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Nonlinear Donati compatibility conditions for the nonlinear Kirchhoff -von K arm an-Love plate theory

Résumé

Conditions de compatibilité non linéaires de Donati pour la théorie non linéaire des plaques de Kirchhoff-von Kármán-Love. Soit ω un domaine simplement connexe de R 2 et soit (E αβ ) et (F αβ ) deux champs de matrices 2 × 2 symétriques dont les composantes sont dans L 2 (ω). Dans cette Note, on identifie et justifie des conditions non linéaires de compatibilité "de type Donati" que doivent satisfaire les composantes E αβ et F αβ afin qu'il existe un champs de vecteurs (η1, η2, w) ∈ H 1 0 (ω) × H 1 0 (ω) × H 2 0 (ω) tel que 1 2 (∂αη β + ∂ β ηα + ∂αw∂ β w) = E αβ et ∂ αβ w = F αβ dans ω.

Les membres de gauche de ces relations sont les composantes de tenseurs trouvés dans la théorie de Kirchhoff-von Kármán-Love des plaques non linéairement élastiques.

Preliminaries

Greek indices vary in {1, 2} and the convention summation with respect to repeated indices is used. A domain in R 2 is a bounded, open, and connected subset ω of R 2 with a Lipschitz-continuous boundary ∂ω, the set ω being locally on the same side of ∂ω. Partial derivatives of the first, second, and third, order of functions of y = (y α ) ∈ ω are denoted ∂ α := ∂/∂y α , ∂ αβ := ∂ 2 /∂y α ∂y β , and ∂ αβσ := ∂ 3 /∂y α ∂y β ∂y σ ; the same notations are used for partial derivatives in the sense of distributions.

Vector fields and matrix fields, and spaces of vector fields, defined over ω are denoted by boldface letters. The usual Sobolev spaces over ω are denoted H m (ω), m ∈ Z, and H m 0 (ω), m ≥ 1; the norm in H m (ω), m ∈ Z, is denoted • m,ω ; in particular then, • 0,ω is the norm of H 0 (ω) = L 2 (ω). The notation L 2 (ω) designates the space of all 2 × 2 symmetric matrix fields with components in L 2 (ω). If S = (S αβ ) is a 2 × 2 matrix field with smooth enough components defined over ω, its divergence div S is the vector field defined by (div

S) α = ∂ α S αβ .
If X and Y are two (real) vector spaces and A is a linear operator from X to Y , Im A := {y ∈ Y ; y = Ax for at least one x ∈ X} and Ker A := {x ∈ X; Ax = 0}.

The notation X ′ •, • X designates the duality between a normed vector space X and its dual X ′ .

In the classical Kirchhoff-von Kármán-Love theory of nonlinearly elastic plates (see, e.g., Chapters 4 and 5 in [START_REF] Ciarlet | Theory of Plates[END_REF]), the unknown displacement field of the middle surfac ω of the plate minimizes an energy whose integrand contains a positive-definite quadratic function of the change of metric and change of curvature tensors, respectively defined by

E αβ := 1 2 (∂ α η β + ∂ β η α + ∂ α w∂ β w) and F αβ := ∂ αβ w, (1) 
for an arbitrary displacement field (η

1 , η 2 , w) ∈ H 1 0 (ω) × H 1 0 (ω) × H 2 0
(ω) (we consider here plates that are clamped over their entire lateral face).

In the intrinsic approach to the same theory, the matrix fields (E αβ ) ∈ L 2 (ω) and (F αβ ) ∈ L 2 (ω) are considered as the sole unknowns. There thus arises the question as to whether there exist suitable compatibility conditions that the components E αβ and F αβ of these matrix fields should satisfy in order that there exists a vector field (η 1 , η 2 , w) ∈ H 1 0 (ω) × H 1 0 (ω) × H 2 0 (ω) satisfying [START_REF] Amrouche | On the characterizations of matrix fields as linearized strain tensor fields[END_REF]. As shown in [START_REF] Ciarlet | Nonlinear Saint-Venant compatibility conditions and the intrinsic approach for nonlinearly elastic plates[END_REF], if the domain ω is simply-connected, the nonlinear Saint-Venant compatibility conditions

∂ στ E αβ + ∂ αβ E στ -∂ ασ E βτ -∂ βτ E ασ + F αβ F στ -F ασ F βτ = 0 in H -2 (ω), ∂ σ F αβ -∂ β F ασ = 0 in H -1 (ω),
constitute one possible answer to this question. The objective of this Note is to give (cf. Theorem 4.2) a different answer to the same question, this time in the form of variational equations, which as such constitute examples of nonlinear Donati compatibility conditions (a general presentation of Saint-Venant and Donati compatibility conditions as they arise in three-dimensional linearized elasticity is found in Chapter 6 in [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications[END_REF]).

Complete proofs and an application to intrinsic nonlinear plate theory will be found in [START_REF] Ciarlet | Nonlinear Donati compatibility conditions and the intrinsic approach for nonlinearly elastic plates[END_REF].

