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Abstract

This paper presents a new Fault Tolerant Control (FTC) methodology for

a class of LPV descriptor systems that are represented under a polytopic

LPV form. The aim of this FTC strategy is to compensate the effects of

time-varying or constant actuator faults by designing an Adaptive Polytopic

Observer (APO) which is able to estimate both the states of the system and

the magnitude of the actuator faults. Based on the information provided by

this APO, a new state feedback control law is derived in order to stabilize the

system. Stability conditions of the designed observer and the state-feedback

control are provided and solved through a set of Linear Matrix Inequalities

(LMI) under equality constraints. The performance of the proposed Fault

Tolerant Control scheme is illustrated using a two-phase flash system.
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1. Introduction

As control of systems become more and more complex, the security re-

mains a key point and the development of new control theory which integrate

the faults that can occur on a system, are of a great interest. Fault Diag-

nosis (Chen and Patton, 1999), (Bokor and Szabo, 2009) and Fault Tolerant

Control (Blanke et al., 2006) have become challenging problems in the area

of modern control theory. The concept of Fault Tolerant is based on the fact

that when a fault (a sensor or an actuator for example) occurs on the system

and provides an undesirable effect, the system can become unstable or be

damaged. By the way, the basic idea of this concept is to be robust against

such fault or to take into account the fault occurrence into a new control

which will become tolerant to this fault by canceling its bad effects.

Fault Tolerant Control (FTC) techniques can be classified into two cat-

egory (Zhang and Jiang, 2008): passive and active approaches. In passive

FTC systems, a single controller with fixed structure or parameters is used

to deal with all possible failure scenarios which are assumed to be known

a priori. Consequently, the passive controller is usually conservative. Fur-

thermore, if a failure that would not be considered in the design occurs, the

stability and performance of the closed-loop system can not be guaranteed.

Such potential limitations of passive approaches provide a strong motivation

for the development of methods and strategies for Active FTC (AFTC) sys-

tems (Gao and Ding, 2007). In contrast to passive FTC systems, AFTC

techniques rely on a real time fault detection and isolation (FDI) scheme

and a controller reconfiguration mechanism. Such techniques allow a flexi-

bility to select different controllers according to different component failures,
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and therefore better performance of the closed-loop system can be expected.

However, this holds true when the FDI process does not make an incorrect

decision (Li et al., 2008). A FTC strategy is designed so as to reconfigure

automatically the control law by ensuring the system stability and to get

acceptable system performances (Theilliol et al., 2002), (Li et al., 2013). Ob-

server based Fault Tolerant Control methods are also developed in order to

estimate the fault and to reconfigure the control law (Mao et al., 2010). The

authors in (Witczak et al., 2008) and (Ichalal et al., 2012) have developed a

FDI/FTC strategy for regular Takagi-Sugeno (TS) systems where both the

observer and the control are designed at the same time. However, all these

previous above mentioned FTC technics are devoted only for normal (regu-

lar) systems whereas here in this paper, the main goal is to design an Active

FTC strategy for descriptor (singular) systems.

Note that Takagi-Sugeno fuzzy systems have always used in the past

membership functions that were computed by the fuzzy logic theory (Wang

et al., 1996). But recently, both polytopic LPV systems and a part of fuzzy

systems converge to a same structure. The community of people working

on TS models uses the name ”TS FUZZY systems” even if with the recent

modeling approaches (for example sector nonlinearity transformation), the

obtained model is no longer ”fuzzy” because the weighting functions are

completely deterministic which corresponds to LPV or quasi-LPV systems

(NagyKiss et al., 2011).

Generally speaking, most of control research works for physical systems,

use a normal (or regular) model i.e. there is no algebraic relations between
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the system variables. However, Differential-Algebraic Equations (DAE) or

implicit systems or singular systems or descriptor systems are of quite im-

portance for the physical representation of some systems (Lewis, 1986). Such

systems appear for example in electrical circuits, mechanical systems with

holonomic or non holonomic constraints, robotic systems with kinematical

constraints and chemical systems (Mattson et al., 1998). Some practical

problems must take into account physical constraints or algebraic relations

and more generally impulsive behaviors caused by an improper transfer ma-

trix: see the following books on singular systems (Dai, 1989), (Duan, 2010).

Concerning FDI for descriptor systems, some authors have considered

this problem as in (Darouach and Boutayeb, 1995), (Youssouf and Kinnaert,

1996) for the general linear case, (Astorga-Zaragoza et al., 2011), (Wang

et al., 2012) for linear descriptor systems in discrete case by designing an

observer trough LMI study. New recent works on robust HInfinity control

design by LMI for discrete-time descriptor systems can be found in (Chadli

and Darouach, 2012), (Chadli and Darouach, 2013).

