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Abstract

Linear Donati compatibility conditions guarantee that tdeenponents of symmetric tensor fields are those of linedirange
of metric or linearized change of curvature tensor fieldeeiased with the displacement vector field arising in a lihealas-
tic structure when it is subjected to applied forces. Themapatibility conditions take the form of variational eqoat with
divergence-free tensor fields as test-functions, by centsth Saint-Venant compatibility conditions, which tattee form of
systems of partial dierential equations.

In this paper, we identify and justify nonlinear Donati caatipility conditions that apply to a nonlinearly elastiam@ modeled
by the Kirchhdf-von Karman-Love theory. These conditions, which to ththars’ best knowledge constitute a first example of
nonlinear Donati compatibility conditions, in turn allow tecast the classical approach to this nonlinear plateyhedere the
unknown is the position of the deformed middle surface ofptlage, into the intrinsic approach, where the change ofimatrd
change of curvature tensor fields of the deformed middleasarbf the plate are the only unknowns. The intrinsic apralags
provides a direct way to compute the stress resultants @wstitss couples inside the deformed plate, often the urmaiofumajor
interest in computational mechanics.

Résune

Les conditions de compatibiliteé de Donati lineaires géssent que les composantes de champs de tenseurs symegtsont
celles de tenseurs linéarisés de changement de métigde changement de courbure, associés a un champ deetaplas
apparaissant dans une structure élastique soumise @mes fappliquées. Ces conditions de compatibilité menfa forme
d’équations variationnelles avec des champs de tenaalivergence nulle comme fonctions-tests, par contragelasg conditions
de compatibilité de Saint-Venant, qui prennent la formeyistemes d’équations aux dérivées partielles.

Dans cet article, nous identifions et justifions des conalitide compatibilite de Donati non linéaires, qui s’appdigt & une
plaque non linéairement élastique modélisée seldmdarte de Kirchhfi-von Karman-Love. Ces conditions, qui a la connaissance
des auteurs constituent un premier exemple de conditioosrdpatibilité de Donati non linéaires, permettent etesdié reformuler
I'approche classique de cette théorie non linéaire dguaa sous la forme de I'approche intrinséque, ou les chatagenseurs
de changement de métrique et de changement de courbursuitdee moyenne déformée de la plaque sont les seulamines.
L'approche intrinseque fournit ainsi un moyen direct diegier les d€forts tranchants et les moments flechissants a l'intedeu
la plaque déformée, souvent les inconnues les plus sigtiifes en calcul des structures.
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1. Introduction

Throughoutthis paper, Latin, resp. Greek, indices and eapts vary in the séf, 2, 3}, resp. in the sdfl, 2}, save
when they are used for indexing sequences, resp.siavie notatiord,. The summation convention with respect to
repeated indices and exponents is used in conjunction hétetrules.

A domainw in R? is a bounded and connected open subs&?afith a Lipschitz-continuous boundayy the set
w being locally on the same side 9f Given a domainw c R?, the notation®, = 8/dYa, dap := 9%/0YadYs, €tC.,
designate partial derivatives, possibly in the sense dfildigions, of functions ofy,) € w.

We now briefly describe the well-known, and often uskdchhagf-von Karman-Love theory of a nonlinearly
elastic plate so named after Kirchhb[17], von Karman [22], and Love [18].

Let w be a domain ifR?. Consider arlastic plateof thicknes®s > 0 with @ as its middle surface, made up with
a homogeneous and isotropic elastic material, and whoseerefe configuratio® x [—¢, ] is a natural state. Let

aozﬁo"r = 5(1,3607 + 2:“(6Q0'6ﬁ7 + 5‘”6ﬁﬂ')

Ap
A+2u
denote the components of theo-dimensional elasticity tensor of the platehered > 0 andu > 0 denote thd.amé
constantsof the constituting material of the plate; lgi) € L?(w; R%) and @,) € L?(w; R?) respectively denote the
resultants and couples of the given applied forces. Finadlyume that the platedlampedon a d/-measurable subset
vo Of y 1= dw (note thaty, may be empty).

