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This paper provides sharp lower estimates near the origin for the functional calculus F (-uA) of a generator A of an operator semigroup defined on the (strictly) positive real line; here F is given as the Laplace transform of a measure or distribution. The results are linked to the existence of an identity element or an exhaustive sequence of idempotents in the Banach algebra generated by the semigroup. Both the quasinilpotent and non-quasinilpotent cases are considered, and sharp results are proved extending many in the literature.

Introduction

This article is concerned with estimates for F (-uA)whereA is the generator of a strongly continuous semigroup (T (t)) t>0 on a Banach space. Here F is an entire function with F (0) = 0, given as the Laplace transform of a measure or distribution; the functional calculus defining F (-uA)i sg i v e nb ym e a n s of an integral.

This can be seen as providing a wide generalization of results in [START_REF] Bendaoud | Distances between elements of a semigroup and estimates for derivatives[END_REF][START_REF] Esterle | Distance entre éléments d'un semi-groupe dans une algèbre de Banach[END_REF][START_REF] Kalton | Power-bounded operators and related norm estimates[END_REF], for example, where quantities such as T (t) -T (2t) (or its spectral radius) are estimated near the origin. For example, if T (t) -T (2t) < 1/4o na n interval (0,t 0 ), then, roughly speaking, (T (t)) t>0 has a bounded infinitesimal generator (see [START_REF] Bendaoud | Distances between elements of a semigroup and estimates for derivatives[END_REF]).

There are two cases to consider, namely, the quasinilpotent and nonquasinilpotent cases, and the techniques used are based on strong maximum principles for analytic functions.

In Section 2, the case of quasinilpotent semigroups is considered. Then in Section 3 the non-quasinilpotent case is analysed, providing conditions to obtain either an identity in the closed algebra generated by the semigroup or else an exhaustive sequence (P n ) n≥1 of idempotents such that (P n T (t)) t has a bounded generator. Here, the sharpness of the estimates is shown by an example.

Notation:

We write C + = {z ∈ C :Rez>0}, and similarly for C -. Let D(a, R)d e n o t et h ec o m p l e xd i s c{|z -a| <R}.

For a Jordan curve Γ ⊂ C, we write int Γ (the interior of Γ) for the open set of points in C about which the winding number of Γ is non-zero. For S ⊂ C let M c (S)d e n o t et h es p a c eo fr e g u l a rB o r e lm e a s u r e sh a v i n g compact support contained in S.

Quasinilpotent semigroups

Suppose that (T (t)) t>0 is a nontrivial strongly continuous semigroup of quasinilpotent operators acting on a Banach space (X , . ). Then we write X 0 = t>0 T (t)X -. (closure in norm), and define a norm

x 1 =sup t≥0 T (t)x , where T (0)x = x,
on the subspace X 1 := {x ∈ X 0 : x 1 < ∞}, which is a Banach space under the norm . 1 . Further, we write

X 1 := t>0 T (t)X -. 1 ⊂ X 1 . (1) 
The following result follows immediately from the main result of [START_REF] Feller | On the generation of unbounded semi-groups of bounded linear operators[END_REF]. It will be used to reduce the case of a quasinilpotent semigroup to that of a contractive quasinilpotent semigroup.

Theorem 2.1 Let (T (t)) t>0 be a nontrivial strongly continuous semigroup of quasinilpotent operators acting on a Banach space (X , . ). Then with ( X 1 , . 1 ) defined as in [START_REF] Bendaoud | Distances between elements of a semigroup and estimates for derivatives[END_REF] the semigroup (T (t) | X 1 ) t>0 is a strongly continuous semigroup of quasinilpotent contractions. Moreover for all operators R in the commutant {T (t):t>0} ′ we have R | X 1 1 ≤ R .

