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Abstract

Let ω be a simply-connected domain in R
2 and let (Eαβ) and (Fαβ) be two symmetric 2 × 2 matrix fields

with components in L2(ω). In this Note, we identify nonlinear compatibility conditions “of Donati type” that the
components Eαβ and Fαβ must satisfy in order that there exists a vector field (η1, η2, w) ∈ H1

0 (ω)×H1

0 (ω)×H2

0 (ω)
such that

1

2
(∂αηβ + ∂βηα + ∂αw∂βw) = Eαβ and ∂αβw = Fαβ in ω.

The left-hand sides of these relations are the components of tensors found in the Kirchhoff-von Kármán-Love
theory of nonlinearly elastic plates.

Résumé

Conditions de compatibilité non linéaires de Donati pour la théorie non linéaire des plaques de

Kirchhoff-von Kármán-Love. Soit ω un domaine simplement connexe de R2 et soit (Eαβ) et (Fαβ) deux champs
de matrices 2× 2 symétriques dont les composantes sont dans L2(ω). Dans cette Note, on identifie et justifie des
conditions non linéaires de compatibilité “de type Donati” que doivent satisfaire les composantes Eαβ et Fαβ afin
qu’il existe un champs de vecteurs (η1, η2, w) ∈ H1

0 (ω)×H1

0 (ω)×H2

0 (ω) tel que

1

2
(∂αηβ + ∂βηα + ∂αw∂βw) = Eαβ et ∂αβw = Fαβ dans ω.

Les membres de gauche de ces relations sont les composantes de tenseurs trouvés dans la théorie de Kirchhoff-von
Kármán-Love des plaques non linéairement élastiques.
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1. Preliminaries

Greek indices vary in {1, 2} and the convention summation with respect to repeated indices is used. A
domain in R

2 is a bounded, open, and connected subset ω of R2 with a Lipschitz-continuous boundary
∂ω, the set ω being locally on the same side of ∂ω. Partial derivatives of the first, second, and third, order
of functions of y = (yα) ∈ ω are denoted ∂α := ∂/∂yα, ∂αβ := ∂2/∂yα∂yβ, and ∂αβσ := ∂3/∂yα∂yβ∂yσ;
the same notations are used for partial derivatives in the sense of distributions.
Vector fields and matrix fields, and spaces of vector fields, defined over ω are denoted by boldface

letters. The usual Sobolev spaces over ω are denoted Hm(ω), m ∈ Z, and Hm
0
(ω), m ≥ 1; the norm in

Hm(ω), m ∈ Z, is denoted ‖·‖m,ω; in particular then, ‖·‖
0,ω is the norm of H0(ω) = L2(ω). The notation

L
2(ω) designates the space of all 2× 2 symmetric matrix fields with components in L2(ω). If S = (Sαβ)

is a 2× 2 matrix field with smooth enough components defined over ω, its divergence divS is the vector
field defined by (divS)α = ∂αSαβ .
If X and Y are two (real) vector spaces and A is a linear operator from X to Y ,

ImA := {y ∈ Y ; y = Ax for at least one x ∈ X} and KerA := {x ∈ X ; Ax = 0}.

The notation X′〈·, ·〉X designates the duality between a normed vector space X and its dual X ′.
In the classical Kirchhoff-von Kármán-Love theory of nonlinearly elastic plates (see, e.g., Chapters 4

and 5 in [2]), the unknown displacement field of the middle surfac ω of the plate minimizes an energy
whose integrand contains a positive-definite quadratic function of the change of metric and change of

curvature tensors, respectively defined by

Eαβ :=
1

2
(∂αηβ + ∂βηα + ∂αw∂βw) and Fαβ := ∂αβw, (1)

for an arbitrary displacement field (η1, η2, w) ∈ H1

0
(ω)×H1

0
(ω)×H2

0
(ω) (we consider here plates that are

clamped over their entire lateral face).
In the intrinsic approach to the same theory, the matrix fields (Eαβ) ∈ L

2(ω) and (Fαβ) ∈ L
2(ω)

are considered as the sole unknowns. There thus arises the question as to whether there exist suitable
compatibility conditions that the components Eαβ and Fαβ of these matrix fields should satisfy in order
that there exists a vector field (η1, η2, w) ∈ H1

0
(ω)×H1

0
(ω)×H2

0
(ω) satisfying (1). As shown in [6], if the

domain ω is simply-connected, the nonlinear Saint-Venant compatibility conditions

∂στEαβ + ∂αβEστ − ∂ασEβτ − ∂βτEασ + FαβFστ − FασFβτ = 0 in H−2(ω),

∂σFαβ − ∂βFασ = 0 in H−1(ω),

constitute one possible answer to this question. The objective of this Note is to give (cf. Theorem 4.2)
a different answer to the same question, this time in the form of variational equations, which as such
constitute examples of nonlinear Donati compatibility conditions (a general presentation of Saint-
Venant and Donati compatibility conditions as they arise in three-dimensional linearized elasticity is
found in Chapter 6 in [3]).
Complete proofs and an application to intrinsic nonlinear plate theory will be found in [5].

