
(unp)p≥1 of (un)n≥1 and a function u defined almost everywhere in Ω such that
for eachm ≥ 1, unp → u when p→ +∞ weakly in H1(Ωm), strongly in L2(Ωm),
and almost everywhere in Ωm. We have, for each m ≥ 1, each p ≥ 1,∫

Ωm

|unp |2 dx ≤
∫

Ω

|unp |2 dx = 1

and ∫
Ωm

|(−i∇−AX
α )unp |2 dx ≤ 2 sup

q≥1
λq + 2 sup

Ωm

|AXn

α −AX
α |2 .

Passing to the limit p→ 0, we get∫
Ωm

|u|2 dx ≤ 1

and ∫
Ωm

|(−i∇−AX
α )u|2 dx ≤ 2 sup

q≥1
λq .

We deduce that u ∈ L2(Ω), with ‖u‖L2(Ω) ≤ 1, and that (−i∇ −AX
α )u , as a

distribution on ΩX, belongs to L2(Ω).
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Form ≥ 1, let us note Γm = ∂Ω∩∂Ωm . For p ≥ 1, we have γ0unp = 0 on Γm .
Since (unp)p≥1 converges weakly to u in H1(Ωm) , (γ0unp)p≥1 converges weakly
to γ0u in L2(Γm) and therefore γ0u = 0 on Γm . Since ∪∞m=1L

2(Γm) = L2(∂Ω),
we have shown γ0u = 0 . According to Proposition 1.1, u ∈ QX

α .
Let us check that u is a weak solution of the eigenvalue equation. Let ϕ be a

C∞-function with support in ΩX . There exists m ≥ 1 such that supp(ϕ) ⊂ Ωm.
For p large enough,∫

Ω

unp (−i∇−AXnp

α )2ϕdx = λnp

∫
Ω

unp ϕdx .

Since (−i∇−AXnp

α )2ϕ converges uniformly on Ω to (−i∇−AX
α )2ϕ, we get,∫

Ω

u (−i∇−AX
α )2ϕdx = λ

∫
Ω

uϕdx

and therefore ∫
Ω

(−i∇−AX
α )u · (−i∇−AX

α )ϕdx = λ

∫
Ω

uϕdx .

By definition of QX
α , the preceding relation can be extended to any ϕ ∈ QX

α .
It remains to check that u is not the trivial solution. To this end, we use the

non-concentration property of Lemma 2.7 to show that (unp)p≥1 converges in
L2(Ω) to u. Indeed, if ε > 0, there exists m large enough so that, for all p ≥ 1,∫

Sm

|unp(x)|2 dx ≤ CN

m

(
sup
q≥1

λq + 1

)
≤ ε ,

where C is the constant appearing in Inequality (2.4), N is the number of balls
composing Sm, and 1/m the radius of these balls.
Let us pick such a m. Then

‖u− unp‖L2(Ω) ≤ ‖u− unp‖L2(Ωm) + ‖u− unp‖L2(Sm)

so
‖u− unp‖L2(Ω) ≤ ‖u− unp‖L2(Ωm) + ‖u‖L2(Sm) + ‖unp‖L2(Sm) .

Hence we get
‖u− unp‖L2(Ω) ≤ ‖u− unp‖L2(Ωm) + 2 ε .

Since limp→∞ ‖u− unp‖L2(Ωm) = 0, we have, for p large enough,

‖u− unp‖L2(Ω) ≤ 3 ε .

3.3 End of the proof of the continuity
We now prove Proposition 3.1, using the min-max characterization of the eigen-
values of −∆X

α . We still need a simple lemma.

Lemma 3.3. Let (Xn)n≥1 be such that Xn → X when n→∞ . Then, for each
k ≥ 1 ,

lim sup
n→∞

λk(Xn,α) ≤ λk(X, α) .
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Proof. According to the Min-Max Formula, for any Y ∈ R2N ,

λk(Y, α) = inf
ϕ1,...,ϕk∈C∞c (ΩY)

max
u∈vect(ϕ1,...,ϕk)

‖(−i∇−AY
α )u‖2

‖u‖2
.

Let us pick ε > 0. We fix a family ϕ1, . . . , ϕk ∈ C∞c (ΩX) such that

max
u∈vect(ϕ1,...,ϕk)

‖(−i∇−AX
α )u‖2

‖u‖2
≤ λk(X,α) + ε .

