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Abstract

Linear Donati compatibility conditions guarantee that thecomponents of symmetric tensor fields are those of linearized change
of metric or linearized change of curvature tensor fields associated with the displacement vector field arising in a linearly elas-
tic structure when it is subjected to applied forces. These compatibility conditions take the form of variational equations with
divergence-free tensor fields as test-functions, by contrast with Saint-Venant compatibility conditions, which takethe form of
systems of partial differential equations.

In this paper, we identify and justify nonlinear Donati compatibility conditions that apply to a nonlinearly elastic plate modeled
by the Kirchhoff-von Kármán-Love theory. These conditions, which to the authors’ best knowledge constitute a first example of
nonlinear Donati compatibility conditions, in turn allow to recast the classical approach to this nonlinear plate theory, where the
unknown is the position of the deformed middle surface of theplate, into the intrinsic approach, where the change of metric and
change of curvature tensor fields of the deformed middle surface of the plate are the only unknowns. The intrinsic approach thus
provides a direct way to compute the stress resultants and the stress couples inside the deformed plate, often the unknowns of major
interest in computational mechanics.

Résuḿe

Les conditions de compatibilité de Donati linéaires garantissent que les composantes de champs de tenseurs symétriques sont
celles de tenseurs linéarisés de changement de métriqueou de changement de courbure, associés à un champ de déplacements
apparaissant dans une structure élastique soumise à des forces appliquées. Ces conditions de compatibilité prennent la forme
d’équations variationnelles avec des champs de tenseurs `a divergence nulle comme fonctions-tests, par contraste avec les conditions
de compatibilité de Saint-Venant, qui prennent la forme desystèmes d’équations aux dérivées partielles.

Dans cet article, nous identifions et justifions des conditions de compatibilité de Donati non linéaires, qui s’appliquent à une
plaque non linéairement élastique modélisée selon la théorie de Kirchhoff-von Kármán-Love. Ces conditions, qui à la connaissance
des auteurs constituent un premier exemple de conditions decompatibilité de Donati non linéaires, permettent ensuite de reformuler
l’approche classique de cette théorie non linéaire de plaques sous la forme de l’approche intrinsèque, où les champs de tenseurs
de changement de métrique et de changement de courbure de lasurface moyenne déformée de la plaque sont les seules inconnues.
L’approche intrinsèque fournit ainsi un moyen direct de calculer les efforts tranchants et les moments fléchissants à l’intérieur de
la plaque déformée, souvent les inconnues les plus significatives en calcul des structures.
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1. Introduction

Throughout this paper, Latin, resp. Greek, indices and exponents vary in the set{1, 2, 3}, resp. in the set{1, 2}, save
when they are used for indexing sequences, resp. saveν in the notation∂ν. The summation convention with respect to
repeated indices and exponents is used in conjunction with these rules.

A domainω in R
2 is a bounded and connected open subset ofR

2 with a Lipschitz-continuous boundaryγ, the set
ω being locally on the same side ofγ. Given a domainω ⊂ R

2, the notations∂α := ∂/∂yα, ∂αβ := ∂2/∂yα∂yβ, etc.,
designate partial derivatives, possibly in the sense of distributions, of functions of (yα) ∈ ω.

We now briefly describe the well-known, and often used,Kirchhoff-von Kármán-Love theory of a nonlinearly
elastic plate, so named after Kirchhoff [17], von Kármán [22], and Love [18].

Letω be a domain inR2. Consider anelastic plateof thickness2ε > 0 withω as its middle surface, made up with
a homogeneous and isotropic elastic material, and whose reference configurationω × [−ε, ε] is a natural state. Let

aαβστ :=
4λµ
λ + 2µ

δαβδστ + 2µ(δασδβτ + δατδβσ)

denote the components of thetwo-dimensional elasticity tensor of the plate, whereλ ≥ 0 andµ > 0 denote theLamé
constantsof the constituting material of the plate; let (pi) ∈ L2(ω;R3) and (qα) ∈ L2(ω;R2) respectively denote the
resultants and couples of the given applied forces. Finally, assume that the plate isclampedon a dγ-measurable subset
γ0 of γ := ∂ω (note thatγ0 may be empty).

Let the functionalJ be defined for each vector fieldη := (ηi) ∈ H1(ω) × H1(ω) × H2(ω) by

J(η) :=
1
2

∫

ω

{

ε

4
aαβστ(∂σητ + ∂τησ + ∂ση3∂τη3)(∂αηβ + ∂βηα + ∂αη3∂βη3) +

ε3

3
aαβστ∂στη3∂αβη3

}

dy− L(η),

where

L(η) :=
∫

ω

piηi dy−
∫

ω

qα∂αη3 dy,

and let the spaceV(ω) be defined by

V(ω) := {η = (ηi) ∈ H1(ω) × H1(ω) × H2(ω); ηi = ∂νη3 = 0 onγ0},

where∂ν designates the outer normal derivative operator alongγ (the operator∂ν is well-defined dγ-almost everywhere
alongγ, since the unit outer normal vector is itself well-defined dγ-almost everywhere along the boundary of a
domain).