The concept of Linear Parameter Varying systems (LPV) allows the con-

venience associated with LTI models, and yet guarantees performance and

stability over a more wide operating envelope. Some results about FDI have

been developed for normal LPV systems as in (Alwi et al., 2012) by a sliding

mode observer, (Bokor and Balas, 2004), (Armeni et al., 2009), (Bokor and

Szabo, 2009) with a geometrical approach. Nonlinear systems are sometimes

represented by a LPV modelization (Wu, 1995), (Wu et al., 2007), (Bruzelius,

2004), (Rodrigues et al., 2013) in order to use the technique develop in the

linear case like the tools for stability purposes as LMI Toolboxes.
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In (Wu and Zheng, 2009), (Wu et al., 2010), the authors have developed

a technique for state estimation and sliding-mode control of Markovian jump

singular systems and also by considering time-delay in (Wu et al., 2012). In

(Li and Zhang, 2013), the authors have developed a robust H∞ filtering for

singular LPV systems with time varying delays so as to estimate the states

of the system but without any FDI purposes. In (Hamdi et al., 2012), the

authors have developed a robust FDI method based on a multiple models

concept. In (Marx et al., 2004), the authors have developed a robust fault

tolerant control for descriptor systems but only with constant matrices. In

the paper of (Koenig, 2006), the author has introduced some useful nec-

essary observability conditions for the design of unknown input observers

for descriptor systems. A Fault Tolerant Control technique is presented for

normal LPV systems under sensor faults in (Oca et al., 2011).

In (Hamdi et al., 2012), the authors have proposed a polytopic unknown

inputs and proportional integral observers for LPV descriptor systems re-

spectively. However, this technic can not ensure a correct fault estimation if

the fault is time-varying. By this way, the authors in (Rodrigues et al., 2012),

have performed their previous works by designing an Adaptive Observer in

order to take into account time-varying faults for descriptor LPV systems.

In a similar way, the authors in (Wang and Daley, 1996) have presented an

adaptive fault diagnosis observer approach dedicated to regular LTI systems

which can detect and estimate only constant faults. In (Zhang et al., 2008),

the authors have performed this previous adaptive observer so as to estimate

time-varying faults but only in a LTI case for regular systems.
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In the papers (Rodrigues et al., 2005) and (Rodrigues et al., 2007), the au-

thors have developed an active FTC strategy to avoid actuator fault/failure

effects on polytopic LPV systems; however FDI was not performed and was

supposed to be available and perfect. Moreover, very few contributions are

dealing with Fault Tolerant Control for polytopic LPV descriptor system

with a FDI scheme designed at the same time. The main contributions of

this paper are:

- To design an Adaptive Polytopic LPV Observer (APO) that can esti-

mate time-varying actuator faults. Some previous Fault Detection and Iso-

lation (FDI) technics presented in (Astorga-Zaragoza et al., 2011), (Astorga-

Zaragoza et al., 2012) and in (Hamdi et al., 2012) can only deal with constant

faults for LPV descriptor systems.

- To integrate the information provided by the APO into a new state-

feedback design so as to cancel the actuator fault effects with Fault Tolerant

Control (FTC). The FDI and FTC parts are designed at the same time

whereas most of FTC strategies deal with normal LTI or LPV systems and

assume that the FDI part is perfect and not designed. For LPV descriptor

systems, such strategy has never been used.

- To ensure both the stability of the APO and the Fault Tolerant Control

by LMI under equality constraints for LPV descriptor systems.

So, in this paper, an integrated Fault Diagnosis (FD) and FTC design

for polytopic LPV descriptor systems is provided. Polytopic LPV descrip-
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tor system is a particular class of LPV systems which allows describing the

system as a convex combination of sub-models defined by the vertices of a

convex polytope. These sub-models are then combined by convex weighting

functions that yield to a global model. Using an Adaptive Polytopic Observer

(APO) that is able to provide both states and actuator faults estimation, it is

possible to address the Fault Diagnosis (FD), and at the same time to build

a new control which take into account the actuator fault estimation. The

use of such Adaptive Polytopic Observer is motivated by the fact that, if a

fault occurs, it is important to quickly detect and estimate it in order to pre-

serve the system performance in spite of the presence of fault. Moreover, this

APO is able to estimate time-varying fault which was not possible with our

previous paper (Hamdi et al., 2012) and nor with (Astorga-Zaragoza et al.,

2012). Stability analysis and sufficient conditions are obtained with the use

of Linear Matrix Inequality (LMI) under equality constraint. A lot of works

dealing with quadratic stability have been done as in (Cai et al., 2012) by

the use of LMI or also for fault detection purposes (Zhang et al., 2012).

The structure of this paper is organized as follows: in Section 2, the class

of the LPV descriptor systems is presented. Section 3 describes the problem

statement. A method of designing the Adaptive Polytopic Observer is de-

scribed in Section 4. Fault tolerant control by state feedback is tackled in

Section 5, Finally, and before concluding, a numerical example that consid-

ers a two-phase flash system, is used to assess the validity of the proposed

approach.
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Notations: For symmetric matrices X > 0 (X ≥ 0) indicates that X is

positive definite (positive semi-definite). For any square matrix M , λmax(M)

represents the maximum singular value of the matrix M . In a partitioned

matrix, the star ′∗′ denotes the terms induced by symmetry.

2. Polytopic LPV descriptor systems modeling

Consider the following continuous-time LPV descriptor representation in

the fault-free case:




Eẋ(t) = Ã(θ(t))x(t) + B̃(θ(t))u(t)

y(t) = Cx(t)
(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rp is the inputs vector, y(t) ∈

Rm represents the measured outputs vector and θ(t) is a varying parameter

vector. Matrix E ∈ Rnxn may be singular and rank(E) = r < n.

