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ERROR ESTIMATES FOR WELL-BALANCED AND TIME-SPLIT SCHEMES ON A LOCALLY DAMPED WAVE EQUATION

) are derived for both well-balanced (WB) and fractional-step (FS) numerical approximations of the unique weak solution of the Cauchy problem for the 1D semilinear damped wave equation. For setting up the WB algorithm, we proceed by rewriting it under the form of an elementary 3 × 3 system which linear convective structure allows to reduce the Godunov scheme with optimal Courant number (corresponding to ∆t = ∆x) to a wavefront-tracking algorithm free from any step of projection onto piecewise constant functions. A fundamental difference in the total variation estimates is proved, which partly explains the discrepancy of the FS method when the dissipative (sink) term displays an explicit dependence in the space variable. Numerical tests are performed by means of stationary exact solutions of the linear damped wave equation.
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∂ tt u -∂ xx u + 2k(x)g(∂ t u) = 0 , x ∈ R, (1) 
under an assumption on k which is related to scattering problems, in the sense that incoming signals interact and get perturbed by an external phenomenon of bounded extent, which characteristic scale remains small when compared to the entire computational domain:

k ∈ L 1 (R) , k(x) ≥ 0 . (2) 
Equations like [START_REF] Abarbanel | On Error Bounds of Finite Difference Approximations to Partial Differential Equations-Temporal Behavior and Rate of Convergence[END_REF] arise in various contexts, like for instance Control Theory: see [START_REF] Roder | Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity[END_REF], also [START_REF] Cavalcanti | Uniform Decay Rates for the Wave Equation with Nonlinear Damping Locally Distributed in Unbounded Domains with Finite Measure[END_REF][START_REF] Munch | The L p -L q estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media[END_REF] or the recent survey [START_REF] Alabau-Boussouira | On some recent advances on stabilization for hyperbolic equations[END_REF]. We emphasize at once that, compared to these results, we shall conduct our studies of (1) within rather different functional spaces: indeed, these authors mostly consider solutions,endowed with a regularity,

u ∈ C 0 R + ; H 1 (R) ∩ C 1 R + ; L 2 (R) .
By introducing the usual "macroscopic" variables,

J = ∂ t u , ρ = -∂ x u
the damped wave equation ( 1) is equivalent to the elementary system:

∂ t ρ + ∂ x J = 0 ∂ t J + ∂ x ρ = -2k(x)g(J) . (3) 
Oppositely, in terms of "microscopic diagonal" variables f ± , defined by

ρ = f + + f -, J = f + -f -,
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the system (3) rewrites as a discrete-velocity kinetic model:

∂ t (f -) -∂ x (f -) = k(x) g(f + -f -) ∂ t (f + ) + ∂ x (f + ) = -k(x) g(f + -f -) . (4) 
Assume that k satisfies [START_REF] Alabau-Boussouira | On some recent advances on stabilization for hyperbolic equations[END_REF] and that g ∈ C 1 (R) , g(0) = 0 , g strictly increasing .

(

A special case of interest is g(J) = J, which yields the Goldstein-Taylor model, the linear damped wave equation, or Maxwell-Cattaneo-Vernotte's equation of hyperbolic heat conduction, see [START_REF] Kac | A stochastic model related to the telegrapher's equation[END_REF][START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations C[END_REF]. Initial data for ( 4) are chosen such that

f ± 0 ∈ L 1 (R) ∩ BV (R) ⊂ L ∞ (R) . (6) 
About global existence of solutions to system [START_REF] Amadori | Glimm estimates for a model of multiphase flow[END_REF] for BV data with k ≡ 1, see for instance [START_REF] Amadori | Global BV solutions and relaxation limit for a system of conservation laws[END_REF] where a fractional step approach was used to define approximate solutions. Thanks to the above conditions on g, the increase of total variation at each time step (when the source is added) can be accurately monitored, hence one obtains strong compactness for sequences of approximations generated by the algorithm. Other relevant references are [START_REF] Colombo | Differential equations in metric spaces with applications[END_REF][START_REF] Marcati | The L p -L q estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media[END_REF]. A careful treatment of 1D systems of hyperbolic semilinear equations is given in [START_REF] Rauch | Jump Discontinuities of Semilinear, Strictly Hyperbolic Systems in Two Variables: Creation and Propagation[END_REF]. A general study of the temporal behavior of error estimates appears in [START_REF] Abarbanel | On Error Bounds of Finite Difference Approximations to Partial Differential Equations-Temporal Behavior and Rate of Convergence[END_REF]. Our framework applies in particular to models endowed with a two-scale discontinuous relaxation parameter, [START_REF] Coquel | Well-posedness and singular limit of a semilinear hyperbolic relaxation system with a two-scale discontinuous relaxation rate[END_REF].

1.2. Main result and comments.

Theorem 1. Assume (2) and (6), then the two following properties hold.

(1) Let f ± ∆t stand for the fractional step/wavefront-tracking approximation of (4) and f ± for its unique solution obtained as the limit of an approximating sequence f ± ∆t , ∆t → 0. There exists a t * > 0, see (57), such that for t ≤ t * :

f ± ∆t (t, x) -f ± (t, x) dx ≤ ∆t TV {f ± 0 } + C 1 t + C 2 t 2 , (7) 
C 1 = 2 k ∞ g ′ ∞ TV {f ± 0 } + 12 TV k • g ∞ , C 2 = 2 TV k • g ∞ • k ∞ • g ′ ∞ ,
where t = n∆t, n ∈ N. For t > t * , its error increases at most linearly,

f ± ∆t (t, x) -f ± (t, x) dx ≤ ∆t TV {f ± 0 } + C 1 t + C1 (t -t * ) + C 2 (t * ) 2 C1 = 8 k L 1 g ∞ k ∞ g ′ ∞ .
Moreover, its total variation grows at most linearly in time, see (55), and a maximum principle, see Fig. 5, holds.

(2) There exists a δ > 0 such that, under the smallness restriction

TV f ± 0 + k L 1 ≤ δ , then for f ±
∆x being the well-balanced/wavefront-tracking approximation of [START_REF] Asadzadeh | A posteriori error estimates for a coupled wave system with a local damping[END_REF], the a-posteriori error estimate holds for all t > 0: for any

x 1 < x 2 , x2 x1 f ± ∆x (t, x) -f ± (t, x) dx (8) ≤ 2∆x TV {f ± 0 ; (x 1 -t, x 2 + t)} + (3 g ∞ + 1 2 ) k L 1 (x1-t,x2+t) ,
where f ± stands now for the unique limit of an approximating sequence f ± ∆x , ∆x → 0. Its total variation is uniformly bounded with respect to time as written in (40).

For the definitions of f ± ∆t and f ± ∆x , see §3.4 and §2 respectively. One may also include the more usual case of k(x) = 1 ∈ L 1 (R) by assuming that k = k(x) ∈ L 1 loc ∩ BV loc , k ≥ 0 , f ± 0 ∈ BV (R) with bounded support. Notice that in case k(x) = 1, the problem becomes invariant by x-translations and traveling waves f ± (x -st), |s| = 0, connecting asymptotic constant states at |x| → +∞ may exist. Oppositely, selecting k(x) with compact support eliminates them and time-asymptotic patterns are expected to consist in a standing wave in the vicinity of x = 0 and scattering waves exiting the domain of influence of k at velocity ±1. Let us compare [START_REF] Aregba-Driollet | Time Asymptotic High Order schemes for dissipative BGK hyperbolic systems[END_REF], [START_REF] Ch | Adaptive finite element relaxation schemes for hyperbolic conservation laws[END_REF] when k(x) ≡ 1. By using the slightly improved estimate (42), the error estimate for the well-balanced approximation becomes

x2 x1 |f ± ∆x (t, x) -f ± (t, x)|dx ≤ 2 ∆x TV {f ± 0 ; (x 1 -t, x 2 + t)} + ∆x (6 g ∞ + 1) (x 2 -x 1 ) + ∆x (2 g ∞ + 1)4t , (9) 
while the obvious simplifications TV k = 0 and k ∞ = 1 can be done in [START_REF] Aregba-Driollet | Time Asymptotic High Order schemes for dissipative BGK hyperbolic systems[END_REF]. Three main comments are in order:

• the estimate [START_REF] Ch | Adaptive finite element relaxation schemes for hyperbolic conservation laws[END_REF] heavily relies on the Bressan-Liu-Yang L 1 -stability theory for weak solutions of hyperbolic systems of conservation laws ( [START_REF] Bressan | L 1 stability estimates for n × n conservation laws[END_REF][START_REF] Bressan | Hyperbolic Systems of Conservation Laws -The one-dimensional Cauchy problem[END_REF]). The observation that it yields a-posteriori estimates, similarly as Kružkov theory yielding Kuznetsov a-posteriori estimates [START_REF] Cockburn | A posteriori error estimates for general numerical schemes for conservations laws[END_REF], was made by Laforest [START_REF] Laforest | A Posteriori Error Estimate for Front-Tracking: System of Conservation Laws[END_REF]. He derived also rigorous local error indicators, responsible for the increase in time of the L 1 error, called "discrepancies" (see [START_REF] Laforest | A Posteriori Error Estimate for Front-Tracking: System of Conservation Laws[END_REF], Theorem 3.3). Here, we follow a closely related methodology to study inhomogeneous balance laws and highlight which type of source term discretization entails better control on the time-growth of the global L 1 -error. • The WB estimate is independent of TV (k), it only perceives the L 1 norm of k. Hence, assuming that k ∈ L 1 ∩ BV (R) has compact support, say (a, b), there exists an optimal constant of Poincaré's inequality,

k L 1 (a,b) ≤ b -a 2 TV (k).
This implies the existence of a critical time, t ∈ R + , growing with √ b -a and the sup-norms of k, g, g ′ taken on the positively invariant domain of (4), beyond which the error estimate of the split-scheme ( 7) is inevitably greater that the one of the WB scheme (8).