Some complex function theory

Theorem 2.2 Let f : C + → C be a continuous bounded nonconstant function, holomorphic on C + , such that f ([0, ∞)) ⊂ R, f (0) = 0, and with

lim x→∞,x∈R f (x)=0. Suppose that α > 0 is such that f (α) ≥ |f (x)| for all x ∈ [0, ∞).
Then there exist a 1 ,a 2 ∈ C + , a 0 ∈ (α,a 1 ) and a 3 ∈ iR with Im a j > 0 for j =1, 2, 3, and Im a 2 =Ima 3 , and a simple piecewise linear Jordan curve Γ 1 joining a 1 to a 2 in the upper right half-plane {z ∈ C :R ez>0, Im z>0} and δ > 0 such that

(i) |f (z)| ≥ f (α)+δ|z -α| m for all z ∈ [α,a 1 ], where m (even) is the smallest positive integer with f (m) (α) =0; (ii) |f (z)| > |f (a 0 )| for all z ∈ Γ 1 ∪ [a 2 ,a 3 ].

Proof :

Since f is holomorphic in C + , we have, by Taylor's theorem, constants M>0a n dη > 0s u c ht h a t

f (z) -f (α) - (z -α) m m! f (m) (α) ≤ M |z -α| m+1 ,
whenever |z -α| < η. By choosing a 1 with |a 1 -α| sufficiently small and with argument such that (a 1α) m < 0( e . g . a r g ( a 1α)=π/m), we have |f (a 1 )| > |f (α)| = f (α), and we may then choose a point a 0 ∈ [α,a 1 ] with to a 2 by a polygonal path in V . We may also guarantee that it is simple (does not cross itself): the only difficulty arises if it crosses itself on the arc (a 0 ,a 1 ), when we may replace a 1 by the crossing point closest to a 0 , or if it crosses itself on the line (a 2 ,a 3 ), when we may replace a 2 by the crossing point closest to a 3 .

|f (α)| < |f (a 0 )| < |f (a 1 )|. Let U = {z ∈ C + : |f (z)| > |f (a 0 )|}. Since a 1 ∈ U ,
The curve constructed in the proof of Theorem 2.2 may be seen as the upper part of Figure 1.

We shall also require the following easy result.

Lemma 2.3 Let f ∈ H(C) with f (0) = 0, f nonconstant.
Then there is an r>0 such that for all u ∈ C \{0}, with |u| <r, we have 

sup |z|≤ r |u| |f (zu)| < sup x≥0 |f (xu)|. Proof : Choose R>0s u c ht h a tf (z) =0forallz with |z| = R. Let δ = inf{|f (z)| : |z| = R} so that δ > 0. Now take r>0suchthatsup |z|≤r |f (z)| < δ,

The main result

Recall that if (T (t)) t>0 is a uniformly bounded strongly continuous semigroup with generator A, then

(A + λI) -1 = - ∞ 0 e λt T (t) dt,
for all λ ∈ C with Re λ < 0. Here the integral is taken in the sense of Bochner with respect to the strong operator topology. If, in addition, (T (t)) t>0 is quasinilpotent, then

(A + λI) -1 = - ∞ 0 e λt T (t) dt, for all λ ∈ C. Similarly, if µ ∈ M c (0, ∞)w i t hL a p l a c et r a n s f o r m F (s):=Lµ(s)= ∞ 0 e -sξ dµ(ξ), (2) 
and (T (t)) t>0 is a strongly continuous semigroup of bounded operators on X , then we have a functional calculus for its generator A, defined by

F (-A)= ∞ 0 T (ξ) dµ(ξ),
in the sense of the strong operator topology; i.e.,

F (-A)x = ∞ 0 T (ξ)xdµ(ξ), (x ∈ X ),
which exists as a Bochner integral.

Lemma 2.4 Let µ ∈ M c (0, ∞) and (T (t)) t>0 a strongly continuous quasinilpotent semigroup of contractions. Set F = Lµ. Then we have for Re λ ≥ 0,

(F (-A) -F (λ)I)(A + λI) -1 ≤ ∞ 0 td|µ|(t).
Proof : We have

F (-A)(A + λI) -1 = - ∞ 0 T (t) dµ(t) ∞ 0 e λs T (s) ds = - ∞ 0 e -λt ∞ 0 e λ(s+t) T (s + t) ds dµ(t) = - ∞ 0 e -λt ∞ t e λv T (v) dv dµ(t)
,

where v = s + t. This in turn equals - ∞ 0 e -λt ∞ 0 e λv T (v) dv dµ(t)+ ∞ 0 e -λt t 0 e λv T (v) dv dµ(t) = F (λ)(A + λI) -1 + ∞ 0 t 0 e λ(v-t) T (v) dv dµ(t).
For Re λ ≥ 0, we have

t 0 e λ(v-t) T (v) dv ≤ t,
and so the conclusion follows.