Let the functionall be defined for each vector field:= (77;) € HY(w) x HY(w) x H2(w) by

1

E 83
J(']) = E f {Zaﬂ/ﬁ()’T(a()’nT + a‘rr](f + (90—7]36#73)(6(, B + aﬁr](y + a(rn36ﬁn3) + Ea(tﬁ(r‘ra(rrrlliawﬁnfi} dy - L(']):

where

L(n) = f pin; dy — f Qo o113 dy,

V(w) = {n = (m) € H'(w) x HY(w) x H*(w); ni = dyn3 = 0 onyol,

and let the spac¥(w) be defined by

whered, designates the outer normal derivative operator ajoftige operatod, is well-defined g¢-almost everywhere
alongy, since the unit outer normal vector is itself well-definegdalmost everywhere along the boundary of a
domain).

Then, according to thi€irchhgf-von Karman-Love theory of a nonlinearly elastic pléee, e.g., Ciarlet [3]), the
vector fieldp” = (), wheren; are the Cartesian components of the displacement vectofighe middle surface
of the plate, should be the solution of the following miniatibn problem:

7* € V(w) andJd@r) = inf I(x).
neV(w)

If 0 < dy-measyo < dy-measy, this minimization problem has at least one solution if tieenns||p./l 2(,, are
small enough (see Ciarlet & Destuynder [6]; see also NeCda&mann [20] in the special case whexe= 0). If
Yo = 0, in which caseV(w) = H}(w) x H(w) x H?(w), this minimization problem has a solution if (and only et
componentg; andq, of the resultants and couples of the applied forces satfyom compatibility conditionsand
if the norms|p, |l 2(,) are again small enough (see Ciarlet & S. Mardare [8]); naiettie solution is never unique in
this case, however (see the discussion givehith).

Let L?(w) denote the space of all22 symmetric tensor fields with componentd #{w). The nonlinear part of
the integrand appearing in the functiodak a function of thechange of metric tensor fielE,s) € L?(w) and of the
change of curvature tensor fiel(F,5) € L?(w), the components of which are respectively defined for acjordield
1€ V(w) by

1
E(yﬁ = E(aa B+ aﬁr](y + 6@/7]36[3773) andF(yﬁ = 6(tﬁ773
2
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(despite their names, which we adopt here because they ammaoly used in nonlinear plate theory, these tensors
are in gfect onlyad hocapproximations of the “true” change of metric and changeuo¥ature tensors of the middle
surface).

By contrast with thelassical approachiescribed above, where the Cartesian compongbthe displacement
field are the unknowns, dntrinsic approachto the same problem consists insteadamsidering the components

B = E(a(mﬁ + 0pn, + 0af30pm3) ANAF 5 1= opg

of the corresponding change of metric and change of cureaemsor fields as the unknowrige intrinsic approach
thus provides a direct way to compute #teess resultants g and thestress couples gp inside the plate since these
are respectively defined as

Nep i= Qopor E(*rr andmtﬁ = a(YﬁO’TF;-T'

This feature constitutes an advantage of the intrinsic@gugdr over the classical approach, inasmuch as the stress
resultants,; and the stress couples,; are often considered to be the unknowns of interest (raktaer the compo-
nentsn” of the displacement vector field) in the computation of étastructures; in this direction, see notably the
pioneering contributions of W. Pietraszkiewicz and hiscsiti21].

In order to recast the minimization problem of the classaabroach into one of the intrinsic approach, the
first objective thus consists in finding necessary arfligent conditions guaranteeing that, given two tensor fields
(Eup) € L%(w) and Fop) € L?(w), there exists a vector fiel= (1) € V(w) such that

1
5(%% + 0N + 0am130p13) = Eqp @anddysns = Fop.

A first answer to this question wheg = 0, in which caseV(w) = H(w) x HY(w) x H?(w), was recently given
in Ciarlet & S. Mardare [8]. There, it was shown that, if theeapsetw is simply-connecteda first class of such
necessary and flicient conditions can be expressed asyatem of nonlinear partial glerential equationsn the
sense of distributions, which take the form of the followimanlinear Saint-Venant compatibility conditions

60’7 Eaﬁ + aaﬁE(rT - aaro‘ Eﬁ‘r - aﬁTEmr = Fa(r FBT - FQﬁFO'T in H—Z(w)’
05 Fap = 0pF a0 in HH(w).