It is assumed that all parameters θi(t), i = 1, . . . , l are bounded, measurable

as in (Alwi et al., 2012) and (Rodrigues et al., 2013), and their values remain

in the domain of an hypercube such that (Wu, 1995):

θ(t) ∈ Γ = {θi | θi ≤ θi(t) ≤ θi}, ∀t ≥ 0 (2)

where θi and θi represent the minimum and maximum values of θi(t) , re-

spectively.

Ã(·), B̃(·) are functions which depend affinely on the time-varying param-

eter vector θ(t) ∈ R
l.
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The matrices Ã(θ(t)), B̃(θ(t)) of the LPV system (1) with the affine pa-

rameter dependence (2) are represented such that:

Ã(θ(t)) = Ã0 +

l∑

i=1

θi(t)Ãi, B̃(θ(t)) = B̃0 +

l∑

i=1

θi(t)B̃i ∀θ(t) ∈ Γ (3)

The LPV system (1) with bounded parameters can be represented by a

polytopic form where the summits Si of the polytope are defined such that

(Rodrigues et al., 2007): Si =
[
Ai Bi C

]
, ∀i ∈ [1, . . . , h] where h = 2l.

The polytopic coordinates are denoted ρ(θ(t)) and vary within the convex

set Ω:

Ω =
{
ρ(θ(t)) ∈ Rh, ρ(θ(t)) = [ρ1(θ(t)), ..., ρh(θ(t))]

T
,

ρi(θ(t)) ≥ 0, ∀ i,
h∑

i=1

ρi(θ(t)) = 1

} (4)

Then, to ease the presentation, it is assumed that the matrices Ã(·) and B̃(·)

are given by convex combinations ∀t ≥ 0. Consequently, system (1) can be

rewritten by a polytopic representation:




Eẋ(t) =
h∑

i=1

ρi(θ(t))(Aix(t)+Biu(t))

y(t) = Cx(t)

(5)

where Ai ∈ Rn×n, Bi ∈ Rn×p and C ∈ Rm×n are time invariant matrices

defined for the ith summit of the polytope.

3. Problem Statement

Let us consider an actuator fault on the previous descriptor system:




Eẋ(t) =
h∑

i=1

ρi(θ(t))
[
Aix(t) +Bi(u(t) + f(t))

]

y(t) = Cx(t)

(6)
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where Ai ∈ Rn×n, Bi ∈ Rn×p and C ∈ Rm×n are time invariant matrices

defined for the ith model. f(t) ∈ Rp is the actuator fault vector. Actuator

faults can be represented by an additive or a multiplicative external signal

as in (Rodrigues et al., 2007). These malfunctions of an actuator can be

represented by a faulty control input uf(t) = (Ip − γ)u(t) which can be

rewritten as an external additive signal: u(t) + f(t) where f(t) = −γu(t)

with

γ , diag[γ1, γ2, . . . , γp], 0 ≤ γk ≤ 1 such that




γk = 1 → a total failure of the kth actuator k ∈ [1, . . . , p]

γk = 0 → the kth healthy actuator
(7)

Note: in the following of the paper, γk ∈ [0 1[ i.e a total loss of an actua-

tor is not considered here. The term γk represents the loss of effectiveness of

kth actuator, i.e. for example a loss of effectiveness 60% of 1st actuator will

be represented by γ1 = 0.60. When an actuator fault appears on the system,

such actuator faults can cause system instability. Before starting the FTC

design, we assume that (Darouach and Boutayeb, 1995), (Zhang et al., 2008)

and (Hamdi et al., 2012):

Assumption A1: rank(CBi) = rank(Bi) = p, ∀i = 1, . . . , h,

Assumption A2: The triple matrix (E,Ai, C) is R-observable, for all i =

1, . . . , h, i.e.,

rank



 sE − Ai

C



 = n, ∀s ∈ C. (8)

where C denotes the complex plane.

Assumption A3: The triple matrix (E,Ai, C) is Impulse-observable, for
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all i = 1, . . . , h, i.e.,

rank




E Ai

0 E

0 C


 = n+ rank(E) (9)

Assumption A4: The fault f(t) satisfies ‖f(t)‖ ≤ α1 and the deriva-

tive of f(t) with respect to time is norm bounded i.e.
∥∥∥ḟ(t)

∥∥∥ ≤ α2 and

0 ≤ α1, α2 < ∞.

Assumption A5: Only partial actuator faults are considered, i.e.,γk ∈

[0 1[.

Noting that, the R-observability characterizes the capacity to reconstruct

only the state of the dynamic part and the Impulse-observability guarantees

the capacity to estimate the state of static part of the descriptor system (6).

The main objective of an Active FTC is to find a control law such that

the system remains stable despite the presence of actuator faults (Rodrigues

et al., 2007), (Zhang and Jiang, 2008). For this purpose, a FDI procedure

is necessary for estimating both the states and faults. In the following, an

AFTC with a state feedback will be used such that:

u(t) = −
h∑

i=1

ρi(θ(t))Kix̂(t)− f̂(t) (10)

The following section is dedicated to synthesize an adaptive observer for

Polytopic LPV descriptor systems.
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4. Adaptive Polytopic Observer Design

Consider the following Adaptive Polytopic Observer (APO) defined as:





ż(t) =
h∑

i=1

ρi(θ(t))(Niz(t) +Giu(t) +Riy(t) +Bif̂(t))

x̂(t) = z(t) + T2y(t)

ŷ(t) = Cx̂(t)

˙̂
f(t) = Γ

h∑
i=1

ρi(θ(t))Ui(ėy(t) + σey(t))

ey(t) = y(t)− ŷ(t) = Cex(t)

(11)

where z(t) is the state vector, f̂(t) is an estimate of the fault f(t) and

ŷ(t) = Cx̂(t) is the estimated output vector. The matrix Γ ∈ Rf is a

symmetric positive definite learning rate matrix. Ni, Gi, Ri and T2 are un-

known matrices of appropriate dimensions to be determined. In the case of

actuator faults, the matrix Fi of the Observer developed in (Rodrigues et al.,

2012) is equal to Bi.