An existence theorem for an Airy-function

The following result is a "weak" version (already used in [START_REF] Ciarlet | Nonlinear Saint-Venant compatibility conditions and the intrinsic approach for nonlinearly elastic plates[END_REF]) of a classical result for smooth functions. Its proof is based on the two-dimensional version of the weak Poincaré lemma due to [START_REF] Ciarlet | Another approach to linearized elasticity and a new proof of Korn's inequality[END_REF] and then given a substantially simpler proof in [START_REF] Kesavan | On Poincaré's and J.L. Lions' lemmas[END_REF]; cf. also Thm. 6.17-4 in [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications[END_REF].

Theorem 2.1 Let ω be a simply-connected domain in R 2 , and let there be given a matrix field

(F αβ ) ∈ L 2 (ω) that satisfies ∂ σ F αβ -∂ β F ασ = 0 in H -1 (ω).
Then there exists a function ϕ ∈ H 2 (ω), unique up to the addition of a polynomial of degree ≤ 1, such that

∂ αβ ϕ = F αβ in L 2 (ω).
Theorem 2.1 can be immediately recast as an existence result of an ad hoc Airy function (denoted ϕ in the next theorem) under low regularity assumptions. As such, it complements Thm. 2 of [START_REF] Geymonat | On the existence of the Airy function in Lipschitz domains. Application to the traces of H 2[END_REF], where the existence of an Airy function was established, again in the space H 2 (ω), but for non-simply-connected domains, under the assumption that the tensor field noted S in the next theorem satisfies in addition the usual global equilibrium equations. Theorem 2.2 Let ω be a simply-connected domain in R 2 , and let there be given a matrix field S = (S αβ ) ∈ L 2 (ω) that satisfies div S = 0 in H -1 (ω).

Then there exists a function ϕ ∈ H 2 (ω), unique up to the addition of a polynomial of degree ≤ 1, such that

∂ 11 ϕ = S 22 , ∂ 12 ϕ = -S 12 , ∂ 22 ϕ = S 11 in L 2 (ω). (2) 
A function ϕ satisfying the relations ( 2) is called an Airy function associated with the matrix field S.

Linear Donati compatibility conditions for linearly elastic plates

For convenience, we consider separately the existence of the "horizontal" components η α , and that of the "vertical" component w of the unknown vector field. Theorem 3.1 Let ω be a domain in R 2 and let there be given a matrix field (e αβ ) ∈ L 2 (ω) that satisfies ω e αβ s αβ dy = 0 for all (s αβ ) ∈ L 2 (ω) such that ∂ α s αβ = 0 in H -1 (ω).

(

) 3 
Then there exists a vector field

(η α ) ∈ H 1 0 (ω) × H 1 0 (ω) such that 1 2 (∂ α η β + ∂ β η α ) = e αβ in L 2 (ω),
and such a vector field (η α ) is uniquely determined.

Proof. See, e.g., [START_REF] Amrouche | On the characterizations of matrix fields as linearized strain tensor fields[END_REF], or [START_REF] Geymonat | Some remarks on the compatibility conditions in elasticity[END_REF] and [START_REF] Geymonat | Hodge decomposition for symmetric matrix fields and the elasticity complex in Lipschitz domains[END_REF].

Theorem 3.2 Let ω be a domain in R 2 and let there be given a matrix field

(F αβ ) ∈ L 2 (ω) that satisfies ω F αβ T αβ dy = 0 for all (T αβ ) ∈ L 2 such that ∂ αβ T αβ = 0 in H -2 (ω).
Then there exists a function w ∈ H 2 0 (ω) such that

∂ αβ w = F αβ in L 2 (ω), ( 4 
)
and this function is uniquely determined.

Sketch of proof.

Let the continuous linear operator H : H 2 0 (ω) → L 2 (ω) be defined by

Hw =   ∂ 11 w ∂ 12 w ∂ 21 w ∂ 22 w   ∈ L 2 (ω) for each w ∈ H 2 0 (ω).
Then one shows that Im H is a closed subspace of L 2 (ω), and that the dual operator of H is div div : L 2 (ω) → H -2 (ω). The conclusion then follows from Banach closed range theorem.

Relation ( 3) and ( 4) constitute the linear Donati compatibility conditions corresponding to the Kirchhoff-Love theory of linearly elastic plates. Note that they hold regardless of whether the domain ω is simply-connected.

Nonlinear Donati compatibility conditions for nonlinearly elastic plates

The Green's formula (5) established in the next theorem is crucial to our subsequent analysis. Theorem 4.1 For all functions w ∈ H 2 0 (ω) and ϕ ∈ H 2 (ω),

ω (∂ 11 w∂ 22 w -∂ 12 w∂ 12 w)ϕ dy = ω - 1 2 (∂ 1 w) 2 ∂ 22 ϕ - 1 2 (∂ 2 w) 2 ∂ 11 ϕ + ∂ 1 w∂ 2 w∂ 12 ϕ dy. (5) 
Sketch of proof. Both sides of ( 5) being continuous functions of (w, ϕ) ∈ H 2 0 (ω) × H 2 (ω), it is enough to establish (5) for all (w, ϕ) ∈ D(ω) × H 2 (ω). To this end, one uses the integration by parts formulas in Sobolev spaces.