Then, according to theKirchhoff-von Kármán-Love theory of a nonlinearly elastic plate(see, e.g., Ciarlet [3]), the
vector fieldη∗ = (η∗i ), whereη∗i are the Cartesian components of the displacement vector field of the middle surfaceω
of the plate, should be the solution of the following minimization problem:

η
∗ ∈ V(ω) andJ(η∗) = inf

η∈V(ω)
J(η).

If 0 < dγ-measγ0 ≤ dγ-measγ, this minimization problem has at least one solution if the norms‖pα‖L2(ω) are
small enough (see Ciarlet & Destuynder [6]; see also Nečas &Naumann [20] in the special case wherepα = 0). If
γ0 = ∅, in which caseV(ω) = H1(ω) × H1(ω) × H2(ω), this minimization problem has a solution if (and only if) the
componentspi andqα of the resultants and couples of the applied forces satisfy ad hoccompatibility conditions, and
if the norms‖pα‖L2(ω) are again small enough (see Ciarlet & S. Mardare [8]); note that the solution is never unique in
this case, however (see the discussion given inibid.).

Let L2(ω) denote the space of all 2× 2 symmetric tensor fields with components inL2(ω). The nonlinear part of
the integrand appearing in the functionalJ is a function of thechange of metric tensor field(Eαβ) ∈ L2(ω) and of the
change of curvature tensor field(Fαβ) ∈ L2(ω), the components of which are respectively defined for any vector field
η ∈ V(ω) by

Eαβ :=
1
2

(∂αηβ + ∂βηα + ∂αη3∂βη3) andFαβ := ∂αβη3

2
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(despite their names, which we adopt here because they are commonly used in nonlinear plate theory, these tensors
are in effect onlyad hocapproximations of the “true” change of metric and change of curvature tensors of the middle
surface).

By contrast with theclassical approachdescribed above, where the Cartesian componentsη∗i of the displacement
field are the unknowns, anintrinsic approachto the same problem consists instead inconsidering the components

E∗αβ :=
1
2

(∂αη∗β + ∂βη
∗
α + ∂αη

∗
3∂βη

∗
3) andF∗αβ := ∂αβη∗3

of the corresponding change of metric and change of curvature tensor fields as the unknowns. The intrinsic approach
thus provides a direct way to compute thestress resultants nαβ and thestress couples mαβ inside the plate since these
are respectively defined as

nαβ := aαβστE
∗
στ andmαβ := aαβστF

∗
στ.

This feature constitutes an advantage of the intrinsic approach over the classical approach, inasmuch as the stress
resultantsnαβ and the stress couplesmαβ are often considered to be the unknowns of interest (rather than the compo-
nentsη∗i of the displacement vector field) in the computation of elastic structures; in this direction, see notably the
pioneering contributions of W. Pietraszkiewicz and his school [21].

In order to recast the minimization problem of the classicalapproach into one of the intrinsic approach, the
first objective thus consists in finding necessary and sufficient conditions guaranteeing that, given two tensor fields
(Eαβ) ∈ L2(ω) and (Fαβ) ∈ L2(ω), there exists a vector fieldη = (ηi) ∈ V(ω) such that

1
2

(∂αηβ + ∂βηα + ∂αη3∂βη3) = Eαβ and∂αβη3 = Fαβ.

A first answer to this question whenγ0 = ∅, in which caseV(ω) = H1(ω) × H1(ω) × H2(ω), was recently given
in Ciarlet & S. Mardare [8]. There, it was shown that, if the open setω is simply-connected, a first class of such
necessary and sufficient conditions can be expressed as asystem of nonlinear partial differential equationsin the
sense of distributions, which take the form of the followingnonlinear Saint-Venant compatibility conditions:

∂στEαβ + ∂αβEστ − ∂ασEβτ − ∂βτEασ = FασFβτ − FαβFστ in H−2(ω),

∂σFαβ = ∂βFασ in H−1(ω).

In this paper, we show that,whenγ0 = γ, in which caseV(ω) = H1
0(ω) × H1

0(ω) × H2
0(ω), necessary and sufficient

nonlinear compatibility conditions “of Donati type”can be found (Theorem 3.1), which this time take the form of
nonlinear variational equations, with divergence-free tensor fields as test-functions; note that, at least to the authors’
best knowledge, these constitute a first example of nonlinear compatibility conditions of Donati type.

Once such compatibility conditions are identified and justified, they in turn allow to recast the corresponding
minimization problem into one of theintrinsic approach(Theorem 4.2)

Some of the results of this paper were announced (mostly without proofs) in Ciarlet, Geymonat & Krasucki [7].

2. Technical preliminaries

This section gathers various preliminary results that willall be used in Section 3 for identifying the nonlinear
Donati compatibility conditions just alluded to.

Given a domainω ⊂ R
2, the notationsHm(ω),H−m(ω), andHm

0 (ω), m ≥ 1, designate the usual Sobolev spaces
and their dual spaces, the notationsH1/2(γ̃) and H−1/2(γ̃) designate the usual trace space and its dual space over
any connected component ˜γ of the boundary ofω, the notationD(ω) designates the space of infinitely differentiable
functions with compact support inω, andD′(ω) designates the space of distributions inω.