For every n ≥ 1, large enough that supp(ϕi) ⊂ ΩXn for each 1 ≤ i ≤ k , let us
set

µn = max
u∈vect(ϕ1,...,ϕk)

‖(−i∇−AXn

α )u‖2

‖u‖2
.

Let us fix vn ∈ vect(ϕ1, . . . , ϕk) such that ‖vn‖ = 1 and ‖(−i∇−AXn

α )vn‖2 =
µn . Let µ be a limit point of (µn)n≥1 , with µ = limp→∞ µnp . Since the space
vect(ϕ1, . . . , ϕk) has finite dimension, we can, up to a subsequence, assume that
there exists v ∈ vect(ϕ1, . . . , ϕk) such that vnp → v in L2(Ω) when p → ∞ .
Since the ϕi’s are supported away from X, it is easily seen that in that case

(−i∇−AXnp

α )vnp → (−i∇−AX
α )v

in L2(Ω) when p→∞ .
Therefore

µ = lim
p→∞

µnp =
‖(−i∇−AX

α )v‖2

‖v‖2
≤ λk(X,α) + ε .

We have proved that
lim sup
n→∞

µn ≤ λk(X,α) + ε .

Since λk(Xn,α) ≤ µn for all n ≥ 1 , we obtain

lim sup
n→∞

λk(Xn,α) ≤ λk(X,α) + ε .

We get the desired result by letting ε tend to 0.

We now complete the proof of Proposition 3.1 by induction. Let us first
consider the case k = 1. According to Lemma 3.3,

lim sup
n→∞

λ1(Xn,α) ≤ λ1(X,α) .

The sequence (λ1(Xn,α))n≥1 is therefore bounded. According to Lemma 3.2,
its limit points are eigenvalues of −∆X

α . This implies

λ1(X,α) ≤ lim inf
n→∞

λ1(Xn,α) .

We conclude that
lim
n→∞

λ1(Xn,α) = λ1(X,α) .

Let k ≥ 2 . We assume that for 1 ≤ j ≤ k − 1 , limn→∞ λj(X
n,α) =

λj(X,α) . For each n ≥ 1 , 1 ≤ j ≤ k , we fix ujn an eigenfunction of −∆Xn

α

10



associated with λj(Xn,α) such that ‖ujn‖ = 1 . Lemma 3.2 tells us that, up to a
subsequence, we can assume that for each 1 ≤ j ≤ k−1 , ujn → uj when n→∞ ,
where uj is an eigenfunction of −∆X

α associated with the eigenvalue λj(X,α) .
Now let us assume that λ is a limit point for the sequence (λk(Xn,α))n≥1 , with
λ = limp→∞ λk(Xnp ,α) . Up to a subsequence, uknp → uk in L2(Ω) when p →
∞, where uk is an eigenfunction of −∆X

α associated with λ (always according
to Lemma 3.2). For each 1 ≤ j ≤ k − 1, each n ≥ 1, we have

〈ujnp , u
k
np〉 = 0 .

Passing to the limit in L2(Ω), we get

〈uj , uk〉 = 0 ,

and therefore
λk(X,α) ≤ λ .

We have proved that

λk(X,α) ≤ lim inf
n→∞

λk(Xn,α) ,

which, together with Lemma 3.3, gives

lim
n→∞

λk(Xn,α) = λk(X,α) .

3.4 Some applications
In the following, we fix k ≥ 1 . Our first result deals with one point moving
toward the boundary of the domain. Let us assume that the set R2 \ Ω can
be written as the reunion of a finite number K + 1 of closed and connected
sets D1 , Dj , . . . , DK , with Dj bounded for 1 ≤ j ≤ K and D0 unbounded.
Let us consider an Aharonov-Bohm operator with only one pole X ∈ R2. We
have already noticed that the winding number of any path γ contained in Ω
is zero around any point in D0 and, for each 1 ≤ i ≤ K , is the same around
all the points in Di . According to Lemma 2.3, this implies that the function
X 7→ λk(X, 1/2) is constant on each of the Di . For each 1 ≤ i ≤ K, let us
note λik(Ω) the value of λk(X,α) for X ∈ Di . Theorem 1.2 gives the following
convergence result.

