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Lower estimates near the origin for functional
calculus on operator semigroups

[. Chalendar? J. Esterle! and J.R. Partington?

March 16, 2014

Abstract

This paper provides sharp lower estimates near the origin for the
functional calculus F(—uA) of a generator A of an operator semi-
group defined on the (strictly) positive real line; here F' is given as the
Laplace transform of a measure or distribution. The results are linked
to the existence of an identity element or an exhaustive sequence of
idempotents in the Banach algebra generated by the semigroup. Both
the quasinilpotent and non-quasinilpotent cases are considered, and
sharp results are proved extending many in the literature.

MATHEMATICS SUBJECT CLASSIFICATION (2000): Primary: 47D03, 46J40,
46H30 Secondary: 30A42, 47A60
KEYWORDS: strongly continuous semigroup, functional calculus, Laplace

transform, maximum principle.

1 Introduction

This article is concerned with estimates for F'(—uA) where A is the generator

of a strongly continuous semigroup (7'(¢)):~o on a Banach space. Here F'is an
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entire function with F'(0) = 0, given as the Laplace transform of a measure
or distribution; the functional calculus defining F/(—uA) is given by means
of an integral.

This can be seen as providing a wide generalization of results in [1, 4, 6],
for example, where quantities such as ||T'(t) — T'(2t)|| (or its spectral radius)
are estimated near the origin. For example, if || T'(t) — T'(2t)|| < 1/4 on an
interval (0, o), then, roughly speaking, (7'(t));>o has a bounded infinitesimal
generator (see [1]).

There are two cases to consider, namely, the quasinilpotent and non-
quasinilpotent cases, and the techniques used are based on strong maximum

principles for analytic functions.

In Section 2, the case of quasinilpotent semigroups is considered. Then
in Section 3 the non-quasinilpotent case is analysed, providing conditions to
obtain either an identity in the closed algebra generated by the semigroup or
else an exhaustive sequence (P,),>; of idempotents such that (P,T'(t)); has
a bounded generator. Here, the sharpness of the estimates is shown by an

example.

Notation:

We write C; = {z € C: Rez > 0}, and similarly for C_.

Let D(a, R) denote the complex disc {|z — a| < R}.

For a Jordan curve I' C C, we write int I' (the interior of I') for the open
set of points in C about which the winding number of I' is non-zero.

For S C C let M.(S) denote the space of regular Borel measures having

compact support contained in S.



2 Quasinilpotent semigroups

Suppose that (T'(t));>0 is a nontrivial strongly continuous semigroup of quasi-
nilpotent operators acting on a Banach space (X, ||.||). Then we write Xy =

(U0 T(8) X ] I (closure in norm), and define a norm
|||y = sup || T(¢)x]|, where T'(0)x = =,
>0

on the subspace X} := {z € A} : ||z||; < oo}, which is a Banach space under

the norm ||.||;. Further, we write

=[x

X o= |Jrmx C X (1)

t>0

The following result follows immediately from the main result of [5]. It
will be used to reduce the case of a quasinilpotent semigroup to that of a

contractive quasinilpotent semigroup.

Theorem 2.1 Let (T'(t));~0 be a nontrivial strongly continuous semigroup
of quasinilpotent operators acting on a Banach space (X,|.||). Then with
(X1, |.1h) defined as in (1) the semigroup (T'(t),,)e=0 s a strongly continuous
semigroup of quasinilpotent contractions. Moreover for all operators R in the
commutant {T'(t) : t > 0} we have ||R g |1 < [R].

2.1 Some complex function theory

Theorem 2.2 Let f : C, — C be a continuous bounded nonconstant func-
tion, holomorphic on C., such that f([0,00)) C R, f(0) = 0, and with
lim, 0 zer f(2) = 0.

Suppose that o > 0 is such that f(a) > |f(x)| for all x € [0,00). Then
there exist a1, a2 € Cy, ag € (o, a1) and az € iR withIma; > 0 forj =1,2,3,
and Im ay, = Imag, and a simple piecewise linear Jordan curve I'y joining ay
to ay in the upper right half-plane {z € C : Rez > 0,Imz > 0} and 6 > 0
such that



(i) |f(2)| > fla) + 6|z — a|™ for all z € [a,a;], where m (even) is the
smallest positive integer with f™(a) # 0;
(i) | f(2)| > |f(ao)| for all z € T'y U [az, as].