2. An existence theorem for an Airy-function

The following result is a “weak” version (already used in [6]) of a classical result for smooth functions.
Its proof is based on the two-dimensional version of the weak Poincaré lemma due to [4] and then given
a substantially simpler proof in [10]; cf. also Thm. 6.17-4 in [3].
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Theorem 2.1 Let ω be a simply-connected domain in R
2, and let there be given a matrix field (Fαβ) ∈

L
2(ω) that satisfies

∂σFαβ − ∂βFασ = 0 in H−1(ω).

Then there exists a function ϕ ∈ H2(ω), unique up to the addition of a polynomial of degree ≤ 1, such
that

∂αβϕ = Fαβ in L2(ω).

Theorem 2.1 can be immediately recast as an existence result of an ad hoc Airy function (denoted ϕ
in the next theorem) under low regularity assumptions. As such, it complements Thm. 2 of [7], where the
existence of an Airy function was established, again in the space H2(ω), but for non-simply-connected

domains, under the assumption that the tensor field noted S in the next theorem satisfies in addition the
usual global equilibrium equations.
Theorem 2.2 Let ω be a simply-connected domain in R

2, and let there be given a matrix field S =
(Sαβ) ∈ L

2(ω) that satisfies

divS = 0 in H
−1(ω).

Then there exists a function ϕ ∈ H2(ω), unique up to the addition of a polynomial of degree ≤ 1, such
that

∂11ϕ = S22, ∂12ϕ = −S12, ∂22ϕ = S11 in L2(ω). (2)

A function ϕ satisfying the relations (2) is called an Airy function associated with the matrix

field S.

3. Linear Donati compatibility conditions for linearly elastic plates

For convenience, we consider separately the existence of the “horizontal” components ηα, and that of
the “vertical” component w of the unknown vector field.
Theorem 3.1 Let ω be a domain in R

2 and let there be given a matrix field (eαβ) ∈ L
2(ω) that satisfies

∫

ω

eαβsαβ dy = 0 for all (sαβ) ∈ L
2(ω) such that ∂αsαβ = 0 in H−1(ω). (3)

Then there exists a vector field (ηα) ∈ H1

0
(ω)×H1

0
(ω) such that

1

2
(∂αηβ + ∂βηα) = eαβ in L2(ω),

and such a vector field (ηα) is uniquely determined.

Proof. See, e.g., [1], or [8] and [9]. �

Theorem 3.2 Let ω be a domain in R
2 and let there be given a matrix field (Fαβ) ∈ L

2(ω) that satisfies
∫

ω

FαβTαβ dy = 0 for all (Tαβ) ∈ L
2 such that ∂αβTαβ = 0 in H−2(ω).

Then there exists a function w ∈ H2

0
(ω) such that

∂αβw = Fαβ in L2(ω), (4)

and this function is uniquely determined.
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Sketch of proof. Let the continuous linear operator H : H2

0
(ω) → L

2(ω) be defined by

Hw =





∂11w ∂12w

∂21w ∂22w



 ∈ L
2(ω) for each w ∈ H2

0
(ω).

Then one shows that ImH is a closed subspace of L2(ω), and that the dual operator of H is divdiv :
L
2(ω) → H−2(ω). The conclusion then follows from Banach closed range theorem. �

Relation (3) and (4) constitute the linear Donati compatibility conditions corresponding to the

Kirchhoff-Love theory of linearly elastic plates. Note that they hold regardless of whether the domain ω
is simply-connected.