Corollary 3.4. Let X be a point in ∂Ω and (Xn)n≥1 be a sequence of points
in Ω converging to X. Then,

1. if X ∈ ∂D0, limn→∞ λk(Xn, α) = λDk (Ω) ,

2. if X ∈ ∂Di with 1 ≤ i ≤ K, limn→∞ λk(Xn, α) = λik(Ω) .

Let us now consider an Aharonov-Bohm operator with two poles X and Y ,
whose respective normalized flux are α and β. We restate Theorem 1.2 in that
case.

Corollary 3.5. If X ∈ Ω, and (Xn)n≥1, (Y n)n≥1 are sequences of points in Ω
converging to X, then,

lim
n→∞

λk ((Xn, Y n), (α, β)) = λk(X,α+ β) .

If α = β = 1/2, Lemma 2.3 implies λk(X,α+ β) = λDk (Ω)

11



4 Analyticity with respect to the poles
We now turn to the proof of Theorem 1.3. Let us first give a brief out-
line. For t = (t1, t2, . . . , t2N−1, t2N ) ∈ R2N , we note X1(t) = X1 + t1e1 +
t2e2 , . . . , XN (t) = XN + t2N−1e1 + t2Ne2 , and X(t) = (X1(t), . . . , XN (t)) .
We construct a suitable unitary mapping U(t) : L2(Ω) → L2(Ω) such that
qXα ◦ U(t) is an analytic family of type (a) with respect to the variable t in the
sense of Kato (cf [11, Chap. 7, Sec. 4]). The theorem is then a direct application
of the Kato-Rellich regular perturbation theory.

Let us first construct U(t). For r > 0 and 1 ≤ i ≤ N , we note Bi = B(Xi, r)
and B′i = B(Xi, r/2) . We choose r small enough so that Bi ∩ ∂Ω = ∅ and
Bi ∩ Bj = ∅ for i 6= j. Next we fix, for each 1 ≤ i ≤ N , a smooth function χi
satisfying

i. 0 ≤ χi ≤ 1 ;

ii. χi = 1 on B′i ;

iii. χi = 0 on R2 \Bi .

We then note

Vt(x) =

N∑
i=1

χi(x)(t2i−1e1 + t2ie2)

and
Φt(x) = x+ Vt(x) .

Using the inverse function theorem and the mean value inequality, it is easy to
check that, for |t| small enough, Φt is a smooth diffeomorphism that sends Ω
onto itself. Furthermore, we have Φt(Xi) = Xi(t) for 1 ≤ i ≤ N . We now
define U(t) : L2(Ω)→ L2(Ω) by

U(t)u = J((Φt)
−1

)1/2u ◦ (Φt)
−1
,

with J((Φt)
−1

) = |det(D((Φt)
−1

))| .
The map U(t) is unitary and satisfies U(t)(C∞c (ΩX)) = C∞c (ΩX(t)) .

For u ∈ C∞c (ΩX), we define rt(u) = q
X(t)
α ((U(t))u) . We note A = AX

α and
At = A

X(t)
α for better readability. A straightforward computation gives the

formula

rt(u) =

∫
Ω

∣∣∣−iJ(Φt)
1/2(D(Φt)

T )
−1∇(J(Φt)

−1/2
u)−At ◦ Φtu

∣∣∣2 dx .
We can then write

rt(u) =

∫
Ω

|(−i∇−A)u+ E(Φt)(−i∇−A)u+ F (Φt)u|2 dx , (4.1)

with
E(Φt) = (D(Φt)

T )
−1 − Id

and

F (Φt) = (D(Φt)
T )
−1

A−At ◦ Φt − iJ(Φt)
1/2

(D(Φt)
T )
−1∇(J(Φt)

−1/2
) .
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Let us note that limt→0 supΩ |E(Φt)| = 0 . Let us also note that |F (Φt)| is
uniformly bounded when t tends to 0. The difficulties in the proof of this
latter assertion only appear in the neighborhood of a pole Xi, where A has a
singularity. Since the poles are far from each other, it is enough to prove the
assertion in the case of one pole. We assume

A(x) = α
(x−X)⊥

|x−X|2
.