Let us define the following state estimation error ex(t) from (6) and (11) such

that:

ex(t) = x(t)− x̂(t) = (In − T2C)x(t)− z(t) (12)

Since for rank


 E

C


 = n, there exists nonsingular matrices T1 ∈ Rn×n and

T2 ∈ Rn×m such that:

T1E + T2C = In (13)

Then, the state estimation error (12) is described by:

ex(t) = T1Ex(t)− z(t) (14)
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and the actuator fault estimation error ef(t) is defined by

ef(t) = f(t)− f̂(t) (15)

First, the state estimation error dynamic is given by:

ėx(t) = T1Eẋ(t)− ż(t) (16)

By using (6) with the state feedback control law defined in (10), the equation

(16) becomes after some calculations

ėx(t) =
h∑

i=1

ρi(θ(t))
[
Niex(t) + (T1Ai −NiT1E − RiC)x(t) + (T1Bi −Gi)u(t)

+(Bi + T1Bi −Gi)ef (t) + (Gi − Bi)f(t)
]

(17)

Then, if the following conditions hold true ∀ i = 1, . . . , h:

T1Ai − RiC −NiT1E = 0 (18)

T1Bi −Gi = 0 (19)

and by taking into account (6), (11) and (16), the state estimation error

dynamic can be written as:

ėx(t) =
h∑

i=1

ρi(θ(t))
[
Niex(t)+Bief (t)+Mif(t)

]
(20)

with Mi = (T1 − In)Bi.

The substitution of (13) into (18) yields to:

Ni = T1Ai + (NiT2 − Ri)C = T1Ai + LiC (21)
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where Li = NiT2 − Ri.

Without loss of generality, let consider equation (13), one can write the

following relationship:

[
T1 T2

]

 E

C


 =

[
In

]
(22)

A solution
[
T1 T2

]
exists if (Darouach and Boutayeb, 1995), (Hamdi et al.,

2012) :

rank



 E

C



 = n (23)

Then, a particular solution of (22) using the generalized inverse matrix de-

noted by (·)+ is given by:

[
T1 T2

]
=



 E

C




+

(24)

Based on a fault estimation given by the APO, the objective of AFTC

scheme is to design a feedback control law such that the system remains stable

even if a fault occurs. The following section is dedicated to the stability

conditions of this AFTC based on an actuator fault estimation from the

Adaptive Polytopic Observer.

5. Fault Tolerant Control by State-Feedback and Fault Estimation

The dynamic of the state estimation error (20) and the closed-loop sys-

tem with the control law (10) are defined as follows:

14



ėx(t) =
h∑

i=1

ρi(θ(t))
[
Niex(t) +Bief(t) +Mif(t)

]
(25)

Eẋ(t) =

h∑

i=1

h∑

i=1

ρi(θ(t))ρj(θ(t))
[
Φijx(t) +BiKjex(t) +Bief (t)

]
(26)

with Ni = T1Ai + LiC and Φij = (Ai − BiKj). The goal is to ensure the

stability of these two differential equations.

5.1. Stability analysis

In order to investigate the stability criteria, let us consider the following

Lemma:

Lemma 1. (Zhang et al., 2008) Given a scalar µ > 0 and a symmetric

positive definite matrix P1, the following inequality holds:

2xTy ≤
1

µ
xTP1x+ µyTP−1

1 y x, y ∈ Rn (27)

�

In contrast to (Hamdi et al., 2012), here time-varying faults are consid-

ered. Then, it follows that ḟ(t) 6= 0 and consequently:

ėf (t) = ḟ(t)−
˙̂
f(t) (28)

Theorem 1. Under Assumptions A1 to A5, given scalars σ, µ, β > 0, if there

exists symmetric positive definite matrices X, Q, P1, P2 and matrices Wi and
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Si such that, ∀ i ∈ [1, . . . , h], ∀ j ∈ [1, . . . , h]:




Θij BiWj Bi 0 0

∗ −2δX 0 δI 0

∗ ∗ −2δI 0 δI

∗ ∗ ∗ Ωi Σij

∗ ∗ ∗ ∗ Υij




< 0 (29)

s.t.