• By glancing at the estimate [START_REF] Ch | Stability and convergence of a class of finite element schemes for hyperbolic systems of conservation laws[END_REF], one may think that in the case k ≡ 1, the overall performance of the WB scheme decreases as its (local) L 1 error appears to be growing linearly with the time t. An explanation could be that, by construction, the WB discretization doesn't perceive moving traveling waves, except for the static ones for which s = 0. However, the estimates ( 7) and ( 9) still are of quite different natures: in [START_REF] Aregba-Driollet | Time Asymptotic High Order schemes for dissipative BGK hyperbolic systems[END_REF], the linear amplification acts on ∆xTV (f ± 0 ) and for small time,

1 + 2t k ∞ g ′ ∞ ≃ exp(2t k ∞ g ′ ∞ )
. Accordingly, the error amplification depends on both the oscillations of the initial data and a "Gronwall-type" factor (like in [START_REF] Amadori | Transient L 1 error estimates for well-balanced schemes on non-resonant scalar balance laws[END_REF]). It doesn't seem possible to do the same interpretation for [START_REF] Ch | Stability and convergence of a class of finite element schemes for hyperbolic systems of conservation laws[END_REF] in which the error growth simply results from the widening of the cone of dependence. Moreover, good performances of the WB scheme originally proposed in [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations C[END_REF], in terms of consistency with the asymptotic behavior prescribed by [START_REF] Bianchini | Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF], were independently shown in [START_REF] Aregba-Driollet | Time Asymptotic High Order schemes for dissipative BGK hyperbolic systems[END_REF] (see §7.1.2, the case α = 0). We close this section by recalling from [START_REF] Vejchodsky | On A-Posteriori error estimation strategies for elliptic problems[END_REF] (see also [START_REF] Verfurth | A review of a posteriori error estimation and adaptive mesh refinement techniques[END_REF]) a definition of a-posteriori error estimates, namely, a quantity which bounds or approximates the error and can be computed from the knowledge of numerical solution and input data. This is especially relevant when considering that the objectives of scientific computing are both to derive a practically realizable approximation of the exact solution and to quantify the error with which it is endowed. This amounts to approximately solving the original equation within a given (rigorous) tolerance. According to this terminology, both the estimates ( 7) and ( 8) can be considered as being a-posteriori.

1.3. Outline of the paper. The paper is organized as follows. Section 2 focuses on the well-balanced (WB) approximation: §2.1 deals with the non-conservative Riemann problem and §2.2 with general interaction estimates. In §2.3, we give convergence results by means of the BV-bound (40). The error estimate ( 8) is established in §2.4 by setting up a Bressan-Liu-Yang functional uniformly equivalent with the L 1 norm (following [START_REF] Amadori | Transient L 1 error estimates for well-balanced schemes on non-resonant scalar balance laws[END_REF][START_REF] Laforest | A Posteriori Error Estimate for Front-Tracking: System of Conservation Laws[END_REF]) which decreases in time: then the resulting L 1 error is easily deduced. Section 3 follows by focusing on the fractional-step (time-split) approximation: §3.1 studies the possible increase in total variation due to the space-dependence of the sink term, the BV-bound (55) is deduced in §3.2. A local truncation error (LTE) is proved for general space-dependent sink terms, following [START_REF] Amadori | Uniqueness and continuous dependence for systems of balance laws with dissipation[END_REF], from which the global L 1 error (7) follows. Next, §4 displays preliminary numerical validations of the estimates given in Theorem 1: in particular, the dependence of splitting schemes on TV (k) was scrutinized (together with the insensitivity of WB discretizations, which error appear to depend mostly of k L 1 ). Finally, §5 gives concluding remarks.

The Well-Balanced approximation

In this context, the WB approach consists in dealing with the inhomogeneous system (4) by means of a non-conservative homogeneous 3 × 3 system, which turns out to be equivalent for smooth a(x),

     ∂ t f --∂ x f --g(f + -f -)∂ x a = 0 ∂ t f + + ∂ x f + + g(f + -f -)∂ x a = 0 ∂ t a = 0 (10) 
where

a = a(x) = x -∞ k(y) dy .
From assumption (2) one has that

a ∈ BV (R) ∩ C(R) , a x ≥ 0 . (11) 
This procedure, which consists in localizing a source term of bounded extent into a countable collection of Dirac masses in order to integrate it inside a Riemann solver by means of an elementary wave which is obviously linearly degenerate, appears to trace back to the paper by Glimm and Sharp [START_REF] Glimm | An S-matrix theory for classical nonlinear physics[END_REF]. It is extensively used in [START_REF] Gosse | Computing Qualitatively Correct Approximations of Balance Laws[END_REF].

The characteristic speeds of system [START_REF] Asadzadeh | A posteriori error estimates for a coupled wave system with a local damping[END_REF] are λ = -1, 0, 1 with corresponding eigenvectors r -= (0, 1, 0) t , r 0 = (-g, -g, 1) t , r + = (1, 0, 0) t . We will call 0-wave curves those characteristic curves corresponding to λ = 0. One can easily check that the characteristic curves are straight lines [20, §8.1.3]. Indeed, this is obvious for r ± , while for r 0 we observe that, along a 0-wave curve, one has f + -f -= const. so that g and hence r 0 are constant. Therefore 0-wave curves are straight lines, not necessarily parallel to each other. 

U ℓ = (f - ℓ , f + ℓ , a ℓ ) , U r = (f - r , f + r , a r
) be a given a Riemann data for [START_REF] Asadzadeh | A posteriori error estimates for a coupled wave system with a local damping[END_REF]. The Riemann problem for system [START_REF] Asadzadeh | A posteriori error estimates for a coupled wave system with a local damping[END_REF] is solved in terms of the three characteristic families, resulting in three waves: the two ±1-waves, with corresponding speed ±1, where only f ± can change its value; and the 0 -wave, corresponding to the stationary field of [START_REF] Asadzadeh | A posteriori error estimates for a coupled wave system with a local damping[END_REF], evolving along the stationary equations

∂ x f ± = -k(x)g(J) . ( 12 
)
Notice that J = f + -f -is constant along stationary solutions. The intermediate states in the Riemann fan are

U 1 = (f - * , f + ℓ , a ℓ ) , U 2 = (f - r , f + * , a r
) , while the waves appearing in the solution are as follows: U ℓ and U 1 are connected by a (-1)-wave of size σ -1 , U 1 and U 2 are connected by a 0-wave of size σ 0 , and U 2 and U r are connected by a 1-wave of size σ 1 where

σ -1 = f - * -f - ℓ = J ℓ -J * = ρ * ,ℓ -ρ ℓ ( 13 
)
σ 0 = a r -a l (14) 
σ 1 = f + r -f + * = J r -J * = ρ r -ρ * ,r . (15) 
Here the " * " denotes the corresponding value related to the 0-wave: more precisely, (ρ * ,ℓ , J * ) and (ρ * ,r , J * ) denote the left and right state long the 0-wave, respectively, in term of the variables (ρ, J). Notice that J is constant across the 0-wave. The states along the 0-wave satisfy a discrete version of [START_REF] Bressan | Hyperbolic Systems of Conservation Laws -The one-dimensional Cauchy problem[END_REF], that is

f + * -f + ℓ = f - r -f - * = -g(J * )(a r -a l ) ; (16) 
this implies (compare with steady equations in (3)):

ρ * ,r -ρ * ,ℓ = -2g(J * )(a r -a l ) . Proposition 1. Let m < M , δ := a r -a ℓ > 0 and initial states f ± ℓ , f ± r ∈ [m, M ]. Then one has m ≤ f ± (x, t) ≤ M (17) 
and where

|f + r -f + ℓ | + |f - r -f - ℓ | -2C 0 δ ≤ |σ -1 | + |σ 1 | ≤ |f + r -f + ℓ | + |f - r -f - ℓ | + 2C 0 δ (18) d d d d d U 1 σ -1 σ 0 σ 1 U 2 (f - ℓ , f + ℓ , a ℓ ) (f - r , f + r , a r )
C 0 = max{|g(M )|, |g(m)|} . ( 19 
)
Proof. Define the intermediate value J * implicitly by the equation

J * + g(J * )δ = f + ℓ -f - r , δ = a r -a ℓ ≥ 0 . ( 20 
)
This is well-defined since the map

x → x + g(x)δ
is strictly increasing for δ ≥ 0 (recall that g ′ > 0). Hence the values f + * , f - * are defined by the identity

f + * -f - r = f + ℓ -f - * = J * , (21) 
and then the intermediate values f - * , f + * satisfy [START_REF] Coquel | Well-posedness and singular limit of a semilinear hyperbolic relaxation system with a two-scale discontinuous relaxation rate[END_REF]. The estimates can be proved:

• By denoting (x, y) = (f + * , f - * ), one can easily find that (f + ℓ -x)(x -f - r ) = (f + ℓ -y)(y -f - r ) = J * • g(J * )δ . ( 22 
)
Noticing that u • g(u) ≥ 0 for all u, we conclude that, if δ ≥ 0, the new values f ± * do not leave the interval with extrema

f + ℓ , f - r : m ≤ min{f + ℓ , f - r } ≤ x, y ≤ max{f + ℓ , f - r } ≤ M , therefore (17) 
is proved.

• Finally, concerning [START_REF] Crandall | The method of fractional steps for Conservation Laws[END_REF], we use [START_REF] Cockburn | A posteriori error estimates for general numerical schemes for conservations laws[END_REF] and ( 16) to find that [START_REF] Glimm | An S-matrix theory for classical nonlinear physics[END_REF], so that

|f + r -f + ℓ | ≤ |f + r -f + * | + |f + * -f + ℓ | = |σ 1 | + |f + * -f + ℓ | = |σ 1 | + |g(J * )|δ ≤ |σ 1 | + C 0 δ ≤ |f + r -f + ℓ | + |f + * -f + ℓ | + C 0 δ ≤ |f + r -f + ℓ | + 2C 0 δ , with C 0 as in
|f + r -f + ℓ | -C 0 δ ≤ |σ 1 | ≤ |f + r -f + ℓ | + C 0 δ
, An analogous estimate holds for σ -1 . Hence we end up with [START_REF] Crandall | The method of fractional steps for Conservation Laws[END_REF].