We note B = B(X, r), B′ = B(X, r/2) . Let us note v(t) = t1e1 + t2e2 for
concision. If x ∈ B′, Φt(x) = x+ v(t), and therefore

F (Φt(x)) = A(x)−At(Φt(x)) = α

(
(x−X)⊥

|x−X|2
− (x+ v(t)−X − v(t))⊥

|x+ v(t)−X − v(t)|2

)
= 0 .

If x /∈ B′, we have |x − X| ≥ r/2. We can chose t = (t1, t2) small enough so
that, for all y ∈ R2, |Φt(y)− y| ≤ r/8 . In that case,

|Φt(x)− Φt(X)| ≥ |x−X| − |x− Φt(x)| − |Φt(X)−X| ≥ r

2
− r

8
− r

8
=
r

4
.

This shows that both |A(x)| and |At(x)| are bounded by 4|α|/r for t small
enough. Therefore, there exists a constant C, independent of x and t, such that
|F (Φt)(x)| ≤ C for t small enough.

Expanding Equation (4.1), we find

rt(u) = qXα (u) +

∫
Ω

|E(Φt)(−i∇−A)u|2 dx+

∫
Ω

|F (Φt)u|2 dx

+ 2Re

(∫
Ω

(−i∇−A)u
T
E(Φt)(−i∇−A)u dx

)
+ 2Re

(∫
Ω

(−i∇−A)u · F (Φt)u dx

)
+ 2Re

(∫
Ω

F (Φt)u
T
E(Φt)(−i∇−A)u dx

)
.

Applying the Cauchy-Schwarz and Young inequalities, we find

|rt(u)− qXα (u)| ≤
(

2 sup
Ω
‖E(Φt)‖+ 2 sup

Ω
‖E(Φt)‖2 +

1

2

)
qXα (u)

+ 4 sup
Ω
|F (Φt)|2‖u‖2L2(Ω) .

We conclude that there exist 0 < a < 1 and b ≥ 0, independent of u, such that,
for t small enough,

|rt(u)− qXα (u)| ≤ aqXα (u) + b‖u‖2L2(Ω) .

The family of forms t→ rt is therefore uniformly qXα -bounded for t in a neigh-
borhood of 0. According to standard results on the perturbation of sesquilinear
sectorial forms (c.f. [11, Th. VI-1.33]), this means that the form domain of
rt(u) is equal to QX

α for all t small enough. It is obvious that for u ∈ QX
α , rt(u)

depends analytically on t . The family t→ rt therefore depends analytically on

13



t in the sense of Kato. Theorem 1.3 is a consequence of the general perturbation
theory.

Let us now give a proof of Theorem 1.4. We first give a precise definition of a
KX-real eigenfunction, as announced in the introduction. We assume in the rest
of this section that αi ∈ Z + 1/2 for all 1 ≤ i ≤ N . According to Lemma 2.3,
there exists a gauge function ψ defined on ΩX such that −iψ∇ψ = 2AX

α . Let
us fix such a ψ . We define KX by

KXu = ψ u ,

and say that a function u is KX-real if KXu = u .
A direct calculation shows that

−∆X
α ◦KX = KX ◦ (−∆X

α ) .

We can therefore choose a basis of KX-real eigenfunctions for −∆X
α . We will

use the local description of the nodal lines of a KX-real eigenfunction of −∆X
α

given in [2] (see also [15]).

Theorem 4.1. Let α ∈ (Z + 1/2)N and X ∈ R2N . Let us fix 1 ≤ i ≤ N with
Xi ∈ Ω. Let k ≥ 1 and assume that u is a KX-real eigenfunction associated with
λk(X,α) . Let (r, θ) be the polar coordinates centered at Xi in a neighborhood of
Xi . There exist a non-negative integer m and C1 functions f and g such that

f(0) 6= 0 ,

u(x) = rm+1/2f(x) ,

and
(−i∇−AX

α (x))u(x) = rm−1/2g(x) .

Furthermore, 2m+ 1 is the number of nodal lines meeting at Xi.

The basic idea of our proof of Theorem 1.4 is the following. We construct
a family of diffeomorphisms Φh that depends on a parameter h > 0. Using the
Feynman-Hellmann formula, we compute λ′k(0) (which does not depend on h)
as an integral I(h) depending on h. We then use Theorem 4.1, with m ≥ 1 , to
show that limh→0 I(h) = 0 .