In this paper, we show thahenyo = v, in which case/(w) = Hj(w) x H}(w) x H3(w), necessary and gicient
nonlinear compatibility conditions “of Donati typean be found (Theorem 3.1), which this time take the form of
nonlinear variational equations, with divergence-freader fields as test-functionsote that, at least to the authors’
best knowledge, these constitute a first example of nonlic@apatibility conditions of Donati type.

Once such compatibility conditions are identified and fiesdi they in turn allow to recast the corresponding
minimization problem into one of thiatrinsic approach(Theorem 4.2)

Some of the results of this paper were announced (mosthowitbroofs) in Ciarlet, Geymonat & Krasucki [7].

2. Technical preliminaries

This section gathers various preliminary results that alillbe used in Section 3 for identifying the nonlinear
Donati compatibility conditions just alluded to.

Given a domainv c R?, the notationdH™(w), H M(w), and Hg'(w), m > 1, designate the usual Sobolev spaces
and their dual spaces, the notatidd§?(¥) and H~Y/2(y) designate the usual trace space and its dual space over
any connected componenbf the boundary ofv, the notationD(w) designates the space of infinitelyffégrentiable
functions with compact support in, and?’(w) designates the space of distributiongin

Vector and matrix fields are designated by boldface lett8gaces of vector, resp. symmetric matrix, fields are
designated by boldface, resp. special Roman, letters.

Given a normed vector spad& the notationV’ designates its dual space, apd, -)y designates the duality
betweenV andV’. If W is a subspace df, the notationlv — V, resp.W € V, means that the canonical injection
from W into V is continuous, resp. compact.

The followinglinear Saint-Venant compatibility conditioesnstitute an extension of a classical result for smooth
functions to distributions.

3
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Theorem 2.1. Let there be given a simply-connected domaia R? and a symmetric matrix fielF,s) € L?(w).
Then there exists a functionavH?(w) such that

aaﬁW = Faﬁ in Lz(a)),

if and only if
0oFap — 0pF 0o = 0 iIN H X (w).

If this is the case, any other functidine H?(w) such thaid,sW = Fug in L?(w) is of the form
W(Y) = W(Y) + ag + a1y1 + azy» for almost ally = (y,) € w,
for some constantsary, andas.

Proof. It is clear that, given any domain c R? (i.e., simply-connected or not) and given any functwor H?(w),
the matrix field Fop) := (0apW) € L?(w) satisfies),Fas = 9pF a0 in H(w).

To establish the converse property, we first observe théttallelations),, F .5 — d5F - = 0in H"1(w) (i.e., for all
a, B, 0 € {1, 2}) are satisfied if (and only if)

01F12 - 02F11=0 andalez —07F>1 = 0.

Theweak Poincaré lemmaf the form established in Ciarlet & Ciarlet, Jr. [5] (a sirapproof was subsequently
given by Kesavan [16]; see also Theorem 6.17-4 in Ciarlgtgderts that, given any vector fiely,} € H™(w) that
satisfies

dah — dghy = 0 I H2(w),

there exists a functiof e L?(w), unique up to the addition of a constant function, such that
840 = hy in H(w).

Note that the assumption sfmple-connectedness$ the domairw is an essential assumption in this lemma, as its
proof relies on the “classical” Poincaré lemma (i.e., fmo®th functions).
Since
01F12 — 02F11 = 0, resp.91F22 — 02F21 = 0, in Hfl(a)),

there thus exists a functighe H'(w), resp,y € H(w), such that
619 = Fll and629 = F12, resp.al)( = F21 andﬁz)( = F22, in Lz(a)).

Since then
61)( —00=Fy1—F15=0 in Lz(a)),

another application of the same lemma shows that theresexisinctionw € H?(w) such that
A1wW = 0 andd,w = y in HY(w),
hence such that
O11W = 910 = F11, 810W = 1y = Fa1, 921W = 820 = F1, 9oW = dox = Fazin L2(w).

Such a functiorw is unique up to the addition of a polynomial of degred. in the variabley = (y,) since any
distributionT € 9 (w) satisfyingd.sT = 0 in w is a polynomial of degreg 1 iny (recall that a domain is connected
by assumption). O

A simple re-writing of the compatibility conditions of Thesm 2.1 shows that the functienfound in this theorem
can be also viewed as &iry function Recall that the divergence of 22 tensor fieldS = (S,z) defined over a
two-dimensional open set is the vector fieligt S := (05S,).