Proof :  Since f is holomorphic in C,, we have, by Taylor’s theorem,
constants M > 0 and 1 > 0 such that

(z—a)"

()] < Mz — o™,
m:

f(z) = f(e) =
whenever |z — a| < 1. By choosing a; with |a; — « sufficiently small and
with argument such that (a; — a)™ < 0 (e.g. arg(a; — a) = 7w/m), we have

|f(a1)| > |f(a@)] = f(a), and we may then choose a point ay € [a, a1] with

[f(@)] <1 f(ao)l < |f(ar)l-

Let U ={z € Cy : |f(2)| > |f(ao)|}. Since a; € U, this is a nonempty
open set; we let V' denote the connected component of U containing a;.

We claim that OV NiR # (. Indeed, note that if z € 9V N C,, then
|f(2)| < |f(ap)|, as otherwise if |f(z)| > |f(ao)|, then by the continuity of | f|
a neighbourhood of z is contained in V. But we cannot have |f(z)| < |f(ao)|
on the whole of 9V, as then by the strong maximum principle (see, e.g. [7,
Thm. 9.4]) this inequality would hold for all z € V including a;.

So there exists a3 € OV NiR with Imag > 0 and |f(as)| > |f(ao)|. By the
continuity of |f|, there exists 8 > 0 such that |f(2)| > |f(ao)| for all z € C
with |z —ag| < B. It follows that there is a point ay € C; with Imay = Imas
and (ag,as] C V.

Since V' is open and connected, it is path-connected, and so we may join a
to as by a polygonal path in V. We may also guarantee that it is simple (does
not cross itself): the only difficulty arises if it crosses itself on the arc (ag, a;),
when we may replace a; by the crossing point closest to ag, or if it crosses itself

on the line (a9, ag), when we may replace ay by the crossing point closest to as.
]



The curve constructed in the proof of Theorem 2.2 may be seen as the
upper part of Figure 1.

We shall also require the following easy result.

Lemma 2.3 Let f € H(C) with f(0) =0, f nonconstant. Then there is an
r > 0 such that for all uw € C\ {0}, with |u| < r, we have

sup | f(zu)| < sup [f(zu)].

el 20
Proof :  Choose R > 0 such that f(z) # 0 for all z with |z| = R. Let 6 =
inf{|f(2)| : |2| = R} so that § > 0. Now take r > 0 such that sup,, , [ f(2)| <
J, using the continuity of f and the fact that f(0) = 0.

Now sup,. |f(zu)| > § for all w € C\ {0}, and the conclusion follows.
U

2.2 The main result

Recall that if (T'(¢))¢>o is a uniformly bounded strongly continuous semigroup

with generator A, then
(A+AD) " = — / MNT(E) dt,
0

for all A € C with Re A < 0. Here the integral is taken in the sense of Bochner
with respect to the strong operator topology.

If, in addition, (7T'(t));~0 is quasinilpotent, then

(A+ M)t = —/ eMT(t) dt,
0

for all A € C.
Similarly, if p € M.(0, 00) with Laplace transform

F(s) == Luls) = / e du(o), 2)



and (7'(t));=o is a strongly continuous semigroup of bounded operators on

X, then we have a functional calculus for its generator A, defined by

F(—A4) = / T dule),

in the sense of the strong operator topology; i.e.,

Fl-Alo= [ T©udu(e), (0 e ),
0
which exists as a Bochner integral.

Lemma 2.4 Let u € M.(0,00) and (T'(t))i=0 a strongly continuous quasinilpo-
tent semigroup of contractions. Set F' = Lu. Then we have for Re A > 0,

|(F(=A) — FO))(A+ A1) < / " dlul0).

Proof: We have

F—A)A+AD" = — ( /0 T du(t)) ( /0 T T (s) ds)
= —/OOO e M VOOO AEHT(s 4+ 1) ds} dp(t)

_ /0 Y [ /t T () dv] dult),

where v = s +t. This in turn equals

_ /0 e [ /0 T () dv] dult) + /0 Y { /0 T () dv] dp(t)

= FO)A+X) + /O N { /0 t AT (v) dv] dpf(t).