Remark 1. If δ = a r -a ℓ < 0, assume moreover that (sup g ′ )|δ| < 1 . (23) 
Then there exists a unique solution to the Riemann problem for [START_REF] Asadzadeh | A posteriori error estimates for a coupled wave system with a local damping[END_REF] with data U ℓ for x < 0, U r for x > 0. In other words, the jump in a should be sufficiently small. Indeed, thanks to [START_REF] Kac | A stochastic model related to the telegrapher's equation[END_REF], the map R ∋ x → x + g(x)δ is strictly increasing. Moreover, [START_REF] Colombo | Differential equations in metric spaces with applications[END_REF] does not hold necessarily for δ < 0, since [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations C[END_REF] does not have the correct sign.

Let a(x) satisfy ( 11) and f ± 0 satisfy (6): we are in position to explain the construction of an algorithm able to generate a Well-Balanced approximation of (3):

• Fix ∆x > 0 and set x j = j∆x for j ∈ Z. Approximate the initial data f ± 0 and a with constant values on each (x j , x j+1 ), say

(f ± 0 ) ∆x (x) = f ± 0 (x j +) , a ∆x (x) = a(x j ) for x ∈ (x j , x j+1 ) (24) 
being f ± 0 (x j +) = lim y→xj + f 0 (y). Observe that if one chooses instead to approximate the initial data with local averages, that is, by setting

a ∆x (x) = 1 ∆x xj+1 xj a(y) dy for x ∈ (x j , x j+1 ),
and the same for (f ± 0 ) ∆x , the final estimate stands still; see Remark 3. • Denote by f -= (f -) ∆x and f + = (f + ) ∆x the approximate solutions naturally defined by the elementary wave-front tracking algorithm (as there are no rarefactions). Let m ≤ M be constants such that

∀x ∈ R, m ≤ f ± 0 (x) ≤ M . (25) 
Thanks to Prop. 1, as a x ≥ 0, the approximate solution remains confined inside the same interval:

∀t > 0, m ≤ f ± (t, .) ≤ M . (26) 
2.2. General study of interaction patterns. Now we investigate the interaction between various patterns of waves for the system (10) because the introduction of a(x) yields a nonlinearity. The amplitude of waves is defined at (13)-( 15).

Proposition 2. Let U ℓ and U m be connected by a complete Riemann pattern of size q - ±1 and q 0 . Let U m and U r be connected by a single wave as described in the cases below. Finally let q + ±1 be the sizes of the ±1-waves solving the Riemann problem for U ℓ , U r (see Figures 2 and3). Set C 1 = Lip(g), the following holds:

(a) If U m and U r be connected by a -1-wave of size σ -1 , then one has

|q + -1 -q - -1 -σ -1 | = |q + 1 -q - 1 | ≤ C 1 q 0 |σ -1 | . ( 27 
)
(b) If U m and U r be connected by a 0-wave of size σ 0 , then one has

|q + -1 -q - -1 | = |q + 1 -q - 1 | ≤ C 1 |q - 1 | σ 0 . (28) 
(c) If U m and U r be connected by a 1-wave of size σ 1 , then one has

q + -1 = q - -1 , q + 1 = q - 1 + σ 1 .
Proof. Denote by J - * , J + * the intermediate values of J in the Riemann problem for (U ℓ , U m ) and (U ℓ , U r ) respectively. Then the following identities are valid for the sizes of waves:

q + -1 -q - -1 = J - * -J + * , q + 1 -q - 1 = (J - * -J + * ) + (J r -J m ) . (29) 
Indeed, it is sufficient to remind the definitions ( 13), [START_REF] Cockburn | A posteriori error estimates for general numerical schemes for conservations laws[END_REF] for the size of the waves; for instance we get q + -1 -q - -1 = (J ℓ -J + * ) -(J ℓ -J - * ) and hence the first identity. Similar for the second one.

• In case (c) one has J r -J m = σ 1 and J - * = J + * . Hence the thesis simply follows from [START_REF] Munch | The L p -L q estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media[END_REF], being

q + 1 -q - 1 -σ 1 = 0 = q + -1 -q - -1 . d d d q - -1 q 0 q - 1 d d d σ -1 d d d q + -1 q 0 q + 1 ℓ ℓ m r r Figure 2. Illustration of Case (a).
• About (a), one has that σ -1 = J m -J r ; moreover, by using ( 20), the quantities

J + * , J - * satisfy J - * + g(J - * )q 0 = f + ℓ -f - m , J + * + g(J + * )q 0 = f + ℓ -f - r , so that (J - * -J + * ) (1 + g ′ (ξ)q 0 ) = σ -1 . Then q + 1 -q - 1 = (J r -J m ) =-σ-1 +(J - * -J + * ) = σ -1 -1 + 1 1 + g ′ (ξ)q 0 = -σ -1 • g ′ (ξ)q 0 1 + g ′ (ξ)q 0 .
Since 1 + g ′ (ξ)q 0 ≥ 1, then [START_REF] Mccartin | Exponential Fitting of the Damped Wave Equation[END_REF] follows:

|q + 1 -q - 1 | ≤ |σ -1 | g ′ (ξ)q 0 ≤ C 1 |σ -1 | q 0 .
• It remains to consider (b), where J r = J m and hence (29) reduces to

q + 1 -q - 1 = q + -1 -q - -1 = J - * -J + * . (30) 
The following identities hold for J ± * :

J - * + g(J - * )q 0 = f + ℓ -f - m , J + * + g(J + * ) (q 0 + σ 0 ) = f + ℓ -f - r . Therefore J - * -J + * 1 + g ′ (ξ)q 0 -g(J + * )σ 0 = f - r -f - m . d d d q - -1 q 0 q - 1 σ 0 d d d q + -1 σ 0 + q 0 q + 1 ℓ ℓ m r r Figure 3. Illustration of Case (b).
From ( 16) we immediately deduce that

f - r -f - m = -g(J r )σ 0 , so that J - * -J + * (1 + g ′ (ξ)q 0 ) = σ 0 g(J + * ) -g(J r ) = σ 0 g ′ (η) J + * -J r = σ 0 g ′ (η)   -(J - * -J + * ) -(J r -J - * =q - 1 )    = -σ 0 g ′ (η) (J - * -J + * ) -σ 0 g ′ (η) q - 1 .
The previous identity rewrites as

J - * -J + * (1 + g ′ (ξ)q 0 + σ 0 g ′ (η)) = -σ 0 g ′ (η) q - 1 .
Recalling that g ′ , q 0 , σ 0 are all ≥ 0, it follows from the previous identity that

|J - * -J + * | ≤ σ 0 g ′ (η) |q - 1 | ≤ C 1 σ 0 |q - 1 |
and hence, going back to [START_REF] Ohlberger | A review of a posteriori error control and adaptivity for approximations of nonlinear conservation laws[END_REF], we get [START_REF] Marcati | The L p -L q estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media[END_REF].

Proposition 3. (Multiple interaction) Assume that a 1-wave, a 0-wave and a -1-wave interact. Let σ - -1 , σ - 1 be the sizes of the incoming waves and σ + -1 , σ + 1 be the ones of the waves after interactions. Then

|σ + -1 | + |σ + 1 | ≤ |σ - -1 | + |σ - 1 | . (31) 
Besides, for δ = a r -a ℓ , one has

|σ + -1 | -|σ - -1 | ≤ C 1 δ |σ - -1 | + |σ - 1 | |σ + 1 | -|σ - 1 | ≤ C 1 δ |σ - -1 | + |σ - 1 | . (32) 
Proof. We proceed by letting interactions occur two at a time, and then collect the result. The same procedure was used in [START_REF] Amadori | Glimm estimates for a model of multiphase flow[END_REF].

• Assume first that the (+1)-wave interacts with the 0-wave, then two ± waves of size σ ±1 will outgo the interaction point. We are in case (b) of Prop. 2, where σ - -1 = 0 = σ 0 and (30) reduces to

σ 1 -σ - 1 = σ -1 , so that σ 1 -σ -1 = σ - 1 . (33) 
By equating ρ r -ρ ℓ before and after the interaction, we find that

σ 1 + σ -1 -2g( J)δ = σ - 1 -2g(J m )δ . (34) 
Subtracting ( 33) from ( 34), we get

2 σ -1 -2g( J)δ = -2g(J m )δ , so that σ -1 = g( J) -g(J m ) δ = g ′ (ξ) J -J m =-σ1 δ = -g ′ (ξ) σ 1 δ .
Hence sgn( σ 1 ) = -sgn( σ -1 ), and using again [START_REF] Roder | Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity[END_REF], we find that sgn(σ - 1 ) = sgn( σ 1 ). Therefore we have proved that

| σ 1 | + | σ -1 | = |σ - 1 | . (35) 
• After this interaction, the wave of size σ 1 will cross the (-1)-wave of size σ - -1 , clearly without changing size. The interaction between this last wave and the 0-wave will produce two new waves, σ ±1 . Analogously as before, they will satisfy

| σ 1 | + | σ -1 | = |σ - -1 | . (36) 
Due to the linearity of ±1-waves, no other interaction can occur. The sizes of the outcoming waves

σ + -1 , σ + 1 must satisfy σ + -1 = σ -1 + σ -1 , σ + 1 = σ 1 + σ 1 .
Therefore, by using ( 35) and (36), we finally get [START_REF] Puppo | Numerical entropy and adaptivity for finite volume schemes[END_REF]:

|σ + -1 | + |σ + 1 | ≤ | σ -1 | + | σ -1 | + | σ 1 | + | σ 1 | = |σ - -1 | + |σ - 1 |
. Finally let us prove [START_REF] Rauch | Jump Discontinuities of Semilinear, Strictly Hyperbolic Systems in Two Variables: Creation and Propagation[END_REF] for the 1-family, the other one being analogous. From the construction above and Prop. 2, it is easy to deduce that

| σ 1 -σ - 1 | ≤ C 1 |σ - 1 |δ , | σ 1 | ≤ C 1 |σ - -1 |δ . One has |σ + 1 | -|σ - 1 | ≤ | σ 1 | + | σ 1 | -|σ - 1 | ≤ | σ 1 -σ - 1 | + | σ 1 | , therefore we conclude thanks to the above estimates on | σ 1 -σ - 1 | and on | σ 1 |.
2.3. Bounds on total variation for WB approximation. Previous interaction estimates allow to derive uniform bounds on the total variation for the system (10) (if a(x) = x, see also Sect. 8.1.1-2.1 in [START_REF] Gosse | Computing Qualitatively Correct Approximations of Balance Laws[END_REF]). As usual, one defines:

L ± (t) = (±1)-waves |∆f + | + |∆f -| L 0 (t) = 0-waves |∆f + | + |∆f -| and L(t) =L ± (t) + L 0 (t) = TV f + (t, •) + TV f -(t, •) .
Remark 2. We remark that L ± (t) coincides with TV J(t, •): indeed, along ±1waves, it holds that |∆f ± | = |∆J|; on the other hand, since J is constant along 0-waves, then

L ± (t) = (±1)-waves |∆J| = TV J(t, •) . ( 37 
)
Let us explain how these quantities evolve in time.