Vector and matrix fields are designated by boldface letters.Spaces of vector, resp. symmetric matrix, fields are
designated by boldface, resp. special Roman, letters.

Given a normed vector spaceV, the notationV′ designates its dual space, andV′〈·, ·〉V designates the duality
betweenV andV′. If W is a subspace ofV, the notationW →֒ V, resp.W ⋐ V, means that the canonical injection
from W into V is continuous, resp. compact.

The followinglinear Saint-Venant compatibility conditionsconstitute an extension of a classical result for smooth
functions to distributions.

3
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Theorem 2.1. Let there be given a simply-connected domainω ⊂ R
2 and a symmetric matrix field(Fαβ) ∈ L2(ω).

Then there exists a function w∈ H2(ω) such that

∂αβw = Fαβ in L2(ω),

if and only if
∂σFαβ − ∂βFασ = 0 in H−1(ω).

If this is the case, any other functioñw ∈ H2(ω) such that∂αβw̃ = Fαβ in L2(ω) is of the form

w̃(y) = w(y) + α0 + α1y1 + α2y2 for almost ally = (yα) ∈ ω,

for some constants a0, α1, andα2.

Proof. It is clear that, given any domainω ⊂ R
2 (i.e., simply-connected or not) and given any functionw ∈ H2(ω),

the matrix field (Fαβ) := (∂αβw) ∈ L2(ω) satisfies∂σFαβ = ∂βFασ in H−1(ω).
To establish the converse property, we first observe that allthe relations∂σFαβ − ∂βFασ = 0 in H−1(ω) (i.e., for all

α, β, σ ∈ {1, 2}) are satisfied if (and only if)

∂1F12 − ∂2F11 = 0 and∂1F22 − ∂2F21 = 0.

Theweak Poincaré lemmaof the form established in Ciarlet & Ciarlet, Jr. [5] (a simpler proof was subsequently
given by Kesavan [16]; see also Theorem 6.17-4 in Ciarlet [4]) asserts that, given any vector field (hα) ∈ H−1(ω) that
satisfies

∂αhβ − ∂βhα = 0 in H−2(ω),

there exists a functionθ ∈ L2(ω), unique up to the addition of a constant function, such that

∂αθ = hα in H−1(ω).

Note that the assumption ofsimple-connectednessof the domainω is an essential assumption in this lemma, as its
proof relies on the “classical” Poincaré lemma (i.e., for smooth functions).

Since
∂1F12− ∂2F11 = 0, resp.∂1F22− ∂2F21 = 0, in H−1(ω),

there thus exists a functionθ ∈ H1(ω), resp.χ ∈ H1(ω), such that

∂1θ = F11 and∂2θ = F12, resp.∂1χ = F21 and∂2χ = F22, in L2(ω).

Since then
∂1χ − ∂2θ = F21 − F12 = 0 in L2(ω),

another application of the same lemma shows that there exists a functionw ∈ H2(ω) such that

∂1w = θ and∂2w = χ in H1(ω),

hence such that

∂11w = ∂1θ = F11, ∂12w = ∂1χ = F21, ∂21w = ∂2θ = F12, ∂22w = ∂2χ = F22 in L2(ω).

Such a functionw is unique up to the addition of a polynomial of degree≤ 1 in the variabley = (yα) since any
distributionT ∈ D′(ω) satisfying∂αβT = 0 inω is a polynomial of degree≤ 1 in y (recall that a domain is connected
by assumption).

A simple re-writing of the compatibility conditions of Theorem 2.1 shows that the functionw found in this theorem
can be also viewed as anAiry function. Recall that the divergence of a 2× 2 tensor fieldS = (Sαβ) defined over a
two-dimensional open set is the vector fielddiv S := (∂βSαβ).

4
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Theorem 2.2. Let there be given a simply-connected domainω ⊂ R
2 and a symmetric tensor fieldS = (Sαβ) ∈ L2(ω).

Then there exists a function w∈ H2(ω) such that

∂11w = S22, ∂12w = −S12, ∂22w = S11 in L2(ω),

if and only if
div S = 0 in H−1(ω).

If this is the case, the function w is uniquely determined up to the addition of a polynomial of degree≤ 1 in the variable
y = (yα).

Proof. The relations∂1F12 − ∂2F11 = 0 and∂1F22 − ∂2F21 = 0 in H−1(ω) used in the proof of Theorem 2.1 can be
equivalently re-written as

div S = 0 in H−1(ω), whereS = (Sαβ) :=

(

F22 −F21

−F12 F11

)

∈ L2(ω).

Hence the conclusions immediately follow from Theorem 2.1.

Given a symmetric matrix field (Sαβ) defined overω, any functionw such that∂11w = S22, ∂12w = −S12, and
∂22w = S11 is called anAiry function for the field (Sαβ).

When the domainω is not simply-connected, an Airy function still exists, provided the compatibility condition
div S = 0 in H−1(ω) found in Theorem 2.2 is complemented by other conditions, according to the following result
due to Geymonat & Krasucki [11], which constitutes a weak version of a classical result for smooth functions (see,
e.g., Ciarlet & Rabier [9]).