For Re A > 0, we have
t
‘ / AT (v) do
0

and so the conclusion follows.

<t

I




O

The following theorem applies to several examples studied recently in

[1, 3, 4, 6]; these include u = §; — 9, the difference of two Dirac measures,

where F(s) := Lu(s) = e — e % and F(—sA) = T(t) — T(2t). More

importantly, the theorem applies to many other examples, such as du(t) =

(X121 — X[2,3) (t)dt and pp = §; — 302 + 3 + 04, which are not accessible with
the methods of [1, 3, 4, 6].

(e}

Theorem 2.5 Let 1 € M.(0,00) be a real measure such that / du(t) =0,

and let (T'(t))i=0 be a strongly continuous quasinilpotent semigmzp of bounded
operators on a Banach space X. Set F' = Lu. Then there is an n > 0 such
that

|F(—sA)| > max |F(z)| for 0<s<mn.

Proof : It follows from Theorem 2.1 that we may assume without loss of
generality that (T'(t));>o is a strongly continuous quasinilpotent semigroup
of contractions. Let a > 0 be such that |F(z)| < |F(a)| for all x > 0, and
let s > 0. By considering —pu instead of p, if necessary, we may suppose that
F(a) > 0.

By Lemma 2.4 applied to the semigroup (7T'(st));~o, for ReA > 0 we

obtain
1F(—sA)(sA+ A = [F)(sA + AD)]| - /OOO Ll (2).
It follows that
Pl < PO = T [ e

for s > 0 and Re )\ > 0.
Suppose that there exists s € (0,1) such that ||F(—sA)|| < F(«), and

consider the simple Jordan curve

[ = [a,a;] UL UJag, as] U [as, a3] U [az, a2 U T, U [ay,

7



where I'y, a1, as, ag are defined as in Theorem 2.2, taking f = F' (see Figure

1).

a
1 ay

as az

Figure 1: The curve constructed in the proof of Theorem 2.5

We now make various estimates of ||(sA + AI)7!|| for A on three different
parts of I'.
1) For A € [a, a1] U [a7, @] we have

Plo) > [F(=sA)| = PO = ey [ tlll(®

m 1 o
> F(a)+ A —al™ — ”(SA‘F)\[)lH/o td|ul(t).
Hence we obtain

(s + A7 < &; /Oootdm](t). (3)

A — ™

2) For A € I'y U [ag, a3] U [a3,@z) UT; we have

Flo) 2 IFCsA 2 POV = o [ o

8




It follows that

H“A+A”1”§uw%ﬁéF@oAm“m“”' @

3) For z € R,

WA+WUIH:=H—AmT®é“ﬁH

< [ Ir@)i <.
0

since (T(t))¢>o is quasinilpotent and contractive. Therefore
=

<Af+—l)
s

. . . m A -1
We can now provide estimates for the quantity H()\ —a)™ (A+231) H

1
oA+ A0 =2

<5 [mone )

for all A\ € [as, a3).
for Aon I'. Let R = maxyer |A — a.

By (3)
(A —a)m (A 4 é[)_l

for all A € [a, a1] U [ar, af.
By (4)

S o0
<5 [ tdule)
0

sR™

oo (4030) | < e )t

forall A eI} U [&2,@3] U [a,_g,a_z] uly.

By (5)
amap (as21)”

for all A\ € [as, a3).
Since 0 < s <1, for all z e ' UintI" we have

‘MA+§O%1< M

9

SRm/ IT()]] dt
0




by the maximum modulus principle, where

v = (1 [, s [Tt [ el

Since by hypothesis F'(0) = 0, there is an r € (0, ) such that

sup |F(z)] < F(a).

j2|<r

Since D(0,7)NT'NC, =0, we have D(0,7)NC, C T UintT.
Now if z € D(0,7) with Rez > 0, we have |z — a|] > a — r, and thus we

have ) v v
<A v 51) < < .
s lz —al™ = (a—=1r)m
Also -
sup ||(A+ ZI)_lH < / IT(t)] dt < 0.
Re 2<0 0

Now, since by Liouville’s theorem the function z — H(A+ 21 )_1” is un-
bounded on C, it follows that for all u > 0 sufficiently small the inequality
-1
‘( A+ ) < M
u (v —r)m
fails to hold for some z € D(0,7) N C,, depending on u.
It follows that there is an > 0 such that

|F(—uA)| > F(«) for all w € (0,7).