The following theorem applies to several examples studied recently in [START_REF] Bendaoud | Distances between elements of a semigroup and estimates for derivatives[END_REF][START_REF] Esterle | Distance near the origin between elements of a strongly continuous semigroup[END_REF][START_REF] Esterle | Distance entre éléments d'un semi-groupe dans une algèbre de Banach[END_REF][START_REF] Kalton | Power-bounded operators and related norm estimates[END_REF]; these include µ = δ 1δ 2 ,t h ed i fference of two Dirac measures, where F (s): =Lµ(s)=e -se -2s and F (-sA)=T (t) -T (2t). More importantly, the theorem applies to many other examples, such as

dµ(t)= (χ [1,2] -χ [2,3] )(t)dt and µ = δ 1 -3δ 2 + δ 3 + δ 4 ,
which are not accessible with the methods of [START_REF] Bendaoud | Distances between elements of a semigroup and estimates for derivatives[END_REF][START_REF] Esterle | Distance near the origin between elements of a strongly continuous semigroup[END_REF][START_REF] Esterle | Distance entre éléments d'un semi-groupe dans une algèbre de Banach[END_REF][START_REF] Kalton | Power-bounded operators and related norm estimates[END_REF].

Theorem 2.5 Let µ ∈ M c (0, ∞) be a real measure such that ∞ 0 dµ(t)=0,
and let (T (t)) t>0 be a strongly continuous quasinilpotent semigroup of bounded operators on a Banach space X . Set F = Lµ. Then there is an

η > 0 such that F (-sA) > max x≥0 |F (x)| for 0 <s≤ η.
Proof : It follows from Theorem 2.1 that we may assume without loss of generality that (T (t)) t>0 is a strongly continuous quasinilpotent semigroup of contractions. Let α > 0b es u c ht h a t|F (x)| ≤ |F (α)| for all x ≥ 0, and let s>0. By considering -µ instead of µ, if necessary, we may suppose that F (α) > 0.

By Lemma 2.4 applied to the semigroup (T (st)) t>0 , for Re λ ≥ 0w e obtain

F (-sA)(sA + λI) -1 ≥ F (λ)(sA + λI) -1 - ∞ 0 td|µ|(t).
It follows that

F (-sA) ≤|F (λ)| - 1 (sA + λI) -1 ∞ 0 td|µ|(t)
for s>0a n dR eλ ≥ 0.

Suppose that there exists s ∈ (0, 1) such that F (-sA) ≤F (α), and consider the simple Jordan curve

Γ := [α,a 1 ] ∪ Γ 1 ∪ [a 2 ,a 3 ] ∪ [a 3 , a 3 ] ∪ [a 3 , a 2 ] ∪ Γ 1 ∪ [a 1 , α],
where Γ 1 ,a 1 ,a 2 ,a 3 are defined as in Theorem 2.2, taking f = F (see Figure 1). We now make various estimates of (sA + λI) -1 for λ on three different parts of Γ.

α a 0 a 1 a 2 a 3 Γ 1
1) For λ ∈ [α,a 1 ] ∪ [a 1 , α]w eh a v e F (α) ≥ F (-sA) ≥|F (λ)| - 1 (sA + λI) -1 ∞ 0 td|µ|(t) ≥ F (α)+δ|λ -α| m - 1 (sA + λI) -1 ∞ 0 td|µ|(t).
Hence we obtain

(sA + λI) -1 ≤ 1 δ|λ -α| m ∞ 0 td|µ|(t). (3) 
2

) For λ ∈ Γ 1 ∪ [a 2 ,a 3 ] ∪ [a 3 , a 2 ] ∪ Γ 1 we have F (α) ≥ F (-sA) ≥|F (λ)| - 1 (sA + λI) -1 ∞ 0 td|µ|(t) ≥ |F (a 0 )| - 1 (sA + λI) -1 ∞ 0 td|µ|(t).
It follows that

(sA + λI) -1 ≤ 1 |F (a 0 )| -F (α) ∞ 0 td|µ|(t). (4) 
3) For x ∈ R,

(A + ixI) -1 = - ∞ 0 T (t)e ixt dt ≤ ∞ 0 T (t) dt < ∞,
since (T (t)) t>0 is quasinilpotent and contractive. Therefore

(sA + λI) -1 = 1 s A + λ s I -1 ≤ 1 s ∞ 0 T (t) dt (5) 
for all λ ∈ [a 3 , a 3 ].