4. Nonlinear Donati compatibility conditions for nonlinearly elastic plates

The Green’s formula (5) established in the next theorem is crucial to our subsequent analysis.
Theorem 4.1 For all functions w ∈ H2

0
(ω) and ϕ ∈ H2(ω),

∫

ω

(∂11w∂22w − ∂12w∂12w)ϕdy =

∫

ω

{

−
1

2
(∂1w)

2∂22ϕ−
1

2
(∂2w)

2∂11ϕ+ ∂1w∂2w∂12ϕ
}

dy. (5)

Sketch of proof. Both sides of (5) being continuous functions of (w,ϕ) ∈ H2

0
(ω)×H2(ω), it is enough

to establish (5) for all (w,ϕ) ∈ D(ω)×H2(ω). To this end, one uses the integration by parts formulas in
Sobolev spaces. �

The next theorem constitutes the main result of this Note.
Theorem 4.2 Let ω be a simply-connected domain in R

2. Given a matrix field S ∈ L
2(ω) that satisfies

divS = 0 in H
−1(ω), there exists a unique function ϕ ∈ H2(ω) such that (cf. Theorem 2.2)

∂11ϕ = S22, ∂12ϕ = −S12, ∂22ϕ = S11 in L2(ω) and

∫

ω

ϕdy =

∫

ω

∂αϕdy = 0.

Let

Φ : {S ∈ L
2(ω);divS = 0 in H

−1(ω)} → {ψ ∈ H2(ω);

∫

ω

ψ dy =

∫

ω

∂αψ dy = 0}

denote the mapping defined in this fashion, i.e., by Φ(S) := ϕ.
Let there be given two matrix fields (Eαβ) ∈ L

2(ω) and F = (Fαβ) ∈ L
2(ω) that satisfy

∫

ω

FαβTαβ dy = 0 for all T = (Tαβ) ∈ L
2(ω) such that divdivT = 0 in H−2(ω), (6)

∫

ω

{EαβSαβ + (detF )Φ(S)} dy = 0 for all S = (Sαβ) ∈ L
2(ω) such that divS = 0 in H

−1(ω). (7)

Then there exists a vector field (η1, η2, w) ∈ H1

0
(ω)×H1

0
(ω)×H2

0
(ω) such that

1

2
(∂αηβ + ∂βηα + ∂αw∂βw) = Eαβ in L2(ω),

∂αβw = Fαβ in L2(ω),

and such a vector field (η1, η2, w) is uniquely determined.

Proof. Relation (6) shows that there exists a uniquely determined function w ∈ H2

0
(ω) such that (cf.

Theorem 3.2)
Fαβ = ∂αβw in L2(ω). (8)
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Given any matrix field S = (Sαβ) ∈ L
2(ω) such that divS = 0 in H

−1(ω), there exists a uniquely
determined function ϕ ∈ H2(ω) such that (cf. Theorem 2.2)

S11 = ∂22ϕ, S12 = −∂12ϕ, S22 = ∂11ϕ in L2(ω).

Therefore, for any such matrix field S,
∫

ω

EαβSαβ dy =

∫

ω

{E11∂22ϕ+ E22∂11ϕ− 2E12∂12ϕ} dy,

and (cf. (7))
∫

ω

(detF )Φ(S) dy =

∫

ω

(F11F22 − (F12)
2)ϕdy,

=

∫

ω

{(∂11w∂22w − ∂12w∂12w)ϕdy}.

The left-hand side of relation (6) can thus be rewritten as (cf. 5)
∫

ω

{EαβSαβ + (detF )Φ(S)} dy

=

∫

ω

{(

E11 −
1

2
(∂1w)

2

)

∂22ϕ− 2
(

E12 −
1

2
∂1w∂2w

)

∂12ϕ+
(

E22 −
1

2
(∂2w)

2

)

∂11ϕ
}

dy

=

∫

ω

{(

E11 −
1

2
(∂1w)

2

)

S11 + 2
(

E22 −
1

2
∂1w∂2w

)

S12 +
(

E22 −
1

2
(∂2w)

2

)

S22

}

dy.

Since this last relation holds for all S = (Sαβ) ∈ L
2(ω) such that divS = 0 in H

−1(ω), there exists a
uniquely determined vector field (ηα) ∈ H1

0
(ω)×H1

0
(ω) such that (cf. Theorem 3.1)

Eαβ −
1

2
∂αw∂βw =

1

2
(∂αηβ + ∂βηα) in L

2(ω).

This completes the proof. �

Relations (6) and (7) constitute the nonlinear Donati compatibility conditions corresponding to

the Kirchhoff-von Kármán-Love theory of nonlinearly elastic plates. Note that, when properly extended,
they can also cover the case where the domain ω is not simply-connected; cf. [5].
Finally, note that, as expected, the linearization of the nonlinear Donati compatibility conditions (7)

reduce to the linear ones (cf. (3)). �
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