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This paper presents a new Fault Tolerant Control (FTC) methodology for a class of LPV descriptor systems that are represented under a polytopic LPV form. The aim of this FTC strategy is to compensate the effects of time-varying or constant actuator faults by designing an Adaptive Polytopic Observer (APO) which is able to estimate both the states of the system and the magnitude of the actuator faults. Based on the information provided by this APO, a new state feedback control law is derived in order to stabilize the system. Stability conditions of the designed observer and the state-feedback control are provided and solved through a set of Linear Matrix Inequalities (LMI) under equality constraints. The performance of the proposed Fault Tolerant Control scheme is illustrated using a two-phase flash system.

Introduction

As control of systems become more and more complex, the security remains a key point and the development of new control theory which integrate the faults that can occur on a system, are of a great interest. Fault Diagnosis [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF], [START_REF] Bokor | Fault detection and isolation in nonlinear systems[END_REF] and Fault Tolerant Control [START_REF] Blanke | Diagnosis and fault tolerant control[END_REF] have become challenging problems in the area of modern control theory. The concept of Fault Tolerant is based on the fact that when a fault (a sensor or an actuator for example) occurs on the system and provides an undesirable effect, the system can become unstable or be damaged. By the way, the basic idea of this concept is to be robust against such fault or to take into account the fault occurrence into a new control which will become tolerant to this fault by canceling its bad effects.

Fault Tolerant Control (FTC) techniques can be classified into two category (Zhang and Jiang, 2008): passive and active approaches. In passive FTC systems, a single controller with fixed structure or parameters is used to deal with all possible failure scenarios which are assumed to be known a priori. Consequently, the passive controller is usually conservative. Furthermore, if a failure that would not be considered in the design occurs, the stability and performance of the closed-loop system can not be guaranteed.

Such potential limitations of passive approaches provide a strong motivation for the development of methods and strategies for Active FTC (AFTC) systems [START_REF] Gao | Actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems[END_REF]. In contrast to passive FTC systems, AFTC techniques rely on a real time fault detection and isolation (FDI) scheme and a controller reconfiguration mechanism. Such techniques allow a flexibility to select different controllers according to different component failures, and therefore better performance of the closed-loop system can be expected.

However, this holds true when the FDI process does not make an incorrect decision [START_REF] Li | Stability guaranteed active fault-tolerant control of networked control systems[END_REF]. A FTC strategy is designed so as to reconfigure automatically the control law by ensuring the system stability and to get acceptable system performances [START_REF] Theilliol | Fault diagnosis and accommodation of threetank system based on analytical redundancy[END_REF], (Li et al., 2013). Observer based Fault Tolerant Control methods are also developed in order to estimate the fault and to reconfigure the control law [START_REF] Mao | Observer based fault-tolerant control for a class of nonlinear networked control systems[END_REF]. The authors in [START_REF] Witczak | Design of a fault-tolerant control scheme for takagi-sugeno fuzzy systems[END_REF] and [START_REF] Ichalal | New fault tolerant control strategies for nonlinear takagi-sugeno systems[END_REF] have developed a FDI/FTC strategy for regular Takagi-Sugeno (TS) systems where both the observer and the control are designed at the same time. However, all these previous above mentioned FTC technics are devoted only for normal (regular) systems whereas here in this paper, the main goal is to design an Active FTC strategy for descriptor (singular) systems.

Note that Takagi-Sugeno fuzzy systems have always used in the past membership functions that were computed by the fuzzy logic theory (Wang et al., 1996). But recently, both polytopic LPV systems and a part of fuzzy systems converge to a same structure. The community of people working on TS models uses the name "TS FUZZY systems" even if with the recent modeling approaches (for example sector nonlinearity transformation), the obtained model is no longer "fuzzy" because the weighting functions are completely deterministic which corresponds to LPV or quasi-LPV systems [START_REF] Nagykiss | State estimation of twotime scale multiple models. application to wastewater treatment plant[END_REF].

Generally speaking, most of control research works for physical systems, use a normal (or regular) model i.e. there is no algebraic relations between the system variables. However, Differential-Algebraic Equations (DAE) or implicit systems or singular systems or descriptor systems are of quite importance for the physical representation of some systems [START_REF] Lewis | A survey of linear singular systems[END_REF]. Such systems appear for example in electrical circuits, mechanical systems with holonomic or non holonomic constraints, robotic systems with kinematical constraints and chemical systems [START_REF] Mattson | Physical system modeling with modelica[END_REF]. Some practical problems must take into account physical constraints or algebraic relations and more generally impulsive behaviors caused by an improper transfer matrix: see the following books on singular systems [START_REF] Dai | Singular Control Systems[END_REF], [START_REF] Duan | Analysis and Design of descriptor Linear Systems Advances in Mechanics and Mathematics[END_REF].