Theorem 2.3. Let ω ⊂ R
2 be a non-simply connected domain whose boundaryγ consists of q≥ 2 connected

componentsγi , 1 ≤ i ≤ q, let (να) denote the unit outer normal vector alongγ =
⋃q

i=1 γi , and let the functions
p0, p1, p2 : ω→ R be respectively defined by p0(y) = 1, p1(y) = y1, p2(y) = y2 for each y= (yα) ∈ ω.

Let S = (Sαβ) ∈ L2(ω) be a symmetric tensor field. Then there exists a function w∈ H2(ω) such that

∂11w = S22, ∂12w = −S12, ∂22w = S11 in L2(ω),

if and only if

div S = 0 in H−1(ω),

H−1/2(γi )〈Sαβνβ, p0〉H1/2(γi ) = 0, 1 ≤ i ≤ q,

H−1/2(γi )〈S1βνβ, p2〉H1/2(γi ) = H−1/2(γi )〈S2βνβ, p1〉H1/2(γi ), 1 ≤ i ≤ q.

If this is the case, the function w is uniquely determined up to the addition of a polynomial of degree≤ 1 in the
variable y.

Note that duality brackets such asH−1/2(γi )〈Sαβνβ, p0〉H1/2(γi ) are indeed well-defined, since any tensor fieldS ∈
L

2(ω) satisfyingdiv S = 0 in H−1(ω) belongs to the spaceH(div;ω); consequently, each “restriction ofSαβνβ to γi”
is well defined as a distribution in the spaceH−1/2(γi) (see, e.g., Girault & Raviart [15] or Brezzi & Fortin [2]).

The compatibility conditions guaranteeing that the componentsFαβ of a symmetric 2× 2 matrix field inL2(ω)
can be written asFαβ = ∂αβw for some functionw ∈ H2(ω) were identified in Theorem 2.1 as a system ofpartial
differential equations. We now show (Theorem 2.4(a)) that it is possible to find linear compatibility conditions,
again bearing on the functionsFαβ, of a completely different naturethat achieve the same purpose. These different
compatibility conditions are ofDonati type, in the sense that they take the form ofvariational equationsto be satisfied
by divergence-free tensor fields. We also identify (Theorem 2.4(b)) another class of linear compatibility conditions of
Donati type that will be used in the sequel.

Note that, by contrast with the compatibility conditions ofTheorem 2.1, those of Theorem 2.4 below no longer
require that the domainω be simply-connected.

5
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Theorem 2.4. (a)Let there be given a domainω ⊂ R
2 and a tensor field(Fαβ) ∈ L2(ω).

Then there exists a functionη ∈ H2
0(ω) such that

∂αβη = Fαβ in L2(ω),

if and only if
∫

ω

FαβTαβ dy = 0 for all (Tαβ) ∈ L2(ω) such that divdiv T := ∂αβTαβ = 0 in H−2(ω).

If this is the case, the functionη is uniquely determined.
(b) Let there be given a domaiṅω ⊂ R

2 and a tensor field(eαβ) ∈ L2(ω).
Then there exists a vector field(ηα) ∈ H1

0(ω) × H1
0(ω) such that

1
2

(∂αηβ + ∂βηα) = eαβ in L2(ω),

if and only if
∫

ω

eαβsαβ dy = 0 for all S = (sαβ) ∈ L2(ω) such thatdiv S = (∂βsαβ) = 0 in H−1(ω).

If this is the case, the vector field(ηα) is uniquely determined.

Proof. Assume first thatFαβ = ∂αβη for someη ∈ H2
0(ω), so that

∫

ω

FαβTαβ dy = L2(ω)〈Tαβ, ∂αβη〉L2(ω) = H−2(ω)〈∂αβTαβ, η〉H2
0(ω)

for each tensor field (Tαβ) ∈ L2(ω). Hence
∫

ω
FαβTαβ dy = 0 if ∂αβTαβ = 0 in H−2(ω). This proves the “only if” part

of Theorem 2.4(a).
Next, let

Aη :=

(

∂11η ∂12η

∂21η ∂22η

)

∈ L2(ω) for eachη ∈ H2
0(ω).

Then the linear operatorA : H2
0(ω) → L

2(ω) defined in this fashion is clearly continuous. Besides, since the semi-

normη ∈→

(

∑

α, β

∥

∥

∥∂αβη
∥

∥

∥

2

L2(ω)

)1/2
is a norm over the spaceH2

0(ω) which is equivalent to the norm‖·‖H2(ω) over this

space, there exists a constantC such that

‖η‖H2(ω) ≤ C ‖Aη‖
L2(ω) for all η ∈ H2

0(ω).

Consequently, the imageIm A of H2
0(ω) underA is closedin L

2(ω).
For any matrix fieldT = (Tαβ) ∈ L2(ω) and any functionη ∈ H2

0(ω), we have

L2(ω)〈T, Aη〉L2(ω) := L2(ω)〈Tαβ, ∂αβη〉L2(ω) = H−2(ω)〈∂αβTαβ, η〉H2
0(ω)

= H−2(ω)〈div div T, η〉H2
0(ω),

which shows that thedual operatorof A : H2
0(ω)→ L

2(ω) is divdiv : L2(ω)→ H−2(ω).
Banach closed range theoremtherefore implies that

Im A = {F ∈ L2(ω); L2(ω)〈F,T〉L2(ω) = 0 for all T ∈ Ker (divdiv)},

which is exactly what the “if part” of Theorem 2.4(a) asserts.
That KerA = {0} implies that the function denotedη is uniquely determined. This proves (a).
The proof of (b) is well-known; see, e.g. Geymonat & Suquet [14], Geymonat & Krasucki [12, 13], or Amrouche,

Ciarlet, Gratie & Kesavan [1].
6
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Finally, we establish a specificGreen’s formula.