O

If 41 € M,(0,00) is now a complex measure, then we write F(z) = F(z),

which is also an entire function, indeed, the Laplace transform of 7.

Corollary 2.6 Let € M.(0,00) be a complex measure such that/ du(t) =

0
0, and let (T(t))i>0 be a strongly continuous quasinilpotent semigroup of
bounded operators on a Banach space X. Set F' = Lu. Then there is an
n > 0 such that

|F(—sA)F(—sA)| > max|F(@)?  for 0<s <.

10



Proof :  The result follows on applying Theorem 2.5 to the real measure

v := u * i, whose Laplace transform satisfies

O

We now give similar results for smoother semigroups: let p > 0 be an
integer, and write U™ for the class of semigroups (7'(t));>o such that the
mapping ¢t — T(¢) is p times continuous differentiable with respect to the
norm topology. Let £® denote the class of distributions of order p with
compact support in (0,00). For ¢ € £P) its action on a CP function f may

be specified in terms of measures py, . . . .11, namely,

() = Z/ 19 (8) dus (1)

The Laplace transform of ¢ is given by

F(z) = Lo(z Z/ e " du;(t).

We write G; = Lp; and Fj(z) = (—2)?G,(z) for each j. Likewise

p p o)
M) =Y G (-4 =3 [ AT du(t) (0
j=0 j=0"0
We begin with the counterpart of Lemma 2.4.

Lemma 2.7 Let p > 1 and ¢ € EP), and let (T(t))0 be a quasinilpotent
UP) semigroup of contractions. Set F' = Lo. Then we have for Re A > 0,

H(F(_A) — F(NI)A™P(A+ )\])—1H

p P m—1
S el - S (z |A|knAm—1—k—pu) |
m=0 m=0 k=0

where - -
tn = / tdlnl(t)  and dy = / Al (8)
0 0
form=20,1,...,p.

11



Proof :  Write B := (F(—A) — F(\)I)A™?(A + M)~'. Then by (6) we
have
B =) AP(A"Gu(—A) = (=N)"Gm(MNI)(A+ )"

This can be rewritten as

ij AP (G (—A) = G (\)(A + M)~
+ Z,,: G\ A™P(A™ — (“X)™I)(A + AI)~L.

Thus

B = Xp: A" PG (—A) — GV (A+ A7

m=0

+ i Gn(\)

m—1

Z Amflfk(_)\)k

k=0

AP

Now the first terms can be estimated using Lemma 2.4, and for the second we
use the obvious estimate |G,,(\)| < d,,, for Re A > 0.

Theorem 2.8 Let p > 1 and p € EP) be a real distribution given by mea-
sures o, - . ., jip such that [° duo(t) = 0, and let (T'(t))>0 be a quasinilpotent
UP) semigroup of bounded operators on a Banach space X. Set F = L.
Then there is an n > 0 such that

|F'(—sA)| > max |F(x)] for 0<s<mn.

Proof : The proof is very similar to the proof of Theorem 2.5, but using
Lemma 2.7, so we indicate the changes necessary. It will be convenient to
take 0 < s <1 and to write

p P m—1
K=K(s,0) =Y call(sA)"™ [+ dn (Z W“H(Sz‘l)m”p\o ,
m=0 m=0 k=0

12



noting the dependence on s and A\. With the notation of the proof of Theo-

rem 2.5 we have three key estimates:
1) For A € [a, a1] U [a7, ] we have
K
F(Oé) > HF(_SA)H > |F()‘>| - ||(SA+>\])_1(SA)_pH
K
> F O\ —a|™ — .
= POt = el D a7

Hence we obtain

[(s4+ 20 A) 7] < gt i(a|m' )

2) For A\ € I'y U [ag, a3] U [az,az) UT; we have

Flo) > |F(=sA) = O] = T
> P~ T
It follows that
[(sA+ A7 (sA)™*|| < |F(a0)’K_ Fla) (8)
3) For 7 € R,
|(A+iany A = H_ | rweaa

< fayp / IT(6)] dt < oo,
0

since (T'(t))¢>o is quasinilpotent and contractive. Therefore

54+ A0 () 7] < gl AP / T e (9)

for all A\ € [as, a3).