Concerning FDI for descriptor systems, some authors have considered this problem as in [START_REF] Darouach | Design of observers for descriptor systems[END_REF], (Youssouf and Kinnaert, 1996) for the general linear case, (Astorga-Zaragoza et al., 2011), [START_REF] Wang | Observer design for discrete-time descriptor systems: An LMI approach[END_REF] for linear descriptor systems in discrete case by designing an observer trough LMI study. New recent works on robust H I nf inity control design by LMI for discrete-time descriptor systems can be found in [START_REF] Chadli | Novel bounded real lemma for discrete-time descriptor systems: Application to hinfinity control design[END_REF], [START_REF] Chadli | Further enhancement on robust h i nf inity control design for discrete-time singular systems[END_REF].

The concept of Linear Parameter Varying systems (LPV) allows the convenience associated with LTI models, and yet guarantees performance and stability over a more wide operating envelope. Some results about FDI have been developed for normal LPV systems as in [START_REF] Alwi | Fault reconstruction using a LPV sliding mode observer for a class of LPV systems[END_REF] by a sliding mode observer, [START_REF] Bokor | Detection filter design for LPV systems: a geometric approach[END_REF], [START_REF] Armeni | Robust fault detection and isolation for lpv systems under a sensitivity constraint[END_REF], [START_REF] Bokor | Fault detection and isolation in nonlinear systems[END_REF] with a geometrical approach. Nonlinear systems are sometimes represented by a LPV modelization [START_REF] Wu | Control of Parameter Varying Systems[END_REF], [START_REF] Wu | h ∞ and l 2 -l ∞ filtering for two-dimensional linear parameter-varying systems[END_REF], [START_REF] Bruzelius | Linear Parameter-Varying Systems an approach to gain scheduling[END_REF], [START_REF] Rodrigues | Sensor fault detection and isolation filter for polytopic LPV systems: A winding machine application[END_REF] in order to use the technique develop in the linear case like the tools for stability purposes as LMI Toolboxes.

In [START_REF] Wu | Passivity-based sliding mode control of uncertain singular timedelay systems[END_REF], [START_REF] Wu | State estimation and sliding-mode control of markovian jump singular systems[END_REF], the authors have developed a technique for state estimation and sliding-mode control of Markovian jump singular systems and also by considering time-delay in [START_REF] Wu | Sliding mode control with bounded l2 gain performance of markovian jump singular time-delay systems[END_REF]. In [START_REF] Li | Delay-range-dependent robust h∞ filtering for singular lpv systems with time variant delay[END_REF], the authors have developed a robust H ∞ filtering for singular LPV systems with time varying delays so as to estimate the states of the system but without any FDI purposes. In (Hamdi et al., 2012), the authors have developed a robust FDI method based on a multiple models concept. In [START_REF] Marx | Robust fault tolerant control for descriptor systems[END_REF], the authors have developed a robust fault tolerant control for descriptor systems but only with constant matrices. In the paper of [START_REF] Koenig | Observers design for unknown input nonlinear descriptor systems via convex optimization[END_REF], the author has introduced some useful necessary observability conditions for the design of unknown input observers for descriptor systems. A Fault Tolerant Control technique is presented for normal LPV systems under sensor faults in (Oca et al., 2011).

In (Hamdi et al., 2012), the authors have proposed a polytopic unknown inputs and proportional integral observers for LPV descriptor systems respectively. However, this technic can not ensure a correct fault estimation if the fault is time-varying. By this way, the authors in [START_REF] Rodrigues | Fault diagnosis based on adaptive polytopic observer for LPV descriptor systems[END_REF], have performed their previous works by designing an Adaptive Observer in order to take into account time-varying faults for descriptor LPV systems.

In a similar way, the authors in [START_REF] Wang | Actuator fault diagnosis: An adaptive observer-based technique[END_REF] have presented an adaptive fault diagnosis observer approach dedicated to regular LTI systems which can detect and estimate only constant faults. In (Zhang et al., 2008), the authors have performed this previous adaptive observer so as to estimate time-varying faults but only in a LTI case for regular systems.