ETP1 = P T
1 E ≥ 0 (30)

BT
i Q− UiC = 0 (31)

where

Θij = (AiX − BiWj) + (AiX − BiWj)
T (32)

Ωi = (QT1Ai − SiC) + (QT1Ai − SiC)T +
1

µ
P1 (33)

Σij = −
1

σ
(AT

j T
T
1 Q− CTST

j )Bi (34)

Υij = −
1

σ
(BT

i QBj +BT
j QBi) +

2

σµ
P2 (35)

then, the state x(t) of the system, the state estimation error ex(t) and the

fault estimation error ef (t) are bounded. The gains of the observer and the

state feedback control law are given by Li = Q−1Si and Ki = WiX
−1. �
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Proof 1. In order to prove the stability of the closed-loop system and the

convergence of the state and fault estimation errors, let consider the Lya-

punov function depending on x(t), ex(t) and ef (t):

V (t) = xTETP1x+ eTx (t)Qex(t) +
1

σ
eTf (t)Γ

−1ef (t) (36)

where P1, Q and Γ are symmetric positive definite matrices with appropriate

dimensions. Stability condition for the estimation error yields that the time

derivative of the Lyapunov function (36) should be negative definite. By

taking into account the equations (25) and (26), the derivative of V (t) with

respect to time is:

V̇ (t) =
h∑

i=1

h∑
i=1

ρi(θ(t))ρj(θ(t))
{
(Eẋ)TP1x+ xTP T

1 Eẋ+ eTx (t)[N
T
i Q +QNi]ex(t)

+2eTx (t)QMif(t) + 2eTx (t)QBief(t) +
1
σ
ėTf (t)Γ

−1ef(t) +
1
σ
eTf (t)Γ

−1ėf (t)
}

(37)

By considering equations (30), (28) and the expression of f̂(t) in (11), we

can obtain

V̇ (t) =
h∑

i=1

h∑
i=1

ρi(θ(t))ρj(θ(t))
{
xT (t)Πijx(t) + eTx (t)Ωiex(t) + 2eTx (t)QMif(t)

+2eTx (t)QBief(t) + 2xTP1BiKjex(t) + 2xTP1Bief (t)−
2
σ
eTf (t)Ui(ėy(t) + σey(t))

+ 2
σ
eTf (t)Γ

−1ḟ(t)
}

(38)

with ey(t) = Cex(t) and the following notations

Πij = ΦT
ijP1 + P1Φij (39)

Ωi = NT
i Q +QNi (40)
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By using the equation (25), it follows that

V̇ (t) =
h∑

i=1

h∑
i=1

ρi(θ(t))ρj(θ(t))
{
xT (t)Πijx(t) + eTx (t)Ωiex(t) + 2eTx (t)QMif(t)

+2eTx (t)QBief(t) + 2xTP1BiKjex(t) + 2xTP1Bief (t)−
2
σ
eTf (t)UiCNjex(t)

− 2
σ
eTf (t)UiCBjef(t)− 2ef (t)

TUiCex(t)−
2
σ
eTf (t)UiCMjf(t) +

2
σ
eTf (t)Γ

−1ḟ(t)
}

(41)

By using Assumption A1 and the equality (31), it follows that

V̇ (t) =
h∑

i=1

h∑
i=1

ρi(θ(t))ρj(θ(t))
{
xT (t)Πijx(t) + eTx (t)Ωiex(t) + 2eTx (t)QMif(t)

+2xTP1BiKjex(t) + 2xTP1Bief(t)−
2
σ
eTf (t)B

T
i QNjex(t)−

2
σ
eTf (t)B

T
i QBjef (t)

− 2
σ
eTf (t)B

T
i QMjf(t) +

2
σ
eTf (t)Γ

−1ḟ(t)
}

(42)

Now, using the Assumption A4 and applying Lemma 1 for three terms of the

above inequality, it comes that:

2eTx (t)QMif(t) ≤
1
µ
eTx (t)P1ex(t) + µf(t)T (MT

i QP−1
1 QMi)f(t)

≤ 1
µ
eTx (t)P1ex(t) + µα2

1λmax(M
T
i QP−1

1 QMi)
(43)

2
σ
eTf (t)Γ

−1ḟ(t) ≤ 1
σµ
eTf (t)P2ef (t) +

µ
σ
ḟT (t)(Γ−1P−1

2 Γ−1)ḟ(t)

≤ 1
σµ
eTf (t)P2ef (t) +

µ
σ
α2
2λmax(Γ

−1P−1
2 Γ−1)

(44)

− 2
σ
eTf (t)B

T
i QMjf(t) ≤

1
σµ
eTf (t)P2ef(t) +

µ
σ
f(t)T (MT

j QBiP
−1
2 BT

i QMj)f(t)

≤ 1
σµ
eTf (t)P2ef(t) +

µ
σ
α2
1λmax(M

T
j QBiP

−1
2 BT

i QMj)

(45)

V̇ (t) ≤
h∑

i=1

h∑
i=1

ρi(θ(t))ρj(θ(t))
{
xT (t)Πijx(t) + eTx (t)Ωiex(t) + 2xTP1Bief (t)

+2xTP1BiKjex(t)−
2
σ
eTf (t)B

T
i QNjex(t)−

2
σ
eTf (t)B

T
i QBjef(t) +

1
µ
eTx (t)P1ex(t)

+ 2
σµ
eTf (t)P2ef (t)

}
+ δ

(46)

18



where

δ = max
i,j

[
µα2

1λmax(M
T
i QP−1

1 QMi) +
µ
σ
α2
2λmax(Γ

−1P−1
2 Γ−1)

+µ
σ
α2
1λmax(M

T
j QBiP

−1
2 BT

i QMj)
] (47)

The inequality (46) can be reformulated as follows

V̇ (t) ≤ x̃T (t)
h∑

i=1

h∑
i=1

ρi(θ(t))ρj(θ(t))Ξij x̃(t) + δ (48)

where x̃(t) =




x(t)

ex(t)

ef (t)


 and

Ξij =




Πij P1BiKj P1Bi

∗ Ωi +
1
µ
P1 − 1

σ
BT

i QNj

∗ ∗ Υij


 (49)