Theorem 2.5. Letω be a domain inR2. Then, for any functionsη ∈ H2
0(ω) and w∈ H2(ω)

∫

ω

(∂11η∂22η − ∂12η∂12η)wdy =
∫

ω

{

−
1
2

(∂1η)2∂22w−
1
2

(∂2η)2∂11w+ ∂1η∂2η∂12w

}

dy.

Proof. Considered as functions of (η,w) ∈ H2
0(ω) × H2(ω), both sides of the above relation are continuous (the space

H2(ω) is continuously imbedded in the spaceW1,4(ω) sinceω is a two-dimensional domain; this shows that the
trilinear form in the right-hand side of this relation is continuous). SinceD(ω) is dense inH2

0(ω) it thus suffices to
establish the Green’s formula for functionsη ∈ D(ω) andw ∈ H2(ω). Using the usual formulas of Sobolev spaces
(which is licit sinceω is assumed to be a domain; cf., e.g., Nečas [19]) and noting that all the boundary integrals
vanish in these formulas ifη ∈ D(ω), we obtain, for anyη ∈ D(ω) andw ∈ H2(ω),

1
2

∫

ω

(∂1η)2∂22wdy = −
1
2

∫

ω

[

∂2(∂1η)2
]

∂2wdy = −
∫

ω

∂1η∂12η∂2wdy

=

∫

ω

[

∂2(∂1η∂12η)
]

wdy

=

∫

ω

(∂12η∂12η)wdy+
∫

ω

(∂1η∂122η)wdy,

1
2

∫

ω

(∂2η)2∂11wdy =
∫

ω

(∂12η∂12η)wdy+
∫

ω

(∂2η∂112η)wdy,
∫

ω

∂1η∂2η∂12wdy = −
∫

ω

∂1(∂1η∂2η)∂2wdy = −
∫

ω

(∂11η∂2η + ∂1η∂12η)∂2wdy

=

∫

ω

[

∂2(∂11η∂2η) + ∂2(∂1η∂12η)
]

wdy

=

∫

ω

[

∂112η∂2η + ∂11η∂22η + ∂12η∂12η + ∂1η∂122η
]

wdy,

from which the announced Green’s formula follows.

3. Nonlinear Donati compatibility conditions

The following theorem constitutes thefirst main resultof this paper. For brevity, it is stated and established for a
simply-connected domainω, but it should be clear that a similar result (based on Theorem 2.3 instead of on Theorem
2.2) holds ifω is not simply-connected.

Theorem 3.1. Letω be a simply-connected domain inR2. Given a matrix fieldS ∈ L2(ω) that satisfies

div S = 0 in H−1(ω),

there exists a unique function w∈ H2(ω) such that

∂11w = S22, ∂12w = −S12, ∂22w = S11 in L2(ω), and
∫

ω

wdy =
∫

ω

∂αwdy = 0.

Let

Φ :=
{

S ∈ L2(ω); div S = 0 in H−1(ω)
}

→

{

ψ ∈ H2(ω);
∫

ω

ψdy =
∫

ω

∂αψdy = 0

}

denote the mapping defined in this fashion, i.e., byΦ(S) := w.

7
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Let there be given two matrix fields(Eαβ) ∈ L2(ω) and(Fαβ) ∈ L2(ω). Then there exists a vector field(η1, η2, η3) ∈
H1

0(ω) × H1
0(ω) × H2

0(ω) such that

1
2

(∂αηβ + ∂βηα + ∂αη3∂βη3) = Eαβ in L2(ω),

∂αβη3 = Fαβ in L2(ω),

if and only if the followingnonlinear Donati compatibility conditions are satisfied:
∫

ω

FαβTαβ dy = 0 for all T = (Tαβ) ∈ L2(ω) such that divdiv T = 0 in H−2(ω),
∫

ω

{EαβSαβ + (detF)Φ(S)}dy = 0 for all S = (Sαβ) ∈ L2(ω) such thatdiv S = 0 in H−1(ω).

If this is the case, such a vector field(η1, η2, η3) is uniquely determined.

Proof. The functionw found in Theorem 2.2 is unique up to the addition of a polynomial of degree≤ 1 in y; hencew
becomes uniquely determined if it is subjected to satisfy inaddition the relations

∫

ω
wdy =

∫

ω
∂αwdy = 0. This shows

that the mappingΦ is well-defined.
So, let two tensor fields (Eαβ) ∈ L

2(ω) and (Fαβ) ∈ L
2(ω) be given that satisfy the above nonlinear Donati

compatibility conditions. We then first infer from Theorem 2.4(a) that there exists a uniquely determined function
η3 ∈ H2

0(ω) such that
Fαβ = ∂αβη3 in L2(ω).