To simplify notation, let us assume Xi = 0 . Let us first construct a family
of diffeomorphisms Φh,t that allows us to write the eigenvalue problem on the
fixed domain ΩX. We fix r > 0 such that B(0, r) ⊂ Ω and Xj /∈ B(0, r) for
j 6= i. We then fix a vector field V ∈ C∞(R2,R2) such that

1. V(x) = v if x ∈ B(0, r/2) ,

2. V(x) = 0 if x /∈ B(0, r) ,

We then define, for t > 0 , Φh,t(x) = x + tV(h−1x) , and X(t) = Φh,t(X) . It
is easy to see that for any fixed h > 0, for |t| small enough, Φh,t is a family of
diffeomorphisms such that Φh,t(Ω) = Ω. As in the proof of Theorem 1.3, we
define the family of unitary operators U(h, t) : L2(Ω)→ L2(Ω) by

U(h, t)u = J(Φ−1
h,t)

1/2u ◦ Φ−1
h,t ,

14



and the family of sesquilinear forms rh,t = q
X(t)
α ◦ U(h, t) . The same reasoning

as in the proof of Theorem 1.3 shows that t 7→ rh,t is analytic in the sense of
Kato in a neighborhood of 0 . We can therefore apply the Feynman-Hellmann
formula:

λ′k(0) = ∂trh,t(u)|t=0 , (4.2)

where u is an eigenfunction associated with λk(0) such that ‖u‖L2(Ω) = 1 . We
set A = AX

α , At = A
X(t)
α , and keep the notation used in the proof of Theorem

1.3. We have

rh,t(u) = qXα (u) +

∫
Ω

|E(Φh,t)(−i∇−A)u|2 dx+

∫
Ω

|F (Φt)u|2 dx

+ 2Re

(∫
Ω

(−i∇−A)u
T
E(Φh,t)(−i∇−A)u dx

)
+ 2Re

(∫
Ω

(−i∇−A)u · F (Φh,t)u dx

)
+ 2Re

(∫
Ω

F (Φh,t)u
T
E(Φh,t)(−i∇−A)u dx

)
.

We apply Equation (4.2) to the preceding expression.
Since Φh,t(x) = x+ tV

(
x
h

)
, we find

DΦh,t(x) = Id+
t

h
DV

(x
h

)
.

We deduce

∂tE(Φh,t)|t=0(x) = ∂t

(
(D(Φh,t)

T )
−1
)
|t=0

(x) = − 1

h
(DV)

T
(x
h

)
.

We also have
J(DΦh,t)(x) = det

(
Id+

t

h
DV

(x
h

))
,

which gives

∂t(J(DΦh,t)(x))|t=0 =
1

h
Tr (DV)

(x
h

)
.

From this we deduce

∂t

(
∇x
(
J(DΦh,t)

−1/2
)(x

h

))
|t=0

= ∇x
(
∂t

(
J(DΦh,t)

−1/2
)(x

h

)
|t=0

)
= ∇x

(
− 1

2h
Tr(DV)

(x
h

))
= − 1

2h2
∇xTr(DV)

(x
h

)
.

We obtain

∂tF (Φh,t)(x)|t=0 = ∂t

(
(D(Φh,t)

T )
−1

A(x)−At ◦ Φh,t(x)
)
|t=0
− i

2h2
∇xTr(DV)

(x
h

)
.

For |x| ≤ hr/2, we have Φh,t(x) = x+ v. We therefore have

(D(Φt)
T )
−1

A(x)−At ◦ Φh,t(x) = 0
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and
∂t

(
(D(Φt)

T )
−1

A(x)−At ◦ Φh,t(x)
)
|t=0

= 0 .

We now do the computations for |x| > hr/2 . We write

A = αi
x⊥

|x|2
+ A′ ,

where A is smooth on a neighborhood of 0 .
We have

∂t

(
(x+ tV(x/h))⊥

|x+ tV(x/h)|2

)
|t=0

=
1

|x|2
− x ·V(x/h)

|x|4
x⊥ .

We conclude that there exists a constant C, such that for all h > 0 and all
x ∈ Ω, ∣∣∣∂tE(Φh,t)(x)|t=0

∣∣∣ ≤ C

h

and ∣∣∣∂tF (Φh,t)(x)|t=0

∣∣∣ ≤ C

h2
.