• From ( 31) and ( 18), one has that L ± (t) ≤ L ± (s) if t ≥ s and thus,

L ± (t) ≤ L ± (0+) ≤ TV f + (0, •) + TV f -(0, •) + 2C 0 TV a , (38) 
where ( 18) is used for L ± (0+). Recall that C 0 = max{|g(M )|, |g(m)|} as in [START_REF] Glimm | An S-matrix theory for classical nonlinear physics[END_REF]. • By using ( 16) and [START_REF] Glimm | An S-matrix theory for classical nonlinear physics[END_REF], a uniform in time estimate for L 0 reads as follows:

L 0 (t) = 2 j |g(J * (x j ))|∆a(x j ) ≤ 2C 0 j ∆a(x j ) = 2C 0 TV a . ( 39 
)
Recalling that TV a = k L 1 , we put together (38), (39) and finally get the following estimate that depends neither on time nor on TV (k):

TV f + (t, •) + TV f -(t, •) ≤ TV f + (0, •) + TV f -(0, •) + 4C 0 k L 1 . (40) 
2.4. Lyapunov functional and linear L 1 error estimate. Among all the possible interaction patterns, we are especially interested in the ones which occur when following the stability roadmap proposed by Bressan et al. [START_REF] Bressan | Hyperbolic Systems of Conservation Laws -The one-dimensional Cauchy problem[END_REF]. It consists mainly in introducing a nonlinear functional which tracks the time-evolution of the L 1 distance between two wavefront-tracking approximations by considering their difference as a "transversal Riemann problem" being solved by shock curves only regardless to entropy conditions. Obviously, in the present simplified framework, there is no entropy conditions at all as the system (3) is semilinear. Hence, 2 approximations f ± 1 , a(x) and f ± 2 , b(x) being given, at each point t, x, one solves the Riemann problem for [START_REF] Asadzadeh | A posteriori error estimates for a coupled wave system with a local damping[END_REF] with left/right data:

f ± 1 (t, x), a(x), f ± 2 (t, x), b(x). Let q ±1 , q 0 (x) = b(x) -a(x)
stand for the corresponding "transversal wave-strengths", and consider, for instance, that f - 1 has a jump of size σ at the point (t, x α ): see Figure 4. In order to correctly devise the weights involved in the Lyapunov functional, it is necessary to know how the "transversal wave-strengths" evolve according to all the jumps in both f ± 1 , a(x) and f ± 2 , b(x). In the sequel, we use all the standard notations by Bressan ([12]); the only exception is that the characteristic families are numbered -1, 0, 1 for obvious reasons. Let U, V stand for (f - 1 , f + 1 , a) and (f - 2 , f + 2 , b) respectively. We write σ α i for the size a front located at x α , of the family i ∈ {-1, 0, 1}; zero-waves are measured simply by the jump of a(x) or b(x), respectively for U or V (see [START_REF] Cavalcanti | Uniform Decay Rates for the Wave Equation with Nonlinear Damping Locally Distributed in Unbounded Domains with Finite Measure[END_REF]). Recall that all the σ α 0 are positive, since a(x) and b(x) are assumed to be monotone, non-decreasing. The Lyapunov functional Φ[U, V ] reads, for x 1 < x 2 and t ≤ T = (x 2 -x 1 )/2:

σ V = f ± 2 , b U = f ± 1 , a q - -1 q - 1 q - 0 q + -1 q + 0 q + 1 W -1 (x) W -1 (x)
t → Φ[U, V ](t) = 1 i=-1 x2-t x1+t |q i (x)|W i (x)dx, (41) 
where W i are time-dependent weights, defined as follows:

W i (t, x) = 1 + κ 1 A i (t, x) + κ 2 Q(U ) + Q(V ) , i = -1 , 0 , 1 and 
A -1 (x) = xα<x σ α 0 , A 1 (x) = xα>x σ α 0 , A 0 (t, x) = xα<x |σ α 1 | + xα>x |σ α -1 | .
The sums above extend over all jumps in U and V . An estimate for A ±1 reads:

A ±1 (t, x) ≤ TV a + TV b .
On the other hand, an estimate on A 0 goes as follows. Assume that m, M are common bounds on f ± 1 (0, •) and f ± 2 (0, •), see [START_REF] Kim | An adaptive version of Glimm's scheme[END_REF]. We define [START_REF] Glimm | An S-matrix theory for classical nonlinear physics[END_REF]. By recalling (38) one obtains

A 0 = TV f - 1 (0, •) + TV f + 1 (0, •) + 2C 0 TV a , B 0 = TV f - 2 (0, •) + TV f + 2 (0, •) + 2C 0 TV b where C 0 is given in
A 0 (t, x) ≤ L ± (t; U ) + L ± (t; V ) ≤ A 0 + B 0 .
Here the constants κ 1 , κ 2 are positive, to be chosen, and Q(U ), Q(V ) stand for the interaction potential between ±1-waves and 0-waves that show up in U , V respectively:

Q(U )(t) = β σ β 0   α, xα<x β |σ α 1 | + α, xα>x β |σ α -1 |  
where the sum runs over all jumps of U in (x 1 + t, x 2 -t). Hence

Q(U )(t) ≤ TV {a} L ± (t; U ) ≤ TV {a} L ± (0+, U ) ≤ TV {a} A 0 .
The situation is analogous for V :

Q(V )(t) ≤ TV {b} B 0 .
We estimate the sum of the Q as follows:

Q(U ) + Q(V ) ≤ TV {a} A 0 + TV {b} B 0 .
In order to ensure that these weights are uniformly bounded, one must deal with the bounds:

W ±1 (t, x) ≤ 1 + κ 1 (TV a + TV b) + κ 2 (TV {a} A 0 + TV {b} B 0 ) , W 0 (t, x) ≤ 1 + κ 1 (A 0 + B 0 ) + κ 2 (TV {a} A 0 + TV {b} B 0 ) .
Hence, once that the constant values κ 1 and κ 2 are determined, it is necessary to restrict both the total variation of initial data f ± 0 and the strength of the source term. More precisely there exists δ > 0 such that, if

TV a , TV b , TV f ± 1 (0, •) , TV f ± 2 (0, •) < δ , then the weights satisfy 1 ≤ W 1 (t, x) ≤ 2 .
Let us present the main steps of the analysis:

(1) We first quantify the relation between Φ[U, V ](t) and the L 1 difference between the two approximate solutions. Define

I(t) = x2-t x1+t |f + 1 (t, x) -f + 2 (t, x)| + |f - 1 (t, x) -f - 2 (t, x)|dx.
Recalling [START_REF] Crandall | The method of fractional steps for Conservation Laws[END_REF] and using W ±1 ≥ 1, one gets

I(t) ≤ x2-t x1+t |q 1 |W 1 + |q -1 |W -1 + 2C 0 |a -b| dx ≤ Φ[U, V ](t) + (2C 0 -1) x2-t x1+t |a -b| dx
and also, always taking advantage of [START_REF] Crandall | The method of fractional steps for Conservation Laws[END_REF],

Φ[U, V ](t) ≤ 2 i=-1,1 x2-t x1+t |q i |dx + 2 x2-t x1+t |a -b|dx ≤ 2I(t) + (4C 0 + 2) x2-t x1+t |a -b| dx .
Altogether, assuming that t → Φ[U, V ](t) decreases, it comes that:

I(t) ≤ Φ[U, V ](t) + (2C 0 -1) x2-t x1+t |a -b| dx ≤ Φ[U, V ](0) + (2C 0 -1) x2-t x1+t |a -b| dx ≤ 2I(0) + (4C 0 + 2) x2 x1 |a -b| dx + (2C 0 -1) x2-t x1+t |a -b| dx . ( 42 
)
(2) Then, we want to prove that Φ does not increase in time. To see this, let's start considering interaction times:

• When a wave front leaves the left boundary, of family k = -1, the weights W i change continuously in L 1 loc . If the leaving wave-front is of family k = 0, the weight W -1 possibly decreases.