Second, letS = (Sαβ) ∈ L2(ω) be a tensor field that satisfiesdiv S = 0 in H−1(ω). Hence there exists by Theorem
2.2 one and only one functionw ∈ H2(ω) such that

S11 = ∂22w, S12 = −∂12w, S22 = ∂11w in L2(ω),
∫

ω

wdy =
∫

ω

∂αwdy = 0.

Consequently, for any such tensor fieldS,
∫

ω

EαβSαβ dy =
∫

ω

{E11∂22w+ E22∂11w− 2E12∂12w}dy,

on the one hand, and
∫

ω

(detF)Φ(S) dy =
∫

ω

(

F11F22 − (F12)
2
)

wdy

=

∫

ω

(∂11η3∂22η3 − ∂12η3∂22η3)wdy,

on the other hand. Using the Green’s formula of Theorem 2.5, we can therefore re-write the left-hand side of the
second Donati compatibility condition as

∫

ω

{

EαβSαβ + det(F)Φ(S)
}

dy

=

∫

ω

{

(

E11−
1
2

(∂1η3)2

)

∂22w− 2

(

E12−
1
2
∂1η3∂2η3

)

∂12w

+

(

E22−
1
2

(∂2η3)2

)

∂11w

}

dy

=

∫

ω

{

(

E11−
1
2

(∂1η3)2

)

S11 + 2

(

E12 −
1
2
∂1η3∂2η3

)

S12

+

(

E22−
1
2

(∂2η3)2

)

S22

}

dy.

8
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Since this last relation holds for allS = (Sαβ) ∈ L
2(ω) such that∂βSαβ = 0 in H−1(ω), there exists a uniquely

determined vector field (ηα) ∈ H1
0(ω) × H1

0(ω) such that (Theorem 2.4(b))

Eαβ −
1
2
∂αη3∂βη3 =

1
2

(∂αηβ + ∂βηα) in L2(ω).

This completes the proof of the “if part”.
The “only if part” follows from Theorem 2.4(a) for the first Donati compatibility conditions and by reversing the

above computations for the second one.

Remark As expected, the “linearization” of the nonlinear Donati compatibility conditions found in Theorem 3.1,
which simply consists in deleting the nonlinear term

∫

ω
(detF)Φ(S) dy, reduces to the linear Donati compatibility

conditions of Theorem 2.4. �

4. The intrinsic approach to nonlinear plate theory by meansof Donati compatibility conditions

Our analysis of the intrinsic approach applied to the minimization problem of Section 1 in the special case where
γ0 = γ is essentially based on the properties of a specificsetT(ω) of admissible tensor fieldsand of a specificnonlinear
mapping acting fromT(ω) onto the space H10(ω) × H1

0(ω) × H1
0(ω), the definitions and properties of which are the

object of the next theorem. For simplicity, we again consider the case where the domainω is simply-connected, but
the extension to general domains (based on Theorem 2.3 instead of Theorem 2.2) is clearly possible.

Since the proof of the next theorem is similar to that of Theorem 5.1 in Ciarlet & S. Mardare [8], it is only sketched.

Theorem 4.1. Letω be a simply-connected domain inR2.
(a)Define the set

T(ω) := {((Eαβ, (Fαβ)) ∈ L
2(ω) × L2(ω);

∫

ω

FαβTαβ dy = 0 for all T = (Tαβ) ∈ L2(ω) satisfying divdiv T = 0 in H−2(ω),
∫

ω

{EαβSαβ + (detF)Φ(S)}dy = 0 for all S = (Sαβ) ∈ L2(ω) satisfyingdiv S = 0 in H−1(ω)

whereΦ is the mapping defined inTheorem 3.1. Then the setT(ω) is sequentially weakly closed in the spaceL
2(ω)×

L
2(ω).

(b) Given any((Eαβ, Fαβ)) ∈ T(ω), there exists byTheorem 3.1a unique vector fieldη = (ηi) ∈ H1
0(ω) × H1

0(ω) ×
H2

0(ω) such that

1
2

(∂αηβ + ∂βηα + ∂αη3∂βη3) = Eαβ in L2(ω),

∂αβη3 = Fαβ in L2(ω).

Let F : (E, F) ∈ T(ω) → η ∈ H1
0(ω) × H1

0(ω) × H2
0(ω) denote the mapping defined in this fashion. ThenF maps

weakly convergent sequences in the setT(ω) into sequences that strongly converge in the space H1
0(ω)×H1

0(ω)×H2
0(ω)

endowed with the norm of the space L2(ω) × L2(ω) × H1(ω).