4
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Theorem 2.2. Let there be given a simply-connected domaia R? and a symmetric tensor fieRi= (S.5) € L?(w).
Then there exists a functionavH?(w) such that

OuW = Spz,  G12W = —S1p,  92oW = Sy1in L¥(w),

if and only if
divS=0in HY(w).

If this is the case, the function w is uniquely determinedthé addition of a polynomial of degregel in the variable
Y = (Ya)-

Proof. The relations);F1, — 92F11 = 0 andd;F2s — d2F21 = 0 in H™Y(w) used in the proof of Theorem 2.1 can be
equivalently re-written as

divS = 0in H(w), whereS = (Syp) i= (_FFZZ ‘Fle) € L2(w).
12 11

Hence the conclusions immediately follow from Theorem 2.1. O

Given a symmetric matrix fieldS,z) defined ovew, any functionw such tha1sw = Sz, d1oW = =Sy, and
020w = Sy is called anAiry function for the field (Seg).

When the domaim is not simply-connected, an Airy function still exists, pited the compatibility condition
divS = 0in HY(w) found in Theorem 2.2 is complemented by other conditionspaling to the following result
due to Geymonat & Krasucki [11], which constitutes a wealsiger of a classical result for smooth functions (see,
e.g., Ciarlet & Rabier [9]).

Theorem 2.3. Let w c R? be a non-simply connected domain whose boungacgnsists of q> 2 connected
componenty;, 1 < i < q, let(v,) denote the unit outer normal vector along= Uiq:lyi, and let the functions
Po, P1, P2 : @ — R be respectively defined by(g) = 1, pi(y) = y1, p2(y) = y2 for each y= (y,) € w.

LetS = (Sus) € L?(w) be a symmetric tensor field. Then there exists a functiart¥(w) such that

W = Spp,  91oW = —S1p,  9poW = Sy1in L3 (w),
if and only if

divS=0in H(w),
H-12(,){SapVps PoH12(y) = 0, 1< <,
H-2()(S18V P2H2(y) = H-v2)(S28Vps PORY2), 1< T <0

If this is the case, the function w is uniquely determinedaifhe addition of a polynomial of degree 1 in the
variable y.

Note that duality brackets such asiz(,){(Sqsvs, PodHr2(y,) are indeed well-defined, since any tensor figla
L%(w) satisfyingdiv S = 0in H~(w) belongs to the spadé(div; w); consequently, each “restriction 8fv; to y;”
is well defined as a distribution in the spade’/2(y;) (see, e.g., Girault & Raviart [15] or Brezzi & Fortin [2]).

The compatibility conditions guaranteeing that the congmisF,; of a symmetric 2x 2 matrix field inL?(w)
can be written a§,s = d,sw for some functionow € H?(w) were identified in Theorem 2.1 as a systenpaftial
differential equations We now show (Theorem 2.4(a)) that it is possible to find line@mpatibility conditions,
again bearing on the functiors,z, of a completely dferent naturethat achieve the same purpose. Thedtedint
compatibility conditions are dbonati type in the sense that they take the formvafiational equationso be satisfied
by divergence-free tensor fieldé/e also identify (Theorem 2.4(b)) another class of lineanpatibility conditions of
Donati type that will be used in the sequel.

Note that, by contrast with the compatibility conditionsTdfeorem 2.1, those of Theorem 2.4 below no longer
require that the domais be simply-connected.



P.G. Ciarlet et al/ Journal de Mathématiques Pures et Appliquées 00 (20142 1— 6

Theorem 2.4. (a) Let there be given a domain c R? and a tensor fieldF ;) € L?(w).
Then there exists a functione Hg(w) such that

Bapn = Fop in L¥(w),

if and only if
f FosTopdy = 0 for all (T,s) € L2(w) such that didiv T := OapTop =01in H2(w).

If this is the case, the functionis uniquely determined.
(b) Let there be given a domain c R? and a tensor fielde,s) € L?(w).
Then there exists a vector fiefigl,) € H3(w) x Hj(w) such that

1 )
5(3a77ﬁ + p7a) = €up IN LA(w),

if and only if
fe(,ﬁs(,ﬁ dy = 0 for all S = (s,5) € L?(w) such thatdiv S = (9pS,5) = 0in H™Y(w).