• When the interaction between two waves +1, -1 occurs, their size do not change across interaction, so the functional does not change. • Now we consider the case of a ±1 wave-front interacting with a 0wave; the presence of reflected waves induces a possible increase in the weights W i , which is controlled by means of (32) in Prop. 3. However, thanks to the presence of both the interaction potentials Q(U ) and Q(V ), the possible increase of W i is compensated with their corresponding decay. Hence, for κ 2 big enough, the overall functional decreases. (3) Now, following Bressan (see [12, p.155]), outside interaction times it is convenient to write the time-derivative of Φ as follows:

dΦ[U, V ] dt = 1 i=-1 |q i (x)|W i (x)(-1 + λ i ) x=x1+t + 1 i=-1 |q i (x)|W i (x)(-1 -λ i ) x=x2-t + α 1 i=-1 E α,i , being E α,i = |q α+ i |W α+ i (λ α+ i -ẋα ) -|q α- i |W α- i (λ α- i -ẋα ) = |q α+ i |W α+ i -|q α- i |W α- i (λ α i -ẋα )
where we used that the λ i 's are constant. Thanks to the linear structure of families ±1, lots of simplification occur. For instance, if i = k α then the corresponding speeds coincide λ α i = ẋα thus E α,i = 0. Since |λ i | ≤ 1, the contribution from the boundaries is non-positive and then:

dΦ[U, V ] dt ≤ α 1 i=-1 E α,i .
We formerly assumed that t → Φ[U, V ](t) decreases, the next lemma proves this:

Lemma 1. Let U, V be two approximate solutions, generated by the Well-Balanced algorithm, from initial data

U 0 = f ± 1 (t = 0, •), a(•) , V 0 = f ± 2 (t = 0, •), b(•)
endowed with sufficiently small total variation so that the corresponding weights satisfy the uniform bound 1 ≤ W i (t, x) ≤ 2, i ∈ {0, ±1}.

If κ 1 ≥ 4C 1 then one has, outside interaction times:

dΦ[U, V ] dt ≤ 0.
Proof. We will analyze the jumps that occur in the V = (f ± 2 , b) vector of unknowns; the analysis for the jumps in U is completely similar (see also [12, p.160]). Such a framework exactly meets with the interaction estimates given in Prop. 2. Accordingly, let k α ∈ {±1, 0} denote the characteristic family of the jump present at the abscissa x α . To carry on, one distinguishes between each value of k α :

• if k α = -1 = ẋα , an easy computation shows that E -1 = 0 and that

q + 0 = q - 0 , W + 1 = W - 1 , W + 0 -W - 0 = -κ 1 |σ -1 | and hence E 0 = |q - 0 | W + 0 -W - 0 = -κ 1 |σ -1 ||q - 0 | , E 1 = 2 |q + 1 | -|q - 1 | W - 1 . Moreover it follows from Proposition 2 that |q + 1 | ≤ |q - 1 | + C 1 |q - 0 ||σ -1 |.
Therefore, recalling that the weights are supposed to be smaller that 2, one gets

1 i=-1 E i = E 0 + E 1 ≤ -κ 1 |q - 0 ||σ -1 | + 2W - 1 C 1 |q - 0 ||σ -1 | ≤ |q - 0 ||σ -1 | (-κ 1 + 4C 1 ) ≤ 0 . • if k α = 1 =
ẋα , this is the simple Case (c), and

1 i=-1 E i = E -1 + E 0 = -2 |q + -1 |W + -1 -|q - -1 |W - -1 -|q + 0 |W + 0 -|q - 0 |W - 0 .
Here q 0 , q -1 , W -1 do not change, while

W + 0 -W - 0 = +κ 1 σ 1 .
Hence one gets a negative sign for every κ 1 > 0:

1 i=-1 E i = -|q 0 | W + 0 -W - 0 = -κ 1 |q 0 |σ 1 ≤ 0 .
• if k α = 0 = ẋα , this is Case (b), depicted in Fig. 3, with ẋ = λ 0 = 0 and thus E 0 = 0.

1 i=-1 E i = E -1 + E 1 = -|q + -1 |W + -1 -|q - -1 |W - -1 + |q + 1 |W + 1 -|q - 1 |W - 1 .
The weights W ± i , i = ±1 jump as follows:

W + -1 -W - -1 = +κ 1 |σ 0 | ≥ 0 , W + 1 -W - 1 = -κ 1 |σ 0 |.
Hence, by means of ( 28), we find that

E -1 = -|q + -1 | W + -1 -W - -1 -W - -1 |q + -1 | -|q - -1 | ≤ -W - -1 |q + -1 | -|q - -1 | ≤ +2 |q - -1 | -|q + -1 | ≤ 2|q - -1 -q + -1 | ≤ 2C 1 σ 0 |q - 1 |
while, in a quite similar way,

E 1 = |q - 1 |(W + 1 -W - 1 ) + (|q + 1 | -|q - 1 |)W + 1 ≤ -κ 1 σ 0 |q - 1 | + 2 q + 1 -q - 1 ≤ -κ 1 σ 0 |q - 1 | + 2C 1 σ 0 |q - 1 | ≤ σ 0 |q - 1 |(2C 1 -κ 1 ) At this point, having κ 1 ≥ 4C 1 again ensures E -1 + E 1 ≤ 0. Finally, we select V (t = 0, •) = (f - 2 , f + 2 , b)(t = 0, •) corresponding to the approx- imate initial data in (24): f ± 2 (t = 0, x) = f ± 0 (x j +) , b(x) = a(x j ) for x ∈ (x j , x j+1 ) ,
Thanks to the time-decay of Φ[U, V ], one obtains that the L 1 error of the WB scheme at time t > 0 is bounded by a uniform constant times the initial error:

x2-t x1+t |f ± ∆x (t, x) -f ± (t, x)|dx ≤ 2 x2 x1 |f ± ∆x (0, x) -f ± (0, x)|dx + (6C 0 + 1)∆x TV (a) ≤ 2∆x TV (f + 0 ) + TV (f - 0 ) + (3C 0 + 1 2 ) x2 x1 k(x)dx .
This concludes the proof of (8) in Theorem 1.

Remark 3. If initial data are approximated by local averages, that is,

f ± 2 (t = 0, x) = xj+1 xj f ± 0 (y) dy ∆x , b(x) = xj+1 xj a(y) dy ∆x for x ∈ (x j , x j+1 ) ,
instead of (24), the final estimate wouldn't change: indeed the bounds on the WFT approximation, its total variation and the estimates used in (43) would be still valid.

The Fractional Step approximation

A general Fractional

Step setup proceeds by first, fixing ∆t > 0, then computing iteratively an approximation (f -, f + ) := (f -, f + ) ∆t of system (4) with f ± 0 satisfying (6) and k(x) satisfying (2). Accordingly, (1) on [0, ∆t) the f ± are given by the exact solution of the linear problem

∂ t f --∂ x f -= 0 , ∂ t f + + ∂ x f + = 0 . ( 44 
)
The group operator S giving the solution writes as

S t f - 0 , f + 0 (x) = f - 0 (x + t) , f + 0 (x -t) , f - 0 , f + 0 ∈ L 1 (R) .
(2) At time t = ∆t the solution is updated by the source term:

f -, f + (∆t+, x) = O ∆t f -, f + (∆t-, x); k(x) , (45) 
where O t denotes the solution operator of the ordinary differential equation

y ′ = kg(z -y) z ′ = -kg(z -y) , (46) 
and a constant value k > 0. In other words,

t → O t (y 0 , z 0 ) ; k) ∈ R 2 (47) 
satisfies ( 46) with initial data (y 0 , z 0 ) for t = 0.

In the time strip (∆t, 2∆t) the solution is extended as in step (1) by taking (f -, f + ) (∆t+, •) as initial data. The procedure is then repeated inductively. Let O t be the group associated to (44) and ( 46) respectively; more precisely, recalling (47), for (u, v) as in [START_REF] Amadori | Uniqueness and continuous dependence for systems of balance laws with dissipation[END_REF] and k now as in (2) we have:

∀x ∈ R, O t ((u, v); k) (x) = O t ((u(x), v(x)); k(x))
We denote by t → (U ∆t ) t the fractional step operator. It rewrites:

(U ∆t ) 0 = Id , (U ∆t ) t = S t-j∆t • (U ∆t ) j∆t , j∆t < t < (j + 1)∆t , j ≥ 0,
while at fractional steps t = j∆t , j ≥ 1 we let the space-dependent source act,

(U ∆t ) j∆t = O ∆t (U ∆t ) j∆t-; k(x) ,
where (U ∆t ) j∆t-= S ∆t • (U ∆t ) (j-1)∆t .

3.1. Action of the time-ODE (46) on the total variation. Despite the fact that the right-hand side of the simple system (4) appears at first glance to be dissipative, it involves a dependence in the space variable through the smooth function k(x) which, somewhat counter-intuitively, can increase the space variation of the time-splitting approximation. There is indeed an accretive effect, weaker than in [START_REF] Amadori | Transient L 1 error estimates for well-balanced schemes on non-resonant scalar balance laws[END_REF], which can increase the total variation of the approximate solution. In terms of the variables ρ = y + z and J = z -y , the system (46) turns into

ρ ′ = 0 , J ′ = -2kg(J) . (48) 
Recalling assumption (5) on g we notice that |J| ′ = -2k|g(J)| < 0 (dissipative effect for x fixed). Now, since g ′ (0) > 0, we get

ρ(t) = ρ(0) = y 0 + z 0 , |J(t)| ≤ |J(0)|e -αt , α ∼ 2kg ′ (0) .
Being y = (ρ -J)/2 and z = (ρ + J)/2, we deduce that

y(t) , z(t) → ρ 0 2 = y 0 + z 0 2 , t → ∞ .
Lemma 2. Let g satisfy (5) and consider the system (46):

(1) For k > 0, let (y 1 , z 1 )(t) and (y 2 , z 2 )(t) be two solutions of (46). Then

d dt {|y 1 (t) -y 2 (t)| + |z 1 (t) -z 2 (t)|} ≤ 0 . (49) 
(2) Take 0 < k 1 < k 2 , and let (y 1 , z 1 )(t) and (y 2 , z 2 )(t) be two solutions of (46) corresponding to k = k 1 or k 2 , respectively. Assume also that (y 1 , z 1 )(0) = (y 2 , z 2 )(0). Then

|y 1 (t) -y 2 (t)| + |z 1 (t) -z 2 (t)| ≤ 2C(k 2 -k 1 )t , (50) 
where

C = sup J∈[a,b] |g(J)| , [a, b] = [0, J(0)] if J(0) > 0 , [J(0), 0] otherwise. ( 51 
)
Proof. ( 1) One easily computes that

d dt {|y 1 (t) -y 2 (t)| + |z 1 (t) -z 2 (t)|} = k [g(z 1 -y 1 ) -g(z 2 -y 2 )] {sgn(y 1 -y 2 ) -sgn(z 1 -z 2 )} = kg ′ (ξ) [(z 1 -z 2 ) -(y 1 -y 2 )] | {sgn(y 1 -y 2 ) -sgn(z 1 -z 2 )} = kg ′ (ξ) [-|y 1 -y 2 | -|z 1 -z 2 | + (z 1 -z 2 )sgn(y 1 -y 2 ) + (y 1 -y 2 )sgn(z 1 -z 2 )] ≤ 0 .
(2) Denoting by (Y (t), Z(t)) the integral curve of (46) with initial data (y 1 , z 1 )(0) and k = 1, one sees that the space-dependence of k(x) leads to:

(y 1 , z 1 )(t) = (Y (k 1 t), Z(k 1 t)) , (y 2 , z 2 )(t) = (Y (k 2 t), Z(k 2 t)) , hence, setting J = Z -Y |y 1 (t) -y 2 (t)| + |z 1 (t) -z 2 (t)| ≤ 2 k2t k1t |g(J(s))| ds ≤ 2C (k 2 -k 1 )t
where C as in (51).