13



We estimate H()\ —a)™ (A+ %I)fl A7P|l for A on T

Let R = maxyer |A — «|. By (7)

A\ KsPtt
A—a)" A+ =T)| AP
( @) ( + s ) )
for all A € [a, a;] U [ag, o.
By (8)
KsPTiRm

(A —a)m <A + gl) S

= [F(a)] - Fla)

for all A € 'y U [ag, as] U [az, az) UT.
By (9)

A= a)m <A + §J> e

< RmAYP / 1T ()] dt

for all A € [as, a3].
Since 0 < s <1, for all z € ' Uint I" with |z] < r we have
M M

= |z — a™ = (a—r)m’ (10)

A+ ZD) A
S

by the maximum modulus principle, where

K(s,2)sP™t K(s,z)sP™ R™ . *
M — ’ ’ R™|A||P T(t)| dt
OS<1;-£1 max ( 5 ) |F(a,0)| - F(OZ)’ || || /0 || ( )H ?

zelUint T

which is finite.

With this new choice of M, the proof is now concluded as for the proof
of Theorem 2.5, using the observation that ||(A + zI)"*A~?|| is unbounded
on C, and obtaining a contradiction from (10).

0

14



3 The non-quasinilpotent case

Let (T'(t));>0 be a semigroup of non-quasinilpotent operators, and let Az
denote the closed (commutative) algebra generated by the semigroup. We
write JZT for the maximal ideal space of Ar. Recall that this is compact if
and only if Ar/Rad(Ar) is unital; otherwise it is locally compact, and the
function @ : x — x(a) is continuous on Az for every a € Ar.

Recall that A is said to have an ezhaustive sequence of idempotents
(Py)p>1 if P2 = P,P,1 = P, for all n and for every x € A\T there is a p such
that x(P,) =1 for all n > p.

The following result is part of the folklore of the subject, and it is partly
contained in [4, Lem. 3.1] and [1, Lem. 3.1]. It enables us to regard A itself
as an element of C(ﬁT) by defining an appropriate value x(A) = —a, for
each y € ./zl\T.

Lemma 3.1 For a strongly continuous and eventually norm-continuous semi-
group (T(t))i=o and a nontrivial character x € Ay there is a unique a, € C
such that x(T'(t)) = e™" for all t > 0. Moreover, the mapping x — a, is
continuous, and x(F(—uA)) = F(ua,) in the case that F' = Ly, as in (2).

Proof: The existence of a, is given in [4], and its uniqueness is clear since
the values of e7**x for ¢t > 0 determine a, uniquely.

For the continuity, note that

X(T(1)) = e™™

o0 1
A T)e Mdt ) = —ax
X (6 /1 (t)e oA

if X is taken sufficiently large that the integral converges. Thus if we have

1 —ay 1
Gy +A € ¢ ax+A

and

a net yo — x then e e — 7 and e~ which easily

implies that a,, — a,.

15



The final observation follows from an easy argument using Bochner inte-
grals.
O

The following result will also be required.

Lemma 3.2 Let (T(t))i~0 be a non-quasinilpotent and eventually norm-con-
tinuous semigroup in a Banach algebra, with infinitesimal generator A; let
Arp be the subalgebra generated by the semigroup and A = {a, : x € fTT}, as

in Lemma 3.1. Then the following conditions are equivalent:
(1) Ar has an exhaustive sequence of idempotents.

(11) For each integer m > 1 the set A, == {\ € A : ReX\ < m} is contained

in a compact relatively open subset of A.