If this is the case, the vector fig{gl,) is uniquely determined.

Proof. Assume first thaF .z = d.sn for somen Hg(w), so that

f FapTapdy = 12w)(Tap: dapmizw) = H-2()(0apT aps MH2(w)

for each tensor fieldT,5) € L?(w). Hencefw FogTapdy = 0if 8,5Tap = 0 in H-2(w). This proves the “only if” part
of Theorem 2.4(a).
Next, let

oun  01n ) ,
n= (62177 0am) € L?(w) for eachy € H3(w).

Then the linear operatok : Hg(w) — L?(w) defined in this fashion is clearly continuous. Besides;esie semi-
1/2

normn e— (Zw ||6(,ﬁn||i2(w)) is a norm over the spadé2(w) which is equivalent to the normllz(, over this

space, there exists a const@nsuch that

Il < ClIATlIL, foralln e Hi(w).

Consequently, the imadm A of Hg(w) underA is closedin L2(w).
For any matrix fieldT = (T,g) € L%(w) and any functiom € HZ(w), we have

L2(w) (T, An)l,z(w) = Lz(w)<Taﬁ7 acrﬁﬂ)Lz(w) = H’z(w)<6aﬁTaﬁ7 T]>Hg(w)
= H—Z(w)<diV div T, T])Hg(w),

which shows that theual operatorof A : H3(w) — L?(w) is divdiv : L?(w) - H™?(w).
Banach closed range theordirerefore implies that

Im A = {F € Lw); 12(,)¢F, T)L2) = 0 for all T € Ker (divdiv)},

which is exactly what the “if part” of Theorem 2.4(a) asserts
That KerA = {0} implies that the function denoteds uniquely determined. This proves (a).
The proof of (b) is well-known; see, e.g. Geymonat & Suquédt,[Geymonat & Krasucki [12, 13], or Amrouche,
Ciarlet, Gratie & Kesavan [1]. O
6
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Finally, we establish a speciftéreen’s formula

Theorem 2.5. Letw be a domain ifk?. Then, for any functions € H3(w) and we H?(w)

1 1
f(allnagzn - (9127](91271)W dy = f {—é(aln)zazzw — E(azn)zallw + (91776277612W} dy

Proof. Considered as functions of,w) € Hg(w) x H?(w), both sides of the above relation are continuous (the space
H2(w) is continuously imbedded in the spa¥¢-*(w) sincew is a two-dimensional domain; this shows that the
trilinear form in the right-hand side of this relation is ¢ioous). SinceD(w) is dense ing(a)) it thus sufices to
establish the Green’s formula for functionse D(w) andw € H?(w). Using the usual formulas of Sobolev spaces
(which is licit sincew is assumed to be a domain; cf., e.g., Ne€as [19]) and natiagall the boundary integrals
vanish in these formulasif e D(w), we obtain, for any; € D(w) andw € H3(w),

% fw (011)°022wdy = —% fw |02(01m)?| 2wy = - fw 01n912n92W dy
= L [02(01n012n) | wdy
= L (01217012m)Wdy + ja: (01m0122m)W dy,

5 [[@niouwy = [ @normway+ [ ooy,

fw 01ndnd1 Wy = — j; 01(01m02m)d2wdy = — j; (0117021 + 017B127)32W dy
= fw [02(011m02m) + 32(01n01217) | W dy
= fw [011210217 + 0110221 + O1200121 + H1110122m] WO,

from which the announced Green’s formula follows. =

3. Nonlinear Donati compatibility conditions

The following theorem constitutes thiest main resultof this paper. For brevity, it is stated and established for a
simply-connected domaia, but it should be clear that a similar result (based on The@8 instead of on Theorem
2.2) holds ifw is not simply-connected.

Theorem 3.1. Letw be a simply-connected domainlit. Given a matrix fields € L.?(w) that satisfies
divS=0in H(w),
there exists a unique functionavH?(w) such that
011W = Spp,  919W = =S5, 92oW = Sy in L(w), and dey = fﬁ(,Wdy =0.