In the following lemma we illustrate the dependence of the solution on the variations of the parameter k. We will use the notation

|(α, β)| 1 = |α| + |β|.
Lemma 3. Under the assumptions of Lemma 2, there hold:

(1) Let U ℓ = (f - ℓ , f + ℓ ), U r = (f - r , f + r ), k ℓ > 0 and k r > 0 be given. Then |O t U ℓ ; k ℓ -O t U r ; k r | 1 ≤ |U ℓ -U r | 1 + 2C|k ℓ -k r |t ( 52 
)
with C given by (51).

(2) Assume moreover that f - ℓ = f - r . Denote by y ℓ (t), y r (t) the first component of O t U ℓ ; k ℓ , O t U r ; k r respectively, they satisfy |y ℓ (t) -y r (t))| (53) ≤ t C|k ℓ -k r |(1 + t) + max{k ℓ , k r } g ′ ∞ |f + ℓ -f + r | .
Proof. ( 1) Recalling ( 49) and (50) in Lemma 2, we find that

|O t U ℓ ; k ℓ -O t U r ; k r | 1 ≤ |O t U ℓ ; k ℓ -O t U r ; k ℓ | 1 + |O t U r ; k ℓ -O t U r ; k r | 1 ≤ |U ℓ -U r | 1 + 2C|k r -k ℓ |t .
(2) Let z ℓ (t), z r (t) be the second components of O t U ℓ ; k ℓ , O t U r ; k r respectively:

y ℓ (t) -y r (t)) = (k ℓ -k r ) t 0 g(z ℓ -y ℓ ) dτ + k r t 0 [g(z ℓ -y ℓ ) -g(z r -y r )] , so that |y ℓ (t) -y r (t))| ≤ |k ℓ -k r | C t + max{k ℓ , k r }(sup g ′ ) t 0 |z ℓ -z r | + |y ℓ -y r | dτ .
To estimate this last integral, we use (52) and get

t 0 |z ℓ -z r | + |y ℓ -y r | dτ ≤ |f + ℓ -f + r | t + C|k r -k ℓ |t 2 .
Combining together the last two estimates, we end up with (53).

Bounds on total variation for FS approximation.

Here we seek for BV bounds of the Fractional Step approximation defined at the beginning of this Section. The quantity

L(t) = TV f + (t, •) + TV f -(t, •)
is constant between time steps. On the other hand, at each time step we estimate the possible increase of L by means of estimate (52) in Lemma 3:

L(∆t+) ≤ L(∆t-) + 2C∆t TV {k} ( 54 
)
where C depends on the L ∞ norm of J. An estimate on J(t, •) L ∞ goes as follows:

ρ J f - f + M -= M m - m + = m M +

Invariant domain for convection

Invariant domain for complete system • On the other hand, recalling (48), those square regions having a diagonal along the line f + = f -(J = 0) are invariant domains for the ODE (46). This is because k ≥ 0 and sgn g(J) = sgn J.

Now, if m and M are the constant values defined in [START_REF] Kim | An adaptive version of Glimm's scheme[END_REF], then the square region

D = [m, M ] × [m, M
] is invariant for both the linear system and the ODE, therefore it holds that (f

-, f + )(x, t) ∈ [m, M ] × [m, M ] = D. Hence a global bound for J is found to be -(M -m) ≤ J(t, x) ≤ M -m .
Therefore obtains the following estimate valid for t ≥ 0:

L(t+) ≤ L(0) + 2C 0 t TV {k} ,
where C 0 is given in [START_REF] Glimm | An S-matrix theory for classical nonlinear physics[END_REF]. Thanks to the apriori bounds on f ± ∞ and on TV f ± , independent on ∆t = ∆x, one can apply Helly's theorem for a given time interval [0, T ] and obtain a subsequence that converge strongly in L 1 loc to a solution of the Cauchy problem for ( 4), (6). In the limit the following estimate holds:

TV f + (t, •) + TV f -(t, •) ≤ TV f + 0 + TV f - 0 + 2C 0 TV {k} t . ( 55 
)
Remark 4. The estimate (55), being itself a consequence of (52), is at the heart of the matter. Indeed it shows that, despite a maximum principle on the amplitude of time-splitting approximate solutions (as a consequence of the invariant domain displayed on Fig. 5), corresponding total variation in space can grow linearly in time because of oscillations in k(x), in sharp contrast with a WB process (40). This accretive effect shows that one must be careful when choosing one or another numerical scheme, especially when space-dependent source terms are involved. For our purposes, in the limit ∆x → 0, both estimates (55) and (40) hold for the exact solution, thanks to uniqueness. So, we can take the minimum, as follows:

TV f + (t, •) + TV f -(t, •) ≤ TV f + 0 + TV f - 0 + 2C 0 min{TV {k} t, 2 k L 1 } .
(56) Therefore there exists a time t * , with

TV {k}t * = 2 k L 1 (57)
such that for t > t * the BV-bound becomes constant in time.

Local Truncation

Errors. Let U (t) = U (t; k) = (f -, f + )(t,
•) be the exact solution to system (4) for some initial data U (0) = (f - 0 , f + 0 ) = U 0 satisfying (6) and for k ∈ BV (R) that satisfies (2). Now we state the so called local truncation error estimate.

In the following, the L 1 -norm is intended as follows: for instance

U (t) L 1 = f -(•, t) L 1 + f + (•, t) L 1 .
Notice that, with this norm, the group S is an isometry in L 1 . Similarly, if U = (f -, f + ), we denote by TV U the sum (TV f -+ TV f + ) . Lemma 4. There exists a time τ > 0 sufficiently small, such that

U (∆t; k) -O ∆t (S ∆t U 0 ; k) L 1 ≤ C • ∆t 2 , ∆t ≤ τ (58) 
where

C = C(U 0 , k) = 2 k ∞ g ′ ∞ TV U 0 + 10 g ∞ TV k .
Proof. Let ∆t > 0 be fixed. We will proceed with a similar technique to the one used in [6, Lemma 5.1]. The exact solution U (∆t; k) results as the limit of the fractional step procedure for a sequence of space-time meshes s j = ∆t/2 j → 0. For the moment we omit the dependence on k.

Then let us fix s > 0 and denote by U s (t) the approximate solution related to U 0 = (f - 0 , f + 0 ) and k. Let j 0 ∈ N such that j 0 s ≤ ∆t < (j 0 + 1)s, and define for 1 ≤ j ≤ j 0 :

φ + j = U s (js) -O js (S js U 0 ) L 1 φ - j = U s (js-) -O (j-1)s (S js U 0 ) L 1
For j = 0 the term φ + 0 makes sense at it is = 0. Hence we can write

φ + j0 = j0 j=1 [φ + j -φ - j ] + j0 j=1 [φ - j -φ + j-1 ] .
One can easily check that φ + j -φ - j ≤ 0, since

φ + j = O s (U s (js-)) -O s • O (j-1)s (S js U 0 ) L 1 ≤ U s (js-) -O (j-1)s (S js U 0 ) L 1 .
Here we used the L 1 contractivity of the operator O s that results from (49). Thus it only remains to estimate φ - j -φ + j-1 . Using that S is an isometry, we first notice that

φ + j-1 = U s ((j -1)s) -O (j-1)s S (j-1)s U 0 L 1 = S s U s ((j -1)s) =U s (js-)
-S s O (j-1)s S (j-1)s U 0 L 1 Therefore, using triangular inequality, we get

φ - j -φ + j-1 ≤ O (j-1)s (S js U 0 ) -S s O (j-1)s S (j-1)s U 0 L 1 = O (j-1)s S s (V ) -S s O (j-1)s (V ) L 1 ,
where V = S (j-1)s U 0 . Therefore we are led to estimate a commutator, for a generic V ∈ L 1 (R; R 2 ):

O t (S s (V ); k) -S s (O t (V ; k)) L 1 , 0 < s ≤ t ≤ ∆t .
In more details, we have (see Figure 6)

O t (S s (V ); k) (x) = O t (S s (V )(x); k(x)) = O t V -(x + s), V + (x -s) ; k(x) ,
and (see Figure 7)

S s (O t (V ; k)) (x) = (O t (V ; k) (x + s)) -, (O t (V ; k) (x -s)) + .
Notice that, in the "-" component, the two flows differ for the k (computed at k(x) and at k(x + s) respectively) and for the initial data V + . A similar consideration holds for the "+" component.