We have

∂trh,t(u)|t=0 = 2Re

(∫
Ω

(−i∇−A)u
T
∂tE(Φh,t)|t=0(−i∇−A)u dx

)
+ 2Re

(∫
Ω

∂tF (Φh,t)|t=0u · (−i∇−A)u dx

)
.

We deduce immediately

|∂trh,t(u)|t=0| ≤
2C

h
‖(−i∇−A)u‖2L2(B(0,hr))

+
2C

h2
‖(−i∇−A)u‖L2(B(0,hr) ‖u‖L2(B(0,hr)) .

According to Theorem 4.1, there exist an integer m ≥ 0 and C1-functions f and
g such that in a neighborhood of 0 ,

u(x) = |x|m+1/2f(x)

and
(−i∇−A)u = |x|m−1/2g(x) ,

where f(0) 6= 0 and 2m+ 1 is the number of nodal lines meeting at 0 .
From this we deduce the estimates∫

B(0,hr)

|u|2 dx = O
(
h2m+3

)
,

∫
B(0,hr)

|(−i∇−A)u|2 dx = O
(
h2m+1

)
,

and finally
|∂trh,t(u)|t=0| = O

(
h2m

)
.
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Since we have assumed that at least three nodal lines meet at 0, we have in fact
m ≥ 1 and we deduce

|∂trh,t(u)|t=0| = O
(
h2
)
.

Since this holds for all h > 0 and since the left-hand side of Equation (4.2) does
not depend on h, we obtain

λ′k(0) = 0 ,

which concludes the proof.

The Kato-Rellich perturbation theory gives some information in the case
where λk(X,α) is not simple. Let us denote by d the multiplicity of λk(X,α) .
Let us fix an N -tuple (v1, . . . ,vN ) of vectors in R2 . For any t in R , we note

X(t) = (X1 + tv1, . . . , XN + tvN ) .

There exist d functions t 7→ λ1(t), . . . , t 7→ λd(t) (not necessarily distinct),
analytical in a neighborhood of 0, such that for 1 ≤ j ≤ d , λj(0) = λk(X,α)

and λj(t) is an eigenvalue of the operator −∆
X(t)
α . There also exist d analytical

functions t 7→ uj(t) from a neighborhood of 0 to L2(Ω) such that ‖uj(t)‖L2(Ω) =
1 and uj(t) is an eigenfunction associated with λj(t) . They can be chosen so
that uj(t) is KX-real.
Furthermore, the Feynman-Hellmann formula then tells us that

λ′j(0) = 〈∂t(−∆X(t)
α )|t=0 uj(0) , uj(0)〉 .

Let us now fix 1 ≤ i0 ≤ N and consider the case where vi = 0 for all
i 6= i0 (we only move the point Xi0) and αi0 ∈ Z + 1/2. Assume that there
exists 1 ≤ j0 ≤ d such that uj0(0) is KX-real and has at least three nodal
lines meeting at Xi. The proof of Theorem 1.4 applies; we obtain λ′j0(0) = 0 .
However, the existence of a KX-real eigenfunction associated with λk(X,α)
with at least three nodal lines meeting at Xi0 is a priori not enough to ensure
the existence of 1 ≤ j0 ≤ d such that λ′j0(0) = 0 .

5 Minimal partitions

5.1 Magnetic characterization and critical points
One motivation for this work was the investigation of the properties of min-
imal partitions. A k-partition P of Ω, with k a positive integer, is a set
P = {D1, . . . , Dk} of k disjoint, connected, and open sets contained in Ω. It is
said to be minimal if the quantity

max
1≤i≤k

λD1 (Di)

is minimal among all the k-partitions.
This problem has recently been the subject of various studies. In particular,
the paper [9], by B. Helffer, T. Hoffmann-Ostenhof, and S. Terracini, shows
that a minimal partition of Ω exists for any integer k provided ∂Ω is sufficiently
regular. It also proves regularity properties of minimal partitions. The paper
[8] by B. Helffer and T. Hoffmann-Ostenhof, establishes a connection between
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minimal partitions and nodal partitions for an Aharonov-Bohm operator. We
can summarize it in the following statement. We recall that a nodal domain
of a KX-real eigenfunction u of −∆X

α is a connected component of the set
Ω \ u−1({0}) .