We can now provide estimates for the quantity (λ

-α) m A + λ s I -1
for λ on Γ.L e tR =max λ∈Γ |λ -α|.

By (3) (λ -α) m A + λ s I -1 ≤ s δ ∞ 0 td|µ|(t) for all λ ∈ [α,a 1 ] ∪ [a 1 , α]
.

By (4) (λ -α) m A + λ s I -1 ≤ sR m |F (a 0 )| -F (α) ∞ 0 td|µ|(t) for all λ ∈ Γ 1 ∪ [a 2 ,a 3 ] ∪ [a 3 , a 2 ] ∪ Γ 1 . By (5) (λ -α) m A + λ s I -1 ≤ R m ∞ 0 T (t) dt for all λ ∈ [a 3 , a 3 ].
Since 0 <s≤ 1, for all z ∈ Γ ∪ int Γ we have

A + z s I -1 ≤ M |z -α| m ,
by the maximum modulus principle, where

M =max R m ∞ 0 T (t) dt, R m |F (a 0 )| -F (α) ∞ 0 td|µ|(t), 1 δ ∞ 0 td|µ|(t) .
Since by hypothesis F (0) = 0, there is an r ∈ (0, α)s u c ht h a t

sup |z|≤r |F (z)| <F(α). Since D(0,r) ∩ Γ ∩ C + = ∅,w eh a v eD(0,r) ∩ C + ⊂ Γ ∪ int Γ. Now if z ∈ D(0,r)w i t hR ez>0, we have |z -α| ≥ α -r,a n dt h u sw e have A + z s I -1 ≤ M |z -α| m ≤ M (α -r) m .

Also sup

Re z≤0

(A + zI) -1 ≤ ∞ 0 T (t) dt < ∞.
Now, since by Liouville's theorem the function z → (A + zI) -1 is unbounded on C, it follows that for all u>0s u fficiently small the inequality

A + z u I -1 ≤ M (α -r) m
fails to hold for some z ∈ D(0,r) ∩ C + , depending on u.

It follows that there is an η > 0s u c ht h a t F (-uA) >F(α)f o r a l l u ∈ (0, η].

If µ ∈ M c (0, ∞)i sn o wac o m p l e xm e a s u r e ,t h e nw ew r i t e F (z)=F (z), which is also an entire function, indeed, the Laplace transform of µ.

Corollary 2.6 Let µ ∈ M c (0, ∞) be a complex measure such that ∞ 0 dµ(t)= 0, and let (T (t)) t>0 be a strongly continuous quasinilpotent semigroup of bounded operators on a Banach space X . Set F = Lµ. Then there is an η > 0 such that

F (-sA) F (-sA) > max x≥0 |F (x)| 2
for 0 <s≤ η.

Proof : The result follows on applying Theorem 2.5 to the real measure ν := µ * µ, whose Laplace transform satisfies Lν(s)=F (s) F (s).

We now give similar results for smoother semigroups: let p>0b ea n integer, and write U (p) for the class of semigroups (T (t)) t>0 such that the mapping t → T (t)i sp times continuous differentiable with respect to the norm topology. Let E (p) denote the class of distributions of order p with compact support in (0, ∞). For ϕ ∈ E (p) its action on a C p function f may be specified in terms of measures µ 0 ,....µ p , namely,

f, ϕ = p j=0 ∞ 0 f (j) (t) dµ j (t).
The Laplace transform of ϕ is given by

F (z):=Lϕ(z)= p j-0 ∞ 0 (-z) j e -zt dµ j (t).
We write G j = Lµ j and F j (z)=(-z) j G j (z)f o re a c hj. Likewise

F (-A)= p j=0 A j G j (-A)= p j=0 ∞ 0 A j T (t) dµ j (t). ( 6 
)
We begin with the counterpart of Lemma 2.4.