The next theorem constitutes the main result of this Note. Theorem 4.2 Let ω be a simply-connected domain in R 2 . Given a matrix field S ∈ L 2 (ω) that satisfies div S = 0 in H -1 (ω), there exists a unique function ϕ ∈ H 2 (ω) such that (cf. Theorem 2.2) (ω) such that div S = 0 in H -1 (ω). ( 7)

∂
Then there exists a vector field

(η 1 , η 2 , w) ∈ H 1 0 (ω) × H 1 0 (ω) × H 2 0 (ω) such that 1 2 (∂ α η β + ∂ β η α + ∂ α w∂ β w) = E αβ in L 2 (ω), ∂ αβ w = F αβ in L 2 (ω),
and such a vector field (η 1 , η 2 , w) is uniquely determined.

Proof. Relation [START_REF] Ciarlet | Nonlinear Saint-Venant compatibility conditions and the intrinsic approach for nonlinearly elastic plates[END_REF] shows that there exists a uniquely determined function w ∈ H 2 0 (ω) such that (cf. Theorem 3.2)

F αβ = ∂ αβ w in L 2 (ω). (8) 
Given any matrix field S = (S αβ ) ∈ L 2 (ω) such that div S = 0 in H -1 (ω), there exists a uniquely determined function ϕ ∈ H 2 (ω) such that (cf. Theorem 2.2)

S 11 = ∂ 22 ϕ, S 12 = -∂ 12 ϕ, S 22 = ∂ 11 ϕ in L 2 (ω).
Therefore, for any such matrix field S, The left-hand side of relation ( 6) can thus be rewritten as (cf. 5) Since this last relation holds for all S = (S αβ ) ∈ L 2 (ω) such that div S = 0 in H -1 (ω), there exists a uniquely determined vector field (η α ) ∈ H 1 0 (ω) × H 1 0 (ω) such that (cf. Theorem 3.1)

ω {E αβ S αβ + (det F )Φ(S)} dy = ω E 11 - 1 2 (∂ 1 w) 2 ∂ 22 ϕ -2 E 12 - 1 2 ∂ 1 w∂ 2 w ∂ 12 ϕ + E 22 - 1 
E αβ - 1 2 ∂ α w∂ β w = 1 2 (∂ α η β + ∂ β η α ) in L 2 (ω).
This completes the proof.

Relations ( 6) and ( 7) constitute the nonlinear Donati compatibility conditions corresponding to the Kirchhoff-von Kármán-Love theory of nonlinearly elastic plates. Note that, when properly extended, they can also cover the case where the domain ω is not simply-connected; cf. [START_REF] Ciarlet | Nonlinear Donati compatibility conditions and the intrinsic approach for nonlinearly elastic plates[END_REF].

Finally, note that, as expected, the linearization of the nonlinear Donati compatibility conditions (7) reduce to the linear ones (cf. (3)).

  11 ϕ = S 22 , ∂ 12 ϕ = -S 12 , ∂ 22 ϕ = S 11 in L 2 (ω) and ω ϕ dy = ω ∂ α ϕ dy = 0. Let Φ : {S ∈ L 2 (ω); div S = 0 in H -1 (ω)} → {ψ ∈ H 2 (ω); ω ψ dy = ω ∂ α ψ dy = 0} denote the mapping defined in this fashion, i.e., by Φ(S) := ϕ. Let there be given two matrix fields (E αβ ) ∈ L 2 (ω) and F = (F αβ ) ∈ L 2 (ω) that satisfy ω F αβ T αβ dy = 0 for all T = (T αβ ) ∈ L 2 (ω) such that div div T = 0 in H -2 (ω), (6) ω {E αβ S αβ + (det F )Φ(S)} dy = 0 for all S = (S αβ ) ∈ L 2

ωE

  αβ S αβ dy = ω {E 11 ∂ 22 ϕ + E 22 ∂ 11 ϕ -2E 12 ∂ 12 ϕ} dy, and (cf. (7)) ω (det F )Φ(S) dy = ω (F 11 F 22 -(F 12 ) 2 )ϕ dy, = ω {(∂ 11 w∂ 22 w -∂ 12 w∂ 12 w)ϕ dy}.

  2 (∂ 2 w) 2 ∂ 11 ϕ dy 1 w) 2 S 11 + 2 E 22 -1 2 ∂ 1 w∂ 2 w S 12 + E 22 -1 2 (∂ 2 w) 2 S 22 dy.

	=	ω	E 11 -	1 2	(∂
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