Let
0= {Se L?(w); divS=0in H‘l(w)} - {zp € H(w); fxpdy: fa(,wdyz 0}

denote the mapping defined in this fashion, i.e. PE$) := w.
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Let there be given two matrix fiel@&,s) € L?(w) and(F,s) € L?(w). Then there exists a vector figlgh, 72, 73) €
H3(w) x Hj(w) x H3(w) such that
1 .
5(@atlp + Gpta + Bat1zdpns) = Eop i L*(w),
Bapnts = Fap In LA(w),

if and only if the followinghonlinear Donati compatibility conditions are satisfied:
f FopTapdy =0forall T = (Tup) € L2(w) such that didiv T = 0 in H ?(w),
f{EaﬁSaﬁ + (detF)®(S)}dy = 0 for all S = (S,s) € L?(w) such thatdiv S = 0in H(w).

If this is the case, such a vector fidlg, n2, n3) is uniquely determined.

Proof. The functionw found in Theorem 2.2 is unigue up to the addition of a polyradwi degree< 1 iny; hencew
becomes uniquely determined if it is subjected to satisiddition the relationgij wdy = fw d,wdy = 0. This shows
that the mapping is well-defined.

So, let two tensor fieldsH,z) € L?(w) and Fqs) € L%(w) be given that satisfy the above nonlinear Donati
compatibility conditions. We then first infer from Theorend ) that there exists a uniquely determined function
n3 € H3(w) such that

Faﬁ = 6(,'3773 in Lz(w).

Second, le6 = (S,5) € L?(w) be a tensor field that satisfidi/ S = 0 in H1(w). Hence there exists by Theorem
2.2 one and only one functiom e H?(w) such that

Si11=022W, Siz=—012W, Spp = dwin LA (w),

fwdyzfa(,wdyzo.

f EosSepdy = f {E11020W + E22011W — 2E 15015} dy,

Consequently, for any such tensor fi€ld

on the one hand, and
f (detF)d(S) dy = f (F11F22 - (F12)%) wdy

= f (01217302213 — A12n302213)W dy,

on the other hand. Using the Green’s formula of Theorem 2é¢can therefore re-write the left-hand side of the
second Donati compatibility condition as

[ {EuSis + derro(s) oy

1 1
f { (Ell - 5(51773)2) oW — 2 (Elz - 53177332773) 012W

1
+ (Ezz - 5(52773)2) 511W} dy

1 1
f { (Ell - 5(51773)2) S11+2 (Elz - 53177332773) S12

1
+ (Ezz - 5(52773)2) 322} dy.
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Since this last relation holds for & = (S,s) € L?(w) such thaisS,s = 0 in H™(w), there exists a uniquely
determined vector fieldy) € H3(w) X Hj(w) such that (Theorem 2.4(b))

1 1 .
E(yﬁ - 5307733[%773 = é(awnﬁ + 33’70) in Lz(w)'

This completes the proof of the “if part”.
The “only if part” follows from Theorem 2.4(a) for the first Dati compatibility conditions and by reversing the
above computations for the second one. O

Remark As expected, the “linearization” of the nonlinear Donatirmguatibility conditions found in Theorem 3.1,
which simply consists in deleting the nonlinear tefg{detF)CD(S) dy, reduces to the linear Donati compatibility
conditions of Theorem 2.4. O

4. The intrinsic approach to nonlinear plate theory by meansof Donati compatibility conditions

Our analysis of the intrinsic approach applied to the minatibn problem of Section 1 in the special case where
vo = vy is essentially based on the properties of a spesdfit(w) of admissible tensor fieldsd of a specifiaonlinear
mapping acting fronT'(w) onto the space g-(w) X Hé((u) X Hé((u), the definitions and properties of which are the
object of the next theorem. For simplicity, we again consttle case where the domainis simply-connected, but
the extension to general domains (based on Theorem 2.&dhsferheorem 2.2) is clearly possible.

Since the proof of the next theorem is similar to that of Tleeob.1 in Ciarlet & S. Mardare [8], itis only sketched.