Lemma 2.7 Let p ≥ 1 and ϕ ∈ E (p) , and let (T (t)) t>0 be a quasinilpotent U (p) semigroup of contractions. Set F = Lϕ. Then we have for Re λ ≥ 0,

(F (-A) -F (λ)I)A -p (A + λI) -1 ≤ p m=0 c m A m-p + p m=0 d m m-1 k=0 |λ| k A m-1-k-p , where c m = ∞ 0 td|µ m |(t) and d m = ∞ 0 d|µ m |(t)
for m =0, 1,...,p.

noting the dependence on s and λ. With the notation of the proof of Theorem 2.5 we have three key estimates:

1) For λ ∈ [α,a 1 ] ∪ [a 1 , α]w eh a v e F (α) ≥ F (-sA) ≥|F (λ)| - K (sA + λI) -1 (sA) -p ≥ F (α)+δ|λ -α| m - K (sA + λI) -1 (sA) -p .
Hence we obtain

(sA + λI) -1 (sA) -p ≤ K δ|λ -α| m . (7) 2) For λ ∈ Γ 1 ∪ [a 2 ,a 3 ] ∪ [a 3 , a 2 ] ∪ Γ 1 we have F (α) ≥ F (-sA) ≥|F (λ)| - K (sA + λI) -1 (sA) -p ≥ |F (a 0 )| - K (sA + λI) -1 (sA) -p .

It follows that

(sA + λI) -1 (sA) -p ≤ K |F (a 0 )| -F (α) . ( 8 
)
3) For x ∈ R,

(A + ixI) -1 A -p = - ∞ 0 T (t)e ixt dtA -p ≤ A -1 p ∞ 0 T (t) dt < ∞,
since (T (t)) t>0 is quasinilpotent and contractive. Therefore

(sA + λI) -1 (sA) -p ≤ 1 s p+1 A -1 p ∞ 0 T (t) dt (9) 
for all λ ∈ [a 3 , a 3 ].

We estimate (λα) m A + λ s I -1 A -p for λ on Γ.

Let R =max λ∈Γ |λ -α|. By ( 7)

(λ -α) m A + λ s I -1 A -p ≤ Ks p+1 δ for all λ ∈ [α,a 1 ] ∪ [a 1 , α]
.

By (8) (λ -α) m A + λ s I -1 A -p ≤ Ks p+1 R m |F (a 0 )| -F (α) for all λ ∈ Γ 1 ∪ [a 2 ,a 3 ] ∪ [a 3 , a 2 ] ∪ Γ 1 . By (9) (λ -α) m A + λ s I -1 A -p ≤ R m A -1 p ∞ 0 T (t) dt for all λ ∈ [a 3 , a 3 ]. Since 0 <s≤ 1, for all z ∈ Γ ∪ int Γ with |z| ≤ r we have A + z s I -1 A -p ≤ M |z -α| m ≤ M (α -r) m , (10) 
by the maximum modulus principle, where

M =s u p 0<s≤1 z∈Γ∪int Γ max K(s, z)s p+1 δ , K(s, z)s p+1 R m |F (a 0 )| -F (α) ,R m A -1 p ∞ 0 T (t) dt , which is finite.
With this new choice of M , the proof is now concluded as for the proof of Theorem 2.5, using the observation that (A + zI) -1 A -p is unbounded on C, and obtaining a contradiction from (10).

The non-quasinilpotent case

Let (T (t)) t>0 be a semigroup of non-quasinilpotent operators, and let A T denote the closed (commutative) algebra generated by the semigroup. We write A T for the maximal ideal space of A T . Recall that this is compact if and only if A T / Rad(A T )i su n i t a l ;o t h e r w i s ei ti sl o c a l l yc o m p a c t ,a n dt h e function a : χ → χ(a)i sc o n t i n u o u so n A T for every a ∈ A T .

Recall that A T is said to have an exhaustive sequence of idempotents (P n ) n≥1 if P 2 n = P n P n+1 = P n for all n and for every χ ∈ A T there is a p such that χ(P n )=1foralln ≥ p.