Recalling (53), we find that

|O t (S s (V ); k) (x) -S s (O t (V ; k)) (x)| 1 ≤ t k ∞ g ′ ∞ |V -(x + s) -V -(x -s)| + |V + (x + s) -V + (x -s)| + 2C {|k(x) -k(x + s)| + |k(x) -k(x -s)|} (1 + t)} .
Now we integrate in x and use inequalities such as R |k(x) -k(x + s)| dx ≤ sTV k; moreover we assume that ∆t ≤ 1. Recalling the definition of C 0 in [START_REF] Glimm | An S-matrix theory for classical nonlinear physics[END_REF], we obtain

O t (S s (V ); k) -S s (O t (V ; k)) L 1 ≤ 2st k ∞ g ′ ∞ TV V -+ TV V + + 4C 0 TV k .
By taking V = S (j-1)s U 0 , we have that TV V = TV U 0 and then In this subsection we first restrict the general procedure outlined in (44) and (45) to a more practical numerical splitting algorithm which can be rigorously analyzed. Then a local truncation error (LTE) between the exact solution of system (4) and this aforementioned approximation is proved, for a small time step ∆t > 0. Based on this, we will provide a global estimate holding for any positive time T > 0.

φ - j -φ + j-1 ≤ 2s∆t { k ∞ g ′ ∞ TV U 0 + 4C 0 TV k} . In conclusion we have φ + j0 ≤ j0 j=1 [φ - j -φ + j-1 ] ≤ 2(∆t) 2 { k ∞ g ′ ∞ TV U 0 + 4C 0 TV k} . x t1 t2 f -(0, x + t1) Ot 2 (f + (0, x -t1), f -(0, x + t1); k(x)) f + (0, x -t1) J = f + (0, x -t1) -f -(0, x + t1)
A practical algorithm reads:

• Choose ∆x = ∆t and set x j = j∆x for j ∈ Z. Approximate the initial data f ± 0 and k with constant values on each (x j , x j+1 ), say • In correspondence to (f ± 0 ) ∆t and k ∆t , the approximate solution f -= (f -) ∆t and f + = (f + ) ∆t is defined with the procedure at the begin of this Section. Since ∆t = ∆x and the wave speeds are ±1, the function in (45) is possibly discontinuous only at the points {x j } j∈Z .

(f ± 0 ) ∆t (x) = f ± 0 (x j ) , k ∆t (x) = k(x j ) for x ∈ (x j , x j+1 ) . x t1 t2 f ± (0, x -t1) f ± (0, x + t1) Ot 2 (f ± (0, x + t1); k(x + t1)) Ot 2 (f ± (0, x -t1); k(x -t1))
By the choice of the approximate initial data and k ∆t , one has that TV k ∆t ≤ TV k and that TV (f ± 0 ) ∆t ≤ TV (f ± 0 ) so that the estimates for the total variation holds uniformly in ∆x as in the previous section. Hence we can again apply Helly's theorem and get a subsequence converging strongly to the exact solution.

In the following we obtain a global error estimate for our scheme, that corresponds to part (1) of Theorem 1.

Lemma 5. Let T > 0. Assume that T = N ∆t > 0 for some N ∈ N, with 0 < ∆t ≤ τ as in Lemma 4. Let t * as in (57). If t * > T -∆t, then

U (T ) -U ∆t (T ) L 1 ≤ ∆t TV U 0 + ∆t T 2 k ∞ g ′ ∞ TV U 0 + 12C 0 TV k (59) + 2∆t T 2 C 0 k ∞ g ′ ∞ TV k while, if t * ≤ T -∆t, then U (T ) -U ∆t (T ) L 1 ≤ ∆t TV U 0 + ∆t T 2 k ∞ g ′ ∞ TV U 0 + 12C 0 TV k (60) + 2∆t • (t * ) 2 C 0 k ∞ g ′ ∞ TV k + 8∆t (T -t * ) C 0 k ∞ g ′ ∞ k L 1 .
Proof. For convenience of the reader, the proof is divided into 3 steps.

Step 1. We start by extending (58) to take into account of different initial data and different k. Given V 0 ∈ L 1 and k ∆t as defined above, we claim that

U (∆t; k) -O ∆t S ∆t V 0 ; k ∆t L 1 ≤ U 0 -V 0 L 1 + C 2 (∆t) 2 (61) 
being

C 2 = C 2 (U 0 , k) = 2 k ∞ g ′ ∞ TV U 0 + 12C 0 TV k (62)
with C 0 = g ∞ as in (55). Indeed, by using the triangular inequality we obtain

U (∆t; k) -O ∆t S ∆t V 0 ; k ∆t L 1 ≤ U (∆t; k) -O ∆t (S ∆t U 0 ); k) L 1 (63) + O ∆t (S ∆t U 0 ; k) -O ∆t S ∆t V 0 ; k ∆t L 1 . (64) 
The term on the right hand side in (63) is handled by means of (58). The term in (64) is estimated with the help of (52) in Lemma 3; indeed, it consists in estimating in L 1 the stability of the ODE flow with respect to a slight variation of both initial data and parameter k:

O ∆t (S ∆t U 0 ; k) -O ∆t S ∆t V 0 ; k ∆t L 1 ≤ S ∆t (U 0 -V 0 ) L 1 + 2C 0 ∆t k -k ∆t L 1 ≤ U 0 -V 0 L 1 + 2C 0 ∆t • ∆x TV k .
By combining the estimates for ( 63) and (64), we end up with the inequality (61).

Step 2. Next, denote by t n the time t = n∆t. Recalling that

U ∆t (t n ) = O ∆t S ∆t (U ∆t (t n-1 )), k ∆t ,
the global error of the fractional step procedure can be controlled by means of (61):

U (t n+1 ) -U ∆t (t n+1 ) L 1 ≤ U (t n ) -U ∆t (t n ) L 1 + C 2 (U (t n ), k)(∆t) 2 (65)
where C 2 is estimated by means of (56), since U (t n ) is the exact solution at time t = t n . More precisely, let t * be given as in Remark 4. We claim that

C 2 (U (t n ), k) ≤ 2 k ∞ g ′ ∞ TV U 0 + 12C 0 TV k + 4C 0 k ∞ g ′ ∞ TV k • t n if t n ≤ t * 8C 0 k ∞ g ′ ∞ k L 1 if t n > t * .
Indeed, from (56) we have

TV U (t n ) ≤ TV U 0 + 2C 0 t n TV k if t n ≤ t * 4C 0 k L 1 if t n > t * .
It is then enough to substitute in the definition of C 2 , (62), to prove the claimed estimate.

Step 3. By setting

E n = U (t n ) -U ∆t (t n ) L 1 ,
we rewrite (65) as

E n+1 ≤ E n + C 2 (U (t n ), k)(∆t) 2
and therefore

E N ≤ E 0 + (∆t) 2 N -1 n=0 C 2 (U (t n ), k) .
Let n * be such that n * ∆t ≤ t * and (n * + 1)∆t > t * . Assume that t * ≤ T -∆t, so that n * + 1 ≤ N . Recalling that N ∆t = T , we compute ∆t

N -1 n=0 C 2 (U (t n ), k) ≤ T 2 k ∞ g ′ ∞ TV U 0 + 12C 0 TV k + ∆t n * -1 n=1 4C 0 k ∞ g ′ ∞ TV k • t n + ∆t N -1 n=n * 8C 0 k ∞ g ′ ∞ k L 1 . ( 66 
)
We easily compute that

n * -1 n=1 t n = ∆t n * -1 n=1 n = ∆t (n * -1)n * 2 ≤ t * n * 2 .
The terms in (66) are estimated by

2t * n * C 0 k ∞ g ′ ∞ TV k + 8 (T -t * ) C 0 k ∞ g ′ ∞ k L 1 .
We are now ready to complete the estimate on E N : since E 0 ≤ ∆t TV U 0 , we finally get

E N ≤ ∆t TV U 0 + ∆t T 2 k ∞ g ′ ∞ TV U 0 + 12C 0 TV k + 2∆t (t * ) 2 C 0 k ∞ g ′ ∞ TV k + 8∆t (T -t * ) C 0 k ∞ g ′ ∞ k L 1 .
that is exactly (60). Notice that for the case under consideration, that is for T ≥ t * + ∆t, the estimate increases at a linear rate, given by

∆t 2 k ∞ g ′ ∞ TV U 0 + 12C 0 TV k + 8 C 0 k ∞ g ′ ∞ k L 1 .
Finally, in the simpler case of t * > T -∆t, hence n * + 1 > N , the same argument as above leads to

E N ≤ ∆t TV U 0 + ∆t T 2 k ∞ g ′ ∞ TV U 0 + 12C 0 TV k + 2 ∆t T 2 C 0 k ∞ g ′ ∞ TV
k , that gives (59). The proof of the Lemma is complete.

4. Practical assessments of error estimates with g(J) = J Even in the simpler linear case where g(J) = J, there is an obstruction in validating practically both the estimates [START_REF] Aregba-Driollet | Time Asymptotic High Order schemes for dissipative BGK hyperbolic systems[END_REF] and [START_REF] Ch | Adaptive finite element relaxation schemes for hyperbolic conservation laws[END_REF], namely the absence of exact solutions, except in the particular situation where k ′ (x) ≡ 0. In this last case, an expression of the exact solution by means of Bessel functions can be found in [START_REF] Marcati | The L p -L q estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media[END_REF]; see also [START_REF] Mccartin | Exponential Fitting of the Damped Wave Equation[END_REF] for a plane-wave analysis its bifurcation patterns and [START_REF] Kaya | An application of the decomposition method for second order wave equations[END_REF] for an exponentially growing solution of an initial-boundary value problem. We propose to circumvent this obstacle when k ′ (x) = 0 by reformulating the Cauchy problem into a Boundary value problem as follows: see Fig. 8. 4.1. Description of a benchmark with k ′ (x) = 0. In order to accurately monitor the propagation of errors in the numerical approximation, we shall need to bring back Cauchy problems posed in the whole real line onto initial-boundary value problems (IBVP) on a finite interval, say x ∈ (-1, 1). In diagonal variables,

∂ t f ± ± ∂ x f ± = ∓ k(x) 2 (f + -f -), x ∈ (-1, 1), (67) 
requires boundary conditions f ± b and initial data f ± (t = 0, •) = f ± 0 . This IBVP is equivalent to the Cauchy problem posed on x ∈ R with initial data given by,

   f + (t = 0, x) = f + b , f -(t = 0, x) = 0, for x ≤ -1, f ± (t = 0, •) = f ± 0 , for |x| < 1, f + (t = 0, x) = 0, f -(t = 0, x) = f - b , for x ≥ 1.
Along with the property TV (f a process is that now, we have at hand a scattering problem, as already evoked in our Introduction, with incoming data f ± b ∈ R + . And for large times, one expects a complete stabilization to occur inside the layer, with steady profiles given by,

± (t = 0, •)) = TV (f ± 0 ) + f ± b , another gain in such x = -1 x = 1 t = 2 f - b f + b f ± (t = 0, •) = f ± 0 f + (t = 0, •) = 0 f -(t = 0, .) = f - b f + (t = 0, •) = f + b f -(t = 0, .) = 0
∂ x J * (x) = 0, ∂ x ρ * (x) = -k(x)J * , x ∈ (-1, 1
).