Proof. (i) The proof rests on the followingnonlinear Korn’s inequality: there exists a constantC such that

∥

∥

∥η

∥

∥

∥

H1(ω)×H1(ω)×H2(ω)
≤C

(

‖
1
2

(∂αηβ + ∂βηα + ∂αη3∂βη3)‖L2(ω)

+ ‖(∂αβη3)‖L2(ω) + ‖(∂αβη3)‖2
L2(ω)

)

for all η = (η1) ∈ H1
0(ω) × H1

0(ω) × H2
0(ω). To prove this inequality, it suffices to use the two-dimensional Korn’s

inequality for vector fields (ηα) ∈ H1
0(ω) × H1

0(ω), the inequality

‖(∂αηβ + ∂βηα)‖L2(ω) ≤ ‖∂αηβ + ∂βηα + ∂αη3∂βη3‖L2(ω) + ‖∂αη3∂βη3‖L2(ω),

9
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and the continuous injectionH1(ω) →֒ L4(ω) (which holds sinceω is a two-dimensional domain), the combination of
which implies that there exists a constantc such that

‖∂αη3∂βη3‖L2(ω) ≤ ‖∂αη3‖L4(ω) ‖∂βη3‖L4(ω) ≤ c ‖∂βη3‖
2
H1(ω) ≤ c‖η3‖

2
H2(ω) .

Since the mappingF : T(ω)→ H1
0(ω)×H1

0(ω)×H2
0(ω) is one-to-one and onto by Theorem 3.1, the above Korn’s

inequality can be immediately converted into aninequality for elements in the setT(ω), viz.,

‖F(E, F)‖H1(ω)×H1(ω)×H2(ω) ≤ C
(

‖E‖L2(ω) + ‖F‖L2(ω) + ‖F‖
2
L2(ω)

)

for all (E, F) ∈ T(ω).

(ii) Let ((Ek, Fk))∞k=1 be a sequence of elements (Ek, Fk) ∈ T(ω) that weakly converges to (E, F) ∈ L2(ω)×L2(ω).
Since this sequence is then bounded inL

2(ω)×L2(ω), the sequence (ηk)∞k=1, whereηk := F(Ek, Fk), is bounded in the
spaceH1

0(ω) × H1
0(ω) × H2

0(ω) by (i). Hence there exist a subsequence (η
ℓ)∞
ℓ=1 andη ∈ H1

0(ω) × H1
0(ω) × H2

0(ω) such
that

η
ℓ ⇀ η in H1

0(ω) × H1
0(ω) × H2

0(ω) asℓ → ∞,

where⇀ denotes weak convergence. Therefore,

η
ℓ → η in L2(ω) × L2(ω) × H1(ω) asℓ → ∞,

thanks to the compact injectionsH1(ω) ⋐ L2(ω) and H2(ω) ⋐ H1(ω) (which hold sinceω is a two-dimensional
domain). From these properties, it is then easy to conclude thatη = F(E, F), hence that (E, F) ∈ T(ω). Consequently,
the setT(ω) is sequentially weakly closedin L

2(ω) × L2(ω).
Finally, the uniqueness of the limit shows that the whole sequence (ηk)∞k=1 converges strongly toη in the space

L2(ω) × L2(ω) × H1(ω).

Thanks to Theorem 4.1, the minimization problem of the nonlinear Kirchhoff-von Kármán-Love theory when
γ0 = γ, i.e., with the displacement fieldη∗ = (η∗i ) ∈ H1

0(ω) × H1
0(ω) × H2

0(ω) as the unknown (Section 1), can now be
recast as one of theintrinsic approach to this theory, i.e., as a minimization problem with

E∗αβ :=
1
2

(∂αη∗β + ∂βη
∗
α + ∂αη

∗
3∂βη

∗
3) ∈ L2(ω) andF∗αβ := ∂αβη∗3 ∈ L2(ω)

as the new unknowns. This is the object of the next theorem, where the existence and uniqueness of the solution to
this new minimization problem are also established; this result constitutes thesecond main resultof this paper.

Recall that the constantsaαβστ are the components of the two-dimensional elasticity tensor of the plate and that
the functionspi ∈ L2(ω) andqα ∈ L2(ω) designate the resultants and couples acting on the plate (Section 1).

Theorem 4.2. Let the spaceT(ω) and the mappingF : T(ω) → H1
0(ω) × H1

0(ω) × H2
0(ω) be defined as inTheorem

4.1and let the functional I: T(ω)→ R be defined for each(E, F) = ((Eαβ), (Fαβ)) ∈ T(ω) by

I (E, F) :=
1
2

∫

ω

{

εaαβστEστEαβ +
ε3

3
aαβστFστFαβ

}

dy− L(F(E, F))

where

L(η) :=
∫

ω

piηi dy−
∫

ω

qα∂αη3 dy for eachη = (ηi) ∈ H1
0(ω) × H1

0(ω) × H2
0(ω).

Then, if the norms‖pα‖L2(ω) are small enough, there exists at least one element(E∗, F∗) = ((E∗αβ), (F
∗
αβ)) ∈ T(ω)

such that
I (E∗, F∗) = inf

(E,F)∈T(ω)
I (E, F).

Besides,

E∗αβ :=
1
2

(∂αη∗β + ∂βη
∗
α + ∂αη

∗
3∂βη

∗
3) ∈ L2(ω) andF∗αβ := ∂αβη∗3 ∈ L2(ω),

10
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where the vector fieldη∗ ∈ H1
0(ω) × H1

0(ω) × H2
0(ω) satisfies

J(η∗) = inf
η∈H1

0 (ω)×H1
0 (ω)×H2

0(ω)
J(η),

and the functional J: H1
0(ω) × H1

0(ω) × H2
0(ω)→ R is defined for eachη = (ηi) ∈ H1

0(ω) × H1
0(ω) × H2

0(ω) by

J(η) :=
1
2

∫

ω

{

ε

4
aαβστ(∂σητ + ∂τησ + ∂ση3∂τη3)(∂αηβ + ∂βηα + ∂αη3∂βη3) +

ε3

3
aαβστ∂στη3∂αβη3

}

dy− L(η).