The following result is part of the folklore of the subject, and it is partly contained in [START_REF] Esterle | Distance entre éléments d'un semi-groupe dans une algèbre de Banach[END_REF]Lem. 3.1] and [START_REF] Bendaoud | Distances between elements of a semigroup and estimates for derivatives[END_REF]Lem. 3.1]. It enables us to regard A itself as an element of C( A T )b yd e fi n i n ga na p p r o p r i a t ev a l u eχ(A)=-a χ for each χ ∈ A T . Lemma 3.1 For a strongly continuous and eventually norm-continuous semigroup (T (t)) t>0 and a nontrivial character χ ∈ A T there is a unique a χ ∈ C such that χ(T (t)) = e -taχ for all t>0. Moreover, the mapping χ → a χ is continuous, and χ(F (-uA)) = F (ua χ ) in the case that F = Lµ, as in [START_REF] Dales | Banach algebras and automatic continuity,v o l u m e2 4o f London Mathematical Society Monographs. New Series[END_REF].

Proof : The existence of a χ is given in [START_REF] Esterle | Distance entre éléments d'un semi-groupe dans une algèbre de Banach[END_REF], and its uniqueness is clear since the values of e -taχ for t>0d e t e r m i n ea χ uniquely.

For the continuity, note that

χ(T (1)) = e -aχ and χ e λ ∞ 1 T (t)e -λt dt = 1 a χ + λ e -aχ
if λ is taken sufficiently large that the integral converges. Thus if we have an e tχ α → χ then e -aχ α → e -aχ and 1 aχ α +λ e -aχ α → 1 aχ+λ e -aχ , which easily implies that a χα → a χ .

The final observation follows from an easy argument using Bochner integrals.

The following result will also be required. If P is an idempotent of A T , then t>0 PT(t)A T is dense in the unital Banach algebra P A T . Hence P A T = t>0 PT(t)A T ; also PT(t)isin v ertible in P A T for some, and hence for all, t>0, and then lim t→0+ P -PT(t) =0, since the semigroup is eventually continuous.

For the last observation, it follows from Theorem 2.5 that π(T (t)) = 0 for every t>0, where π : A T → A T / n≥1 P n A T denotes the canonical surjection. 

  using the continuity of f and the fact that f (0) = 0. Now sup x>0 |f (xu)| ≥ δ for all u ∈ C \{0}, and the conclusion follows.
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 1 Figure 1: The curve constructed in the proof of Theorem 2.5
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 32 Let (T (t)) t>0 be a non-quasinilpotent and eventually norm-continuous semigroup in a Banach algebra, with infinitesimal generator A; let A T be the subalgebra generated by the semigroup and Λ = {a χ : χ ∈ A T }, as in Lemma 3.1. Then the following conditions are equivalent: (i) A T has an exhaustive sequence of idempotents.(ii) For each integer m ≥ 1 the set Λ m := {λ ∈ Λ :Reλ ≤ m} is contained in a compact relatively open subset of Λ.Proof :(i) ⇒ (ii):L e tθ : χ → a χ be the homeomorphism given by Lemma 3.1. If (i) holds, thenK := θ -1 (Λ m )i sac o m p a c ts u b s e to f A T . For each χ ∈ A T , let n χ be such that χ(P n )=1f o rn ≥ n χ .S o {χ ∈ A T : χ(P n )=1}n is an open cover of K. By compactness, there is an N such that χ(P N )=1f o ra l lχ ∈ K, so K ⊂ {χ ∈ A T : χ(P N )=1 }, and θ(K)i sc o m p a c t ,o pe ni nλ, and contains Λ m .(ii) ⇒ (i):C o n v e r s e l y ,i f( i i )h o l d s ,t h e nf o re a c hm ≥ 1, the set Λ m is contained in a compact relatively open set Ω m ⊂ Λ.S oθ -1 (Ω m ) ⊂ A T iscompact and open; hence by Shilov's idempotent theorem [2, Thm. 2.4.33] there is an idempotent P m in A T such that χ(P m )=1forχ ∈ θ -1 (Ω m )a n d 0 otherwise. Now (P m ) m≥1 is an exhaustive sequence of idempotents in A T .Theorem 3.3 Let (T (t)) t>0 be a strongly continuous and eventually normcontinuous non-quasinilpotent semigroup on a Banach space X , with generatorA. Let F = Lµ, where µ ∈ M c (0, ∞) is a real measure such that ∞ 0 dµ =0. If there exists (u k ) k ⊂ (0, ∞) with u k → 0 such that ρ(F (-u k A)) < sup x>0 |F (x)|,then the algebra A T possesses an exhaustive sequence of idempotents (P n ) n≥1 such that each semigroup (P n T (t)) t>0 has a bounded generator.If, further, F (-u k A) < sup x>0 |F (x)|, then n≥1 P n A T is dense in A T .Proof : For m ≥ 1l e tΛ m = {a χ :Rea χ ≤ m}, where χ(T (t)) = e -aχt as in Lemma 3.1. Now Re a χ ≤ m if and only if |χ(T (1))| ≥ e -m , which implies that Λ m is compact, by the fact that A T ∪ {0} is compact, and χ → a χ is continuous (Lemma 3.1). Therefore, there is an R m > 0s u c ht h a tΛ m ⊂ D(0,R m ). Note that, by the definition of Λ m ,w eh a v eΛ ∩ C -= Λ ∩ C -⊂ D(0,R m ).By hypothesis there exists a u k > 0s u c ht h a t|u k | < r R m ,where r>0i sg i v e nb yL e m m a2 . 1a n dρ(F (-u k A)) < sup x>0 |F (xu k )|. It follows that Λ m ⊂ D(0,R m ) ⊂ D(0,r/|u k |)a n dt h u s |F (u k a χ )| < sup x>0 |F (u k x)| for all a χ ∈ Λ m . Let α k be such that sup x>0 |F (xu k )| = |F (α k u k )|.By Theorem 2.2 there exists a curve Γ k,0 in {z :R ez ≥ 0, Im z>0} joining α k ∈ R + to v k ∈ iR + with |v k | >R m on which |F (u k z)| ≥ |F (α k u k )|. Let Γ k = Γ k,0 ∪ {z ∈ C :Rez<0, |z| = |v k |} ∪ Γ k,0 (see Figure 2).
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 2 Figure 2: Diagram for the proof of Theorem 3.3