Yet it comes by elementary integrations that the stationary flow reads:

J * = 2 2 + k (f + b -f - b ), k = 1 -1 k(x)dx.
Lemma 6. In the layer x ∈ (-1, 1), the stationary solution explicitly reads,

f + (x) = f + b - f + b -f - b 2 + k x -1 k(y)dy, f -(x) = f - b + f + b -f - b 2 + k 1 x k(y)dy. (68) Proof. For f + (-1) = f + b , f - (1) 
= f - b , the stationary equations for (67) rewrite ,

∂ x f ± = - k(x) 2 (f + -f -) = - k(x) 2 + k (f + b -f - b ), x ∈ (-1, 1).
It remains to integrate on (-1, x) and (x, 1) to obtain f + (x) and f -(x), respectively.

A benchmark for testing the validity of ( 7)-( 8) is based on two ideas:

• selecting both the incoming states f ± b ∈ R + in such a way that J * = 0, so that the source term never vanishes during the simulation time,

• finding k α (x), such that k α L 1 remains constant, but TV (k α ) increases.

For instance, we picked the following position-dependent coefficient, for α ∈ N, 0 ≤ k α (x) = sin 2 (απx), for x ∈ (-1, 1), 0 elsewhere.

Being nonnegative, its L 1 norm simply reads,

k α L 1 (R) = k = x 2 - sin(2απx) 4απ x=1 x=-1 = 1, because α ∈ N.
In this special case, the exact solution given in (68) rewrites:

f ± (x) = f ± b - f + b -f - b 6 x ± 1 - sin(2απx) 2απ . (70) 
4.2. Expression of numerical algorithms. Consider a uniform Cartesian computational grid determined by the parameters ∆t = ∆x > 0; as usual, the notation t n refers to n∆t for n ∈ N. Let us first explain how the computational grid is chosen: the interval (-1, 1) is gridded in such a way that both the edges x = ±1 match an interface of the control volumes. Hence the center of these cells are x j := -1 + j∆x 2 , j ∈ {1, ...} whereas its edges are x j± 1 2 = -1 + (j -1)∆x. This setup has the advantage that the source term vanishes on both the boundaries of the computational grid. Both the algorithms simplify a lot thanks to the unit Courant number:

• The time-split scheme is easy to set up: first, an upwind transport step,

f + j,n+ 1 2 = f + j-1,n , f - j,n+ 1 2 = f - j+1,n ,
followed by the ODE step:

J n+1 j = exp(-∆tk α (x j ))J n+ 1 2 j , f ± j,n+1 = 1 2 (ρ n+ 1 2 j ± J n+1 j ).
This marching process generates a piecewise-constant approximation (f ± ) ∆t at the center of each computational cell. We shall also consider the case where the ODE step is performed before the transport step, together with the Strang-splitting, consisting of two ODE half-steps flanking the transport step. This Strang-splitting is known to be second-order accurate in time, so it is interesting in order to check whether (formal) second-order accuracy can be considered as a reliable manner to increase accuracy in the presence of weak solutions (see [START_REF] Crandall | The method of fractional steps for Conservation Laws[END_REF] for previous investigations on this topic). • The Well-Balanced scheme glues altogether transport and position-dependent damping. One way to present it consists in building a Scattering matrix S j-1 2 at each interface of the grid, which accounts for the jump relations across the zero-wave located by the jump of a ∆x . Here, it reads,

S j-1 2 =     2 2+ kj-1 2 kj-1 2 2+ kj-1 2 kj-1 2 2+ kj-1 2 2 2+ kj-1 2     , kj-1 2 = xj xj-1 k(y)dy.
Observe that, thanks to the positive sign of k(x), S j-1 2 is bi-stochastic: it preserves positivity and both the L 1 and the L ∞ vectorial norms. Yet, the WB scheme for ∆t = ∆x reads:

f + j,n+1 f - j-1,n+1 = S j-1 2 f + j-1,n f - j,n .
Similarly, it generates a piecewise-constant approximation denoted by (f ± ) ∆x at the center of each computational cell.

Having at hand the expressions of both f ± (t, •) for large times, see (70), inside the interaction layer (-1, 1) and the aforementioned approximations (f ± ) ∆t , (f ± ) ∆x , we now intend to visualize the pointwise errors, • A first observation is that none of the considered schemes completely stabilized even at t = 3, for any value of α ∈ N; for the WB scheme, one has to go up to t = 5 to be close to numerical steady-state. However, the pointwise error e ∆x ± (t = 3, •) reveals that this WB scheme is completely insensitive to the increase of TV (k α ), with k α L 1 ≡ 1; see Fig. 9. If one lets t grow up to 5, e ∆x ± (t, •) flattens close to zero, because the scheme stabilizes completely (as we shall see later on).

e ∆t ± (t, x j ) = (f ± ) ∆t (t, x j ) -f ± (t, x j ), e ∆x ± (t, x j ) = (f ± ) ∆x (t, x j ) -f ± (t, x j ), ( 71 
• It is quite obvious from Fig. 9 that splitting algorithms are endowed with a numerical error which keeps track of the oscillation frequency in the damping coefficient k α ; on the contrary, errors contained in the WB algorithm are totally insensitive to TV (k α ), and reflect just the fact that the numerical solution hasn't stabilized at t = 3. Observe that the slowly-varying curve e ∆x + (3, •) becomes sharper for x ≥ 0.4, whereas e ∆x -(3, •) does for x ≤ -0.4. The WB error accumulates on "exiting signals", that is, f + (t, x ≃ 1) and f -(t, x ≃ -1): such a behavior was to be expected in the realm of a two-stream scattering-type problem.

• One may wonder whether using a (formally second-order) Strang-splitting algorithm may wipe off the high frequency oscillations inside its corresponding pointwise error. According to Fig. 10, such an accurate splitting helps in damping the oscillations coming from the space-dependence of the damping coefficient k α . However, they stand still, and at time t = 5, the WB error e ∆x ± (5, •) is much flatter and closer to zero compared to Strang-splitting's. Yet, it is quite clear that the qualitative difference showing up in our Theorem 1, that is, the dependence of [START_REF] Aregba-Driollet | Time Asymptotic High Order schemes for dissipative BGK hyperbolic systems[END_REF] in TV (k) against the one of (8) only in k L 1 is validated by Figs. 9 and 10. A last question may address the behavior of the pointwise error with respect to the "macroscopic variables" ρ, J. Fig. 11 answers this question by revealing that the oscillations which pollute split-generated approximations carry over these variables, in a different manner, though. Pointwise errors affecting the macroscopic density ρ(t = 3, •) are rather identical for both splitting algorithms: hence there seems to be no gain in performing a second-order computation. However, when looking at the flux J(t = 3, •), one sees at once that the one coming out of the Strang-split algorithm is far less noisy: indeed, the high frequency oscillations coming from k α seem to be absent. This nice picture obtained for the Strang-split scheme at t = 3 is unfortunately ruined when pushing the computation up to t = 5, as seen on Fig. 12: indeed, the WB keeps on stabilizing onto a numerical solution endowed with a constant macroscopic flux J(t, •) ≃ J * whereas the Strang-split algorithm displays now a pointwise error inside which high frequency oscillations clearly appear. All in all, these preliminary numerical experiments confirm the qualitative differences reported in Theorem 1: they reveal that in presence of a fast-varying coefficient k(x), WB algorithms generate less numerical errors than usual splitting ones, despite damping effects present in (3).

Conclusion and outlook

The fundamental estimate for the WB algorithm is really (40) which states that its total variation in x depends on k L 1 and doesn't grow as times goes by. In sharp contrast, for the fractional step, only (55) holds, meaning that now, the total variation may depend on TV (k), which is supposedly bigger. As both numerical schemes are endowed with positively invariant domains, these estimates imply that some oscillations are more likely to develop in the FS approximation as soon as ∂ x k ≡ 0. Such features manifest themselves in both the error bounds given in Theorem 1. Another aspect of both these estimates, besides being local in space, is their a posteriori character: all the quantities showing up in the error bounds depend only on g, the initial data (and the approximate solution). In particular, there is no mention of the exact solution: this shares a lot of similarities with the simpler framework of [START_REF] Gosse | Two a Posteriori Error Estimates for One-Dimensional Scalar Conservation Laws[END_REF]. In particular it may allow for the development of adaptive algorithms [START_REF] Ch | Adaptive finite element relaxation schemes for hyperbolic conservation laws[END_REF][START_REF] Ch | Stability and convergence of a class of finite element schemes for hyperbolic systems of conservation laws[END_REF][START_REF] Kim | An adaptive version of Glimm's scheme[END_REF][START_REF] Puppo | Numerical entropy and adaptivity for finite volume schemes[END_REF] for such inhomogeneous semilinear systems based on rigorous a posteriori local indicators of the form presented in this paper. 
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