Proof. (i) The function (E, F) ∈ T(ω) →
1
2

∫

ω

{

εaαβστEστEαβ +
ε3

3
aαβστFστFαβ

}

dy, which is clearly continuous,

and convex since the assumed inequalitiesλ ≥ 0 andµ > 0 imply the existence of a constantα > 0 such that

aαβστtστtαβ ≥ αtαβtαβ for all 2× 2 symmetric matrices (tαβ),

is therefore sequentially weakly lower semi-continuous (see, e.g., Theorem 9.2-3 in [4]).
The function (E, F) ∈ T(ω)→ L(F(E, F)) ∈ R is sequentially weakly continuous since, by Theorem 4.1,

(Ek, Fk) ⇀
k→∞

(E, F) in T(ω) impliesF(Ek, Fk) →
k→∞

F(E, F) in L2(ω) × L2(ω) × H1(ω),

and the linear formL : L2(ω) × L2(ω) × H1(ω)→ R is continuous.
Consequently,the functional I: T(ω)→ R is sequentially weakly lower semi-continuous.

(ii) In what follows, the constantsC1,C2, andC3 are independent of the various functions, vector fields, or tensor
fields, appearing in a given inequality. First, it is clear that

I (E, F) ≥C1

(

‖E‖2
L2(ω) + ‖F‖

2
L2(ω)

)

− ‖(pα)‖L2(ω) ‖(ηα)‖L2(ω)

− ‖p3‖L2(ω) ‖η3‖L2(ω) − ‖(qα)‖L2(ω) ‖(∂αη3)‖L2(ω) ,

for all (E, F) ∈ T(ω), whereη = F(E, F). Second, as already noted in the proof of Theorem 4.1,

‖(ηα)‖L2(ω) ≤ ‖(ηα)‖H1(ω) ≤ C2

(

‖E‖L2(ω) + ‖F‖
2
L2(ω)

)

,

so that

I (E, F) ≥C1 ‖E‖2L2(ω) +
(

C1 −C2 ‖(pα)‖L2(ω)

)

‖F‖2
L2(ω)

−C2 ‖(pα)‖L2(ω) ‖E‖L2(ω) − C3

(

‖(p3)‖L2(ω) + ‖(qα)‖L2(ω)

)

‖F‖L2(ω)

for all (E, F) ∈ T(ω). Hencethe functional I: T(ω)→ R is coercive if the norms‖pα‖L2(ω) are small enough.

(iii) By a standard result from the calculus of variations (see, e.g., Theorem 3.30 in Dacorogna [10] or Theorem
9.3-1 in [4]), there thus exists at least one minimizer (E∗, F∗) of the functionalI in the setT(ω).

(iv) Given such a minimizer (E∗, F∗) ∈ T(ω), the definitions of the functionalsI andJ clearly imply that the vector
field F(E∗, F∗) minimizes the functionalJ over the spaceH1

0(ω) × H1
0(ω) × H2

0(ω).

Note that a similarintrinsic approachcould bea fortiori applied to the Kirchhoff-von Kármán-Love theory for a

linearly elastic plate, i.e., where the change of metric tensor

(

1
2

(∂αηβ + ∂βηα + ∂αη3∂βη3)

)

is replaced by thelinearized

change of metric tensor

(

1
2

(∂αηβ + ∂βηα)

)

. In this case, the nonlinear Donati compatibility conditions of Theorem 3.1

are to be replaced by their linearized version found in Theorem 2.4.
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P.G. Ciarlet et al./ Journal de Mathématiques Pures et Appliquées 00 (2014) 1–12 12

References

[1] C. Amrouche, P.G. Ciarlet, L. Gratie, S. Kesavan, On the characterizations of matrix fields as linearized strain tensor fields,J. Math. Pures
Appl. 86 (2006) 116–132.

[2] F. Brezzi, M. Fortin,Mixed and Hybrid Finite Element Methods, Springer, 1991.
[3] P.G. Ciarlet,Mathematical Elasticity, Volume II: Theory of Plates, North-Holland, Amsterdam 1997.
[4] P.G. Ciarlet,Linear and Nonlinear Functional Analysis with Applications, SIAM, 2013.
[5] P.G. Ciarlet, P. Ciarlet, Jr., Another approach to linearized elasticity and a new proof of Korn’s inequality,Math. Models Methods Appl. Sci.

15 (2005) 259–271.
[6] P.G. Ciarlet and P. Destuynder, A justification of a nonlinear model in plate theory,Computer Methods Appl. Mech. Engrg. 17/18 (1979)

227–258.
[7] P.G. Ciarlet, G. Geymonat, F. Krasucki, Nonlinear Donati compatibility conditions for the nonlinear Kirchhoff-von Kármán-Love plate theory,
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