Theorem 5.1. Let us assume that Ω is a connected (possibly with holes) regular
open set. Let k ≥ 1 be an integer and P = {D1, . . . , Dk} be a minimal k-
partition. There exist a finite number of points X1, . . . , XN in R2 such that P is
the nodal partition (i.e. the set of all nodal domains) of a KX-real eigenfunction
u of −∆X

α , with
X = (X1, . . . , XN )

and
α = (1/2, . . . , 1/2) .

Furthermore, u is associated with the eigenvalue λk(X,α) .

Roughly speaking, this result shows that a minimal partition is nodal, pro-
vided that we add enough poles with a normalized flux of 1/2 . Let us note that
we may have to add poles both in Ω and in R2 \ Ω . One can indeed define the
boundary of a sufficiently regular partition (which can be informally described
has the union of the boundaries of all the Di’s), and it has almost the same
properties as the nodal set of a real eigenfunction of −∆D

Ω . However, there may
be singular points where an odd number of lines meet. We have to add a pole
at these points. In the case where Ω is not simply connected, we may also have
to add a pole in some holes (i.e. in some bounded connected components of
R2 \ Ω).

Theorem 5.1 allows us to give a spectral characterization of minimal parti-
tions. Let us note

Lk(Ω) = inf

{
max

1≤i≤k
λi(Di) ; {D1, . . . , Dk} k-partition of Ω

}
.

If X ∈ R2N , with distinct Xi’s, and α = (1/2, . . . , 1/2) , we denote by Lk(X,α)
the smallest eigenvalue of −∆X

α that has a KX-real eigenfunction with k nodal
domains. If there is no such eigenfunction, we set Lk(X,α) = +∞ . Then

Lk(Ω) = inf
N≥1

inf
X∈R2N

Lk(X,α) .

We can combine Theorem 5.1 with the results of Section 4 to show that
Lk(Ω) is a critical value for the k-th eigenvalue of an Aharonov-Bohm operator.
Let us give a precise statement.

Theorem 5.2. Let us assume that Ω is a connected open set, k a positive
integer, and P a minimal k-partition of Ω . We denote by X = (X1 , . . . , XN )
and α = (1/2 . . . , 1/2) the poles and fluxes defined in Theorem 5.1. Let us
additionally assume that the eigenvalue λk(X,α) is simple. The point X is
then critical for the function Y 7→ λk(Y,α) , which is defined and analytic in a
neighborhood of X .

Proof. According to Theorem 1.3, Y 7→ λk(Y,α) is analytic in a neighborhood
of X . As allowed by Theorem 5.1, X has been chosen so that there exists a
KX-real eigenfunction u whose nodal partition is P . To show that X is critical,
it is enough to show that the gradient with respect to each point Xi, with
i ∈ {1 , . . . , N}, is zero. There are two possible cases.
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• Xi ∈ R2 \ Ω . In that case λk(Y,α) = λk(X,α) if Y = (Y1 , . . . , YN ) is
such that Yj = Xj for j 6= i and Yi is in the same connected component
of R2 \ Ω as Xi (This is a consequence of Lemma 2.3).

• Xi ∈ Ω . In that case at least three nodal lines of u meet at Xi . Therefore,
according to Theorem 1.4, Xi is a critical point for the function

Y 7→ λk((X1, . . . , Xi−1, Y,Xi+1, . . . , XN ),α) .

The fact that X is a critical point is proved in the case N = 1 for the minimal
3-partitions of a simply connected domain in [6]. As far as we know, our result
is new for a general k-partition.

5.2 Domain with an axis of symmetry
According to Theorem 5.1, minimal partitions of an open set are nodal partitions
for an Aharonov-Bohm operator. This can help us to find good candidates to
be minimal partitions of a given set. Let us explain a method that was used
in the papers [4, 3, 5]. The authors of these papers where looking for minimal
3-partitions of rectangles and circular sectors, but we will explain the method
in more general terms.

Let Ω ∈ R2 be a simply connected open set with a regular boundary. Let
us also assume that the line {x2 = 0} is an axis of symmetry for Ω . It seems
reasonable to look for minimal partitions that have only one singular point in
their boundary and that admit {x2 = 0} as an axis of symmetry. We therefore
look for X = (x, 0) , a pole belonging to {x2 = 0} , such that λ3(X, 1/2) admits
a KX-real eigenfunction with three nodal domains.