Υij = − 1
σ
(BT

i QBj +BT
j QBi) +

2
σµ
P2 (50)

Then, by taking into account Assumption A1 and if the following inequality

holds

h∑
i=1

h∑
i=1

ρi(θ(t))ρj(θ(t))Ξij < 0 (51)

We can obtain that

V̇ (t) ≤ −ε ‖ x̃ ‖2 +δ (52)

where ε > 0 is given by

19



ε = min λmin

(
−

h∑
i=1

h∑
i=1

ρi(θ(t))ρj(θ(t))Ξij

)
< 0 (53)

which can also be bounded as follows

ε ≤ min
i,j

λmin

(
− Ξij

)
< 0 (54)

Then, V̇ (t) < 0 if ε ‖ x̃ ‖2> δ, ∀t ≥ 0 which means that the state x(t), the

state estimation error ex(t) and the fault estimation error ef (t) converge to

a small set according to Lyapunov stability theory and lie in it.

To complete the proof by considering (51), let us introduce the following no-

tations

Zξ =
h∑

i=1

ρi(θ(t))Zi (55)

Zξξ =
h∑

i=1

h∑
i=1

ρi(θ(t))ρj(θ(t))Zij (56)

where Zξ and Zξξ are given matrices. By using these notations, the inequality

(51) becomes

∆ξξ =



 Πξξ Dξξ

DT
ξξ Λξξ



 (57)

with

Dij =
(

P1BiKj P1Bi

)
(58)

Λij =



 Ωi +
1
µ
P1 − 1

σ
BT

i QNj

∗ Υij



 (59)
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Consider a symmetric matrix X defined as

X =


 P−1

1 0

0 X1


 ,X1 =


 P−1

1 0

0 I


 (60)

By considering that for any positive definite matrix P and for any full column

rank matrix Q, then QPQT is a positive definite matrix. Then, by post and

pre-multiplying the inequality (57) by X , we can obtain that


 P−1

1 ΠξξP
−1
1 P−1

1 DξξX1

∗ X1ΛξξX1


 (61)

The term X1ΛξξX1 can be replaced by considering the following inequality

which holds for any scalar β such that

(X1 + βΛ−1
ξξ )

TΛξξ(X1 + βΛ−1
ξξ ) ≤ 0

⇔ X1ΛξξX1 ≤ −2βX1 − β2Λ−1
ξξ

(62)

Considering (62) and with the Schur Complement, the inequality (61) be-

comes




P−1
1 ΠξξP

−1
1 P−1

1 DξξX1 0

∗ −2βX1 βI

∗ ∗ Λξξ


 < 0 (63)

Using the notations (55), 56) and the definitions of the matrices Πξξ, Dξξ

and Λξξ given by (40), (58) and (59), by making the change of variables

X = P−1
1 , Wi = KiX, Si = QLi, we can obtain the inequalities given in

Theorem 1 under equality constraint (31) which ends the proof. �
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It can be noticed that the conservatism introduced by the use of a com-

mon lyapunov function could be reduced by the use of parameter-dependent

lyapunov function so as to get others solutions (Rodrigues et al., 2013). An-

other strategy based on the Polya’s Theorem (Sala and Arino, 2007) could

also be used even if the number of LMI to be solved will increase to reduce

the conservatism.

6. Illustrative example

The proposed example considers a descriptor model of a two-phase flash

system (Ben-Zvi et al., 2006) represented in Figure 1, in which a volatile

component flashes out of a dilute binary mixture. It is assumed that the

level control is nearly instantaneous and that the liquid and vapor phases

are at the same temperature. Since only one component is volatile, the gas

phase contains the pure volatile component. Accumulation of energy and

matter in the gas phase are neglected because the mass of liquid in the flash

vessel is considerably larger than the mass of gas.

The continuous isothermal reactor can be modeled by using a LPV descriptor

representation as follows:





Eẋ(t) = Ã(θ(t))x(t) + B̃(θ(t))u(t)

y(t) = Cx(t)
(64)
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Figure 1: Flash tank system

where Ã(θ(t)) =




−Mw(QL0
−(kmA+θ1(t)))

ρV 0 Mw(kmA+θ1(t))
ρV 0 Mwx0

ρV

−(kmA+θ1(t))(hv+θ2(t))
ρV Cp

MwQL0

ρV
(hv+θ2(t))(kmA+θ1(t))

ρV Cp
0 MwT0

ρV

0 0 1 −1
H 0

0 −b
(T0+c)2

0 1
P0 ln(10)

0

(kmA+θ1(t))
2(hv+θ2(t))

ρV Cp

−(kmA+θ1(t))MwQL0

ρV
−(kmA+θ1(t))

2(hv+θ2(t))
ρV Cp

0 −(kmA+θ1(t))MwT0

ρV




E =




1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




, B̃(θ(t)) =




−MwxQ

ρv

−MwTQ

ρv

0

0

(kmA+θ1(t))MwTQ

ρv




, C =




0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




where xl(t), x2(t), x3(t), x4(t) and x5(t) are the Liquid mole fraction of volatile

component, Flash tank temperature, Equilibrium mole fraction, Pressure in flash

tank and Liquid out-flow rate respectively. So, we get: [xl x2 x3 x4 x5]
T = [xL T x∗ P QL]

T .