Theorem 4.1. Letw be a simply-connected domainli?.
(a) Define the set

T(O)) = {((Eafﬁ» (F(t,B)) € Lz(w) X L2((4))1
f FasTapdy = 0 forall T = (T,p) € L?(w) satisfying divdiv T = 0 in H™?(w),

w

f{EaﬁSaﬁ + (detF)®(S)}dy = 0 for all S= (Syp) € L2(w) satisfyingdivS = 0in H }(w)

w

where® is the mapping defined ifheorem 3.1 Then the seT(w) is sequentially weakly closed in the spdcéw) x
L2(w).
(b) Given any((E,g. Fag)) € T(w), there exists bffheorem 3.1a unique vector fielgy = (7;) € HE(w) x H(w) x
H3(w) such that
1 .
5(@atlp + Gpta + Bat1zdpns) = Eop in L*(w),
Bopitz = Fag in LA(w).

LetF : (E,F) € T(w) — 7 € H}(w) x Hj(w) X H3(w) denote the mapping defined in this fashion. TRemaps
weakly convergent sequences in thél¥et) into sequences that strongly converge in the spa&ie))-k Hé(w) X Hg(a))
endowed with the norm of the spacgd) x L?(w) x H(w).

Proof. (i) The proof rests on the followingonlinear Korn's inequalitythere exists a consta@tsuch that

1
”’]”Hl(w)XHl(w)XHz(w) <C (”E(awrlﬁ + 3[%7701 + a<rn36ﬁn3)||L2(w)
+ ||(a<rﬁn3)||L2(w) + ”(6“:3)73)”512(0)))

for all p = (1) € Hj(w) x H}(w) x H3(w). To prove this inequality, it stices to use the two-dimensional Korn's
inequality for vector fieldsi(,) € Hj(w) x H3(w), the inequality

||(6(t77ﬁ + 6ﬁna)|lL2(m) < ||6(¥TI,B + 6,8’7& + 6(t773aﬁ773”L2(w) + ||a<r773aﬁ773||L2(w)»
9
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and the continuous injectidd’(w) — L*(w) (which holds sincev is a two-dimensional domain), the combination of
which implies that there exists a constarsuch that

10a130pm3llL2(w) < 10ansllLaw) [10pm3llLa@w) < C “6/3’773“a1(w) < C||773|||2_|2(w)~

Since the mapping : T(w) — Hé(w) X Hé((u) X Hg(w) is one-to-one and onto by Theorem 3.1, the above Korn’s
inequality can be immediately converted intoinaquality for elements in the s&{w), viz.,

IF(E, F)llH@)xHi(@)xH (@) < C(||E||]L2(w) + IFllL2e) + “F”iz(w))

for all (E, F) € T(w).

(ii) Let ((EX, FY));2, be a sequence of elemenB‘(F¥) € T(w) that weakly converges td( F) € L2(w) x L(w).
Since this sequence is then boundeBl#w) x L2(w), the sequenceyf):,, wheren® := F(EX, F¥), is bounded in the
spaceHj(w) x Hi(w) x H3(w) by (i). Hence there exist a subsequeng@, andn € Hj(w) x H}(w) X H3(w) such
that

7" — pin Hj(w) x H}(w) x H3(w) ast — oo,

where— denotes weak convergence. Therefore,
7’ — 5in L?(w) x L?(w) x HY(w) ast — oo,

thanks to the compact injectiod$’(w) € L%*(w) andH?(w) € H(w) (which hold sincew is a two-dimensional
domain). From these properties, it is then easy to conchatet= F(E, F), hence thati, F) € T(w). Consequently,
the sefT'(w) is sequentially weakly closdd L2(w) x L2(w).

Finally, the uniqueness of the limit shows that the wholeusage ﬁk)?’:l converges strongly tg in the space
L%(w) x L?(w) x HY(w). O

Thanks to Theorem 4.1, the minimization problem of the nwdr Kirchhdf-von Karman-Love theory when
Yo =7, i.e., with the displacement fielgt = () € H}(w) x H}(w) x H3(w) as the unknown (Section 1), can now be
recast as one of thatrinsic approach to this theory, i.e., as a minimization problem with

*

1 * >k * * * . *
of = E@aﬁﬁ + gty + Dam30p13) € LH(w) andF ;= daprs € L?(w)

as the new unknowns. This is the object of the next theorererevtine existence and uniqueness of the solution to
this new minimization problem are also established; thésilteconstitutes theecond main resulif this paper.

Recall that the constants.,. are the components of the two-dimensional elasticity tensthe plate and that
the functionsp; € L?(w) andgq, € L?(w) designate the resultants and couples acting on the platti¢s 1).