In the case that we consider, there exists a convenient reformulation of the
eigenvalue problem. We note Ω+ = Ω ∩ {x2 > 0} , Γ+ = ∂Ω ∩ {x2 > 0} ,
and Ω ∩ {x2 = 0} = (A,B) , with A = (a, 0) and B = (b, 0) . We then define
two eigenvalue problems for the Laplace operator in Ω+ with mixed boundary
condition. −∆u = λu in Ω+ ,

u = 0 on [A,X] ∪ Γ+ ,
∂nu = 0 on (X,B) ;

(5.1)

 −∆u = λu in Ω+ ,
∂nu = 0 on (A,X) ,
u = 0 on [X,B] ∪ Γ+ .

(5.2)
We denote by (λDNk (x))k≥1 (resp. (λNDk (x))k≥1) the eigenvalues of Problem
(5.1) (resp. (5.2)), counted with multiplicity. The following result is proved in
[4].

Proposition 5.3. The spectrum of −∆X
1/2 is the reunion (counted with multi-

plicities) of the sequences (λDNk (x))k≥1 and (λNDk (x))k≥1. Moreover, if u is a
real eigenfunction associated with λDNk (x) (resp. λNDk (x)), the symmetrization
of N (u) with respect to {x2 = 0} is the nodal set of a KX-real eigenfunction of
−∆X

1/2 associated with λDNk (x) (resp. λNDk (x)).

Proposition 5.3 motivates the study of Problems (5.1) and (5.2). More pre-
cisely, the authors of [3, 5] compute, by a finite element method, λND2 (x) and the
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nodal lines of an associated eigenfunction u for different values of the parameter
x ∈ (a, b) . They look for a value x0 of x such that there is an eigenfunction u
associated with λND2 (x0) that has one nodal line, which connects a point of Γ+

with X0 = (x0, 0) . In that case, the symmetrization of the nodal partition of
u gives a 3-partition of Ω which is a plausible candidate to be minimal. The
search for x0 can be guided by the following result.

Proposition 5.4. Let k be a positive integer. Let us assume that x0 ∈ (a, b) is
such that the eigenvalue λNDk (x0) has a real eigenfunction with one nodal line
hitting {x2 = 0} at X0 = (x0, 0) . Let us additionally assume that λNDk (x0) is
a simple eigenvalue of −∆X0

1/2 . Then x0 is a point of inflexion for the function
x 7→ λNDk (x) .

Proof. Let us first note that according to Proposition 5.3, and since λNDk (x0) is
a simple eigenvalue of −∆X0

1/2 , there is a positive integer ` such that λNDk (x) =

λ`(X, 1/2), with X = (x, 0) , for x in a neighborhood of x0 . According to
Theorem 1.3, the function x 7→ λNDk (x) is therefore analytic in a neighborhood
of x0 . The hypothesis on the nodal line, together with Proposition 5.3, implies
that there is a KX-real eigenfunction associated with λ`(X0, 1/2) that has at
least three nodal lines meeting at X0 . According to Theorem 1.4, this implies
(λNDk )′(x0) = 0 . But, as seen on Problem 5.2, the function x 7→ λNDk (x) is
non-increasing. This implies (λNDk )′′(x0) = 0 .

There exists of course a similar result for x 7→ λDNk (x). The following
example illustrates this proposition when looking for a 3-partition of a circular
sector of radius 1 and angular opening π/3 1. Figure 1 shows a point of inflexion
x0 ' 0.64 of the function x 7→ λND2 (x) . Figure 2 shows the 3-partition obtained
after symmetrization of the nodal partition of an eigenfunction associated with
λND2 (x0) .

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
100

110

120

130
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170

Figure 1: Eigenvalue λND2 (x) as a
function of x.

Figure 2: Nodal set of a third eigen-
function of an Aharonov-Bohm op-
erator.

Let us note that the point of inflexion in Figure 1 is hard to determine
precisely in practice. We only obtain an approximate value. To draw Figure 2,
we look for x0 around this approximate value by computing the nodal set for
different values of x .

1We thank V. Bonnaillie-Noël for the computations and the figures.
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