The system parameters are listed in the following Table 1.
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Variable Definition Values/Units

state x(t)

xL(t) Liquid mole fraction of volatile component −

T (t) Flash tank temperature K

x ⋆ (t) Equilibrium mole fraction −

P (t) Pressure in fash tank KPa

QL(t) Liquid out-flow rate mol/s

Input u(t)

Q(t) Feed Flow rate 4, 377mol/s

Parameters

ρV Mass of liquid 23.7 kg

kmA Mass-transfer coefficient 0, 12 ∓ 15% mol/s

hv Heat of vaporization 23, 24 ∓ 10% kJ/mol

Known constants

Cp Average heat capacity 4.2 kJ/K.g

Mw Average molecular weight of liquid 50 g/mol

Cv Valve flow coefficient 16, 8 (kPa)−1/2mol/s

V Liquid volume 19m3

xQ Volatile component mol-fraction in feed 1

TQ Temperature of feed 500K

H Henry’s Law constant 313K

Pref Downstream pressure 10KPa

b Antoine Equation constant 130.63 0C−1

c Antoine Equation constant 23.426 0C

Parameters kmA and hv are considered as varying variables denoted respectively

θ1(t) and θ2(t) which vary such that: θ1 ∈ [−0.018, 0.018] and θ2 ∈ [−2.32, 2.32],
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l = 2. As usually done in LPV framework and as in system (1), these parameters

are assumed to be available as in (Alwi et al., 2012) or in (Rodrigues et al., 2013).

As there are 2 parameters which vary in this LPV descriptor system (64), then

22 = 4 models are considered as explained in Section 2. The parameters evolution

functions ρ(θ(t)) vary within a convex set like in (4) and are depicted in Figure (2).

In this case, the descriptor polytopic LPV representation (64) can be rewritten as

follows: 



Eẋ(t) =
4∑

i=1
ρi(θ(t))(Aix(t)+Bi(u(t) + f(t))

y(t) = Cx(t)

(65)

The matrices of the system can be determined at the vertices of the polytope for

extrema values of parameters ρi. So, matrices Ai are defined as follows:

A1 =




−0.8223 0 0.5279 0 1.0127

−0.3011 0.6751 0.3011 0 201.1814

0 0 1 −0.0484 0

0 −0.0013 0 0.3967 0

0.2355 −0.5279 −0.2355 0 −157.3239




A2 =




−0.8223 0 0.5279 0 1.0127

−0.3376 0.6751 0.3376 0 201.1814

0 0 1 −0.0484 0

0 −0.0013 0 0.3967 0

0.2640 −0.5279 −0.2640 0 −157.3239



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A3 =




−0.7980 0 0.5522 0 1.0127

−0.3150 0.6751 0.3150 0 201.1814

0 0 1 −0.0484 0

0 −0.0013 0 0.3967 0

0.2577 −0.5522 −0.2577 0 −164.5664




A4 =




−0.7980 0 0.5522 0 1.0127

−0.3531 0.6751 0.3531 0 201.1814

0 0 1 −0.0484 0

0 −0.0013 0 0.3967 0

0.2889 −0.5522 −0.2889 0 −157.3239




and Bi = B =




−1.2152

−251.8143

0

0

201.4515




The weighting functions ρi(θ(t)) are defined as combinations of θj (Hamdi et al.,

2012) and are given as follows:

ρ1(θ(t)) =
θ1(t)− θ1
θ1 − θ1

θ2(t)− θ2
θ2 − θ2

=
(θ1(t) + 0.018)(θ2(t) + 2.32)

0.167

ρ2(θ(t)) =
θ1(t)− θ1
θ1 − θ1

θ2 − θ2(t)

θ2 − θ2
=

(θ1(t) + 0.018)(2.32 − θ2(t))

0.167

ρ3(θ(t)) =
θ1 − θ1(t)

θ1 − θ1

θ2(t)− θ2
θ2 − θ2

=
(0.018 − θ1(t))(θ2(t) + 2.32)

0.167

ρ4(θ(t)) =
θ1 − θ1(t)

θ1 − θ1

θ2 − θ2(t)

θ2 − θ2
=

(0.018 − θ1(t))(2.32 − θ2(t))

0.167

Remark: Note that Parameters kmA and hv can be measured by the distinct

ways; For the measurement of hv (enthalpy of vaporization), let us consider that the

change of state of a pure substance is made with constant pressure P and constant

temperature T. The heat of the reaction corresponds to a change of enthalpy hv

since the pressure is constant. With constant pressure P, it is called latent heat of

state change. The molar enthalpy change of state or mass enthalpy change of state

corresponds to the amount of heat required per unit of amount of substance (mol)
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Figure 2: Parameters evolutions ρi

or mass (kg) of body so it changes state. For example, for the passage from the

liquid state to the vapor state, one speak about vaporization enthalpy (or latent

heat of vaporization). The latent heat or enthalpy (in Joules) can be expressed as

follows:

∆hv = nCp∆T

∆hv : variation of the heat of vaporization

∆T : variation of temperature

n : number of moles

Cp : average heat capacity

The molar latent heat or molar enthalpy (in Joules/mol) is given by

∆hmolar
v = ∆hv

n

By the way, we measure hv by measuring the temperature variations ∆T (with

constant pressure).
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The physical measurement method of the coefficient of mass transfer kmA

consists of measuring the oxygen concentration Ce before the entry of the reactor,

and the oxygen concentration inside the reactor CL. The liquid phase in the reactor

is assumed to be perfectly mixed. The coefficient kmA can be deduced from the

following expression:

kmA.V (C∗ − CL) = QL(CL − Ce)

C∗ : saturation of oxygen concentration in the liquid

CL : oxygen concentration inside the reactor

Ce : oxygen concentration before entering in the reactor

QL : liquid out-flow rate

V : liquid volume

6.1. Fault tolerant control design for a two-phase flash system

Let us consider an additive actuator fault signal f(t) affecting the polytopic

LPV descriptor system (6) defined as follows:

f(t) = 0, t < 15s

f(t) = 25sin(2.5t), 15s ≤ t < 25s

f(t) = 15, 25s ≤ t < 35s

f(t) = 0, t > 35s

The observer based control law given by the equations (11), is designed by solving

the LMI problem defined in the Theorem 1. One can check that the necessary as-

sumptions (A2) and (A3) are verified. Afterwards and according to the proposed

methodology defined in paragraph 4, matrices T1 and T2 can be computed from

equation (24). The gains matrices of the APO and the controllers are obtained by

solving the LMIs (29) with parameter value δ = 1, 442.
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L1 =




−0.7905 −0.7147 −2.1275

−174.7141 −231.1559 −537.6705

−12.8643 −0.8337 −0.7042

−0.3478 −12.4030 −0.2258

−233.1793 −222.3492 −118.8419




, L2 =




−1.5590 −1.5266 −2.7960

−437.1092 −507.7838 −786.0505

−13.0101 −0.9684 −0.8103

−0.3173 −12.3811 −0.1930

−213.1735 −202.8134 −115.9478




L3 =




−5.5749 0.3908 −4.6427

−307.8523 −332.0796 −549.2024

−14.1713 −2.8035 −2.1476

−3.0905 −13.3019 −2.4077

−122.3051 −68.0098 −94.6731




, L4 =




−0.0586 −1.0962 −1.4895

−163.1733 −149.9693 −511.7788

−12.6399 −0.6354 −0.3416

−1.0167 −12.8870 −2.1877

−201.5105 −114.0819 −93.7544




K1 =
[
−0.0382 −0.0429 0.0250 0 0.4862

]

K2 =
[
−0.0424 −0.0433 0.0281 0 0.4856

]

K3 =
[
−0.0395 −0.0430 0.0263 0 0.4860

]

K4 =
[
−0.0439 −0.0435 0.0295 0 0.4853

]

U =
[
−0.8457 2.9547 0.5406

]
, for i = 1, ..., 4

Simulations have been realized by applying a random noise with maximal mag-

nitude 0.01 in the output measurements. The actuator fault and its estimate are

depicted on Figure 3. One can see the good estimation of this time-varying actu-

ator fault by the use of the APO despite an additive noise. This actuator fault

estimation is also used into the control law given in (10) so as to make the sys-

tem robust against this actuator fault. Moreover, it should be noticed that the

fault estimation error ef (t) depicted in Figure 4 is zero-mean that underlines an

accurate fault magnitude estimation. Note that abrupt changes of the fault can

generate some peaks in Figure 4 at time 15s, 25s and 35s. Similar peaks have been
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Figure 3: Actuator fault and its estimated
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Figure 4: Fault estimation error ef (t)
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Figure 5: y1(t) of the system: nominal output, output without FTC and output with FTC

noticed into the example part of (Rodrigues et al., 2013) for the same reasons.

The Figures (5-7) illustrate a comparison between the outputs of the nominal

model (i.e. without any fault), the outputs of the faulty system without FTC

(with a classical control law by a state feedback) and finally the outputs with our

proposed FTC. It can be noticed that the outputs without FTC do not converge to

the nominal dynamic: it underlines that the system is perturbed by the actuator

fault and it is not robust against such faults. The proposed APO under the Fault

Tolerant control law (10) makes the system robust against actuator fault since the

outputs’s trajectories of the system with FTC reach the outputs of nominal model.
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Figure 6: y2(t) of the system: nominal output, output without FTC and output with FTC

For comparison, the nominal state feedback controller (without taking into account

faults occurrences) and the proposed FTC control are plotted simultaneously in

Figures (5-7). The FTC scheme can well accommodate the actuator fault. Here,

the Adaptive Polytopic Observer shows good results for the estimation of both

time-varying or abrupt actuator fault in spite of the presence of an additive noise.

An extension of this paper should consider Fault-Tolerant Control for Markovian

systems as in (Liu et al., 2011) with our FTC strategy.

7. Conclusion

In this paper, an actuator Fault Tolerant Control methodology to address poly-

topic LPV descriptor system has been studied. The FTC scheme is based on an

Adaptive Polytopic Observer that is able to simultaneously estimate time varying
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Figure 7: y3(t) of the system: nominal output, output without FTC and output with FTC

faults and state variables with a good accuracy. The stability analysis has been

formulated and solved within a set of linear matrix inequalities under equalities

constraints. The developed scheme has been applied to a two-phase flash system

with an additive actuator fault so as to illustrate the effectiveness of this method.
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