Proof : (i) = (i) : Let # : x — a, be the homeomorphism given
by Lemma 3.1. If (i) holds, then K := 67'(A,,) is a compact subset of
Ap. TFor each X € .,Zl\T, let n, be such that x(FP,) = 1 for n > n,. So
({X € .ZT x(Pp) = 1}) is an open cover of K. By compactness, there is
an N such that x(Py) - 1 forall y € K,s0 K C{x¢€ Az x(Py) = 1},

and 0(K) is compact, open in A, and contains A,,.

(17) = (1) : Conversely, if (ii) holds, then for each m > 1, the set A,, is
contained in a compact relatively open set ,, C A. So 071(Q,,) C Ar is
compact and open; hence by Shilov’s idempotent theorem [2, Thm. 2.4.33]
there is an idempotent P, in Az such that x(P,,) =1 for y € 67'(£2,,,) and
0 otherwise. Now (P,,)m>1 is an exhaustive sequence of idempotents in Ar.

O

Theorem 3.3 Let (T'(t))i~o0 be a strongly continuous and eventually norm-
continuous non-quasinilpotent semigroup on a Banach space X, with gen-

erator A. Let F = Lu, where yp € M.(0,00) is a real measure such that

16



Jo 7 dp = 0. If there exists (uy,)), C (0,00) with u, — 0 such that

p(F(=urA)) < sup |F(z)],

>0

then the algebra Ap possesses an exhaustive sequence of idempotents (Pp)n>1
such that each semigroup (P,T(t))i>0 has a bounded generator.
1f, further, |F(—ugA)|| < sup,s [F(2)], then U, PadAr is dense in Ar.

Proof : For m > 1 let A,, = {a, : Rea, < m}, where x(T(t)) = e~ as
in Lemma 3.1.

Now Rea, < m if and only if [x(7'(1))| > e~™, which implies that A,, is
compact, by the fact that Ar U {0} is compact, and x — a, is continuous
(Lemma 3.1).

Therefore, there is an R,, > 0 such that A,, C D(0, R,,). Note that, by

the definition of A,,, we have
ANC_=ANC_ C D(0,R,).

By hypothesis there exists a u; > 0 such that

lug| < RL,
m

where r > 0 is given by Lemma 2.1 and

p(F(—uiA)) < sup |F(zug)|.

>0

It follows that A, C D(0, R,,) C D(0,7/|ux|) and thus

|F(ugay)| < su;g | F'(ugx)]
x>

for all a, € A,,. Let ay, be such that sup . |F(zug)| = [F(agug)|.
By Theorem 2.2 there exists a curve 'y in {z : Rez > 0,Imz > 0}
joining ay € Ry to vy € iRy with |vg| > R, on which |F(ugz)| > |F(axuy)|.
Let [, =ToU{z € C:Rez <0, |2| = |vi|} UTko (see Figure 2).

17
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N/ [
/

Figure 2: Diagram for the proof of Theorem 3.3

Then ANTy = 0 since |F(ugay)| = |x(F(—urA))| < |F(upay)| for a, € A
and |F(ugz)| > |F(ugay)| for 2 € Tyo Uy, s0 AN (TroUTL) = 0. Also
ANC_=A,NC_so AN{zeC_:|z| = |ul|} = 0.

Now A,, = ANint 'y, which is compact (since ANTy = () and relatively
open in A, so we may now apply Lemma 3.2 to deduce that Ay has an ex-

haustive sequence of idempotents.

If P is an idempotent of Ay, then (J,., PT(t)Ar is dense in the unital
Banach algebra PA7. Hence PAr = |J,., PT(t)Ar; also PT'(t) is invertible
in PAr for some, and hence for all, ¢ > 0, and then lim; o, [|P—PT(t)|| = 0,
since the semigroup is eventually continuous.

For the last observation, it follows from Theorem 2.5 that 7(7'(¢)) = 0
for every t > 0, where 7 : Ar — Ap/ Un21 P,Ar denotes the canonical

surjection.

O

Remark 3.4 A similar result holds for complex measures p € M.(0,00);
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namely, we replace
p(F(—upA)) < sup |F(z)],

>0

by the symmetrised version

p(F(—upA)F(—upA)) < sup |[F(2) ],

x>0

as in Corollary 2.6.
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