Theorem 4.2. Let the spacé'(w) and the mapping : T(w) — Hj(w) x Hj(w) x H3(w) be defined as ifheorem
4.1and let the functional t T(w) — R be defined for eac{E, F) = ((Eup), (Fug)) € T(w) by

3

1 £
I(E7 F) = E f {8a(l,BU'TEU'TE(l,B + Ea(tﬁ(rTFU'TFaﬁ} dy_ L(F(E7 F))

where
L(y) = f P cly — f Qs dy for eachy = () € H(w) x Hi(w) x H3(w).

Then, if the normgp, |l 2, are small enough, there exists at least one eler(igntF") = ((EZB), (F;ﬁ)) € T(w)
such that
I(E*,F*) = (E,Flglt]l‘(w)l(E’ F).
Besides,

*

1 * * * * * . *
g 1= E(a"”ﬁ + Ognls, + 0am30pms) € LP(w) andF, 1= dapm € L (w),
10
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where the vector fielg* € Hj(w) x Hj(w) x H3(w) satisfies

)= nf ),
neHg (w)xHg(w)xHg(w)

and the functional J H}(w) x H}(w) X H3(w) — R is defined for each = (i) € H}(w) x H3(w) x H3(w) by

1 £ g
J(']) = E f {Zaaﬁ(f‘r(aan'r + 37770' + 30'7736‘r773)(6a77ﬁ + aﬁna + 3a7133ﬁ773) + Eaaﬁu-rau'rniiaaﬁnfi} dy_ L('])

3

Proof. (i) The function €, F) € T(w) — %f{saaﬁmEmEaﬁ + %aaﬁmFmFaﬁ} dy, which is clearly continuous,

w
and convex since the assumed inequalitiesO andu > 0 imply the existence of a constant>- 0 such that
Aoportortop = ataptys fOr all 2 x 2 symmetric matricedfs),

is therefore sequentially weakly lower semi-continuoe®(®.9., Theorem 9.2-3 in [4]).
The function g, F) € T(w) — L(F(E, F)) € R is sequentially weakly continuous since, by Theorem 4.1,

(EX, F¥) = (E.F)in T(w) implies F(EX, F¥) . F(E.F)in L?(w) % L?(w) x HY(w),

and the linear fornt. : L?(w) x L?(w) x HY(w) — R is continuous.
Consequentlythe functional I: T(w) — R is sequentially weakly lower semi-continuous

(ii) In what follows, the constani§;, C,, andCs; are independent of the various functions, vector fieldsgosar
fields, appearing in a given inequality. First, it is cleaatth

I(E. F) 2C1 (IEIZ2(,) + IFIZ2() = 1Pl 1020l 2o
= IPsllize) M3lliz(w) = 1Al 2w 1@ana)llL2w) »
for all (E, F) € T(w), wheren = F(E, F). Second, as already noted in the proof of Theorem 4.1,

10720y < N0 Negay < Co (IE N2y + IFIR)
so that
I(E. F) 2C1 IIEIZ,, + (C1 = Call(Pa)llLzy ) IFIZ2q,,
= C2ll(Pa)ll 2w IEllL2(w) — C3 (”(p3)”L2(a)) + ||(qa)||L2(w)) 1 l2¢w)

for all (E, F) € T(w). Hencethe functional I: T(w) — R is coercive if the normgp,l| 2, are small enough.

(iii) By a standard result from the calculus of variationsgse.g., Theorem 3.30 in Dacorogna [10] or Theorem
9.3-1in [4]), there thus exists at least one minimiZ&t,(*) of the functional in the sefT(w).

(iv) Given such a minimizerf*, F*) € T(w), the definitions of the functionalsandJ clearly imply that the vector
field F(E*, F*) minimizes the functional over the spacei}(w) x H(w) x H3(w). O

Note that a similaintrinsic approachcould bea fortiori applied to the Kirchhfi-von Karman-Love theory for a

linearly elastic platei.e., where the change of metric tenég(ﬁanﬁ + dpna + 0am30pm3) | is replaced by thénearized

change of metric tens ré((%nﬁ + dpn.o) |- I this case, the nonlinear Donati compatibility condismf Theorem 3.1

are to be replaced by their linearized version found in Taep?.4.
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