Remark 3 . 4 A

 34 similar result holds for complex measures µ ∈ M c (0, ∞); namely, we replaceρ(F (-u k A)) < sup x>0 |F (x)|, by the symmetrised version ρ(F (-u k A) F (-u k A)) < sup x>0 |F (x)| 2 ,as in Corollary 2.6.

  this is a nonempty open set; we let V denote the connected component of U containing a 1 .We claim that∂V ∩ iR = ∅. Indeed, note that if z ∈ ∂V ∩ C + , then |f (z)| ≤ |f (a 0 )|, as otherwise if |f (z)| > |f (a 0 )|, then by the continuity of |f | > |f (a 0 )| for all z ∈ C + with |za 3 | < β. It follows that there is a point a 2 ∈ C + with Im a 2 =Ima 3 and (a 3 ,a 2 ] ⊂ V .Since V is open and connected, it is path-connected, and so we may join a 1

	aneigh bourhoodofz is contained in V . But we cannot have |f (z)| ≤ |f (a 0 )|
	on the whole of ∂V , as then by the strong maximum principle (see, e.g. [7,
	Thm. 9.4]) this inequality would hold for all z ∈ V including a 1 .
	So there exists a 3 ∈ ∂V ∩ iR with Im a 3 > 0and|f (a 3 )| > |f (a 0 )|. By the
	continuity of |f |, there exists β > 0s u c ht h a t|f (z)|
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Proof :

Write B := (F (-A) -F (λ)I)A -p (A + λI) -1 . Then by [START_REF] Kalton | Power-bounded operators and related norm estimates[END_REF] we have

This can be rewritten as

Now the first terms can be estimated using Lemma 2.4, and for the second we use the obvious estimate |G m (λ)| ≤ d m for Re λ ≥ 0.

Theorem 2.8 Let p>1 and ϕ ∈ E (p) be a real distribution given by measures µ 0 ,...,µ p such that ∞ 0 dµ 0 (t)=0, and let (T (t)) t>0 be a quasinilpotent U (p) semigroup of bounded operators on a Banach space X . Set F = Lϕ.

Then there is an η > 0 such that

for 0 <s≤ η.

Proof : The proof is very similar to the proof of Theorem 2.5, but using Lemma 2.7, so we indicate the changes necessary. It will be convenient to take 0 <s≤ 1a n dt ow r i t e K = K(s, λ)=