In the papers (Rodrigues et al., 2005) and [START_REF] Rodrigues | Fault tolerant control design for polytopic LPV system[END_REF], the authors have developed an active FTC strategy to avoid actuator fault/failure effects on polytopic LPV systems; however FDI was not performed and was supposed to be available and perfect. Moreover, very few contributions are dealing with Fault Tolerant Control for polytopic LPV descriptor system with a FDI scheme designed at the same time. The main contributions of this paper are:

-To design an Adaptive Polytopic LPV Observer (APO) that can estimate time-varying actuator faults. Some previous Fault Detection and Isolation (FDI) technics presented in (Astorga-Zaragoza et al., 2011[START_REF] Astorga-Zaragoza | Fault diagnosis for a class of descriptor linear parameter-varying systems[END_REF] and in (Hamdi et al., 2012) can only deal with constant faults for LPV descriptor systems.

-To integrate the information provided by the APO into a new statefeedback design so as to cancel the actuator fault effects with Fault Tolerant Control (FTC). The FDI and FTC parts are designed at the same time whereas most of FTC strategies deal with normal LTI or LPV systems and assume that the FDI part is perfect and not designed. For LPV descriptor systems, such strategy has never been used.

-To ensure both the stability of the APO and the Fault Tolerant Control by LMI under equality constraints for LPV descriptor systems. So, in this paper, an integrated Fault Diagnosis (FD) and FTC design for polytopic LPV descriptor systems is provided. Polytopic LPV descrip-tor system is a particular class of LPV systems which allows describing the system as a convex combination of sub-models defined by the vertices of a convex polytope. These sub-models are then combined by convex weighting functions that yield to a global model. Using an Adaptive Polytopic Observer (APO) that is able to provide both states and actuator faults estimation, it is possible to address the Fault Diagnosis (FD), and at the same time to build a new control which take into account the actuator fault estimation. The use of such Adaptive Polytopic Observer is motivated by the fact that, if a fault occurs, it is important to quickly detect and estimate it in order to preserve the system performance in spite of the presence of fault. Moreover, this APO is able to estimate time-varying fault which was not possible with our previous paper (Hamdi et al., 2012) and nor with [START_REF] Astorga-Zaragoza | Fault diagnosis for a class of descriptor linear parameter-varying systems[END_REF]. Stability analysis and sufficient conditions are obtained with the use of Linear Matrix Inequality (LMI) under equality constraint. A lot of works dealing with quadratic stability have been done as in [START_REF] Cai | Efficient lmi-based quadratic stability and stabilization of parameter-dependent interval systems with applications[END_REF] by the use of LMI or also for fault detection purposes [START_REF] Zhang | Lmi-based fault detection fuzzy observer design with multiple performance constraints for a class of non-linear systems: Comparative study[END_REF].

The structure of this paper is organized as follows: in Section 2, the class of the LPV descriptor systems is presented. Section 3 describes the problem statement. A method of designing the Adaptive Polytopic Observer is described in Section 4. Fault tolerant control by state feedback is tackled in Section 5, Finally, and before concluding, a numerical example that considers a two-phase flash system, is used to assess the validity of the proposed approach.

Notations: For symmetric matrices X > 0 (X ≥ 0) indicates that X is positive definite (positive semi-definite). For any square matrix M, λ max (M) represents the maximum singular value of the matrix M. In a partitioned matrix, the star ′ * ′ denotes the terms induced by symmetry.

Polytopic LPV descriptor systems modeling

Consider the following continuous-time LPV descriptor representation in the fault-free case:

   E ẋ(t) = A(θ(t))x(t) + B(θ(t))u(t) y(t) = Cx(t) (1) 
where x(t) ∈ R n is the state vector, u(t) ∈ R p is the inputs vector, y(t) ∈ R m represents the measured outputs vector and θ(t) is a varying parameter vector. Matrix E ∈ R nxn may be singular and rank(E) = r < n.

It is assumed that all parameters θ i (t), i = 1, . . . , l are bounded, measurable as in [START_REF] Alwi | Fault reconstruction using a LPV sliding mode observer for a class of LPV systems[END_REF] and [START_REF] Rodrigues | Sensor fault detection and isolation filter for polytopic LPV systems: A winding machine application[END_REF], and their values remain in the domain of an hypercube such that [START_REF] Wu | Control of Parameter Varying Systems[END_REF]:

θ(t) ∈ Γ = {θ i | θ i ≤ θ i (t) ≤ θ i }, ∀t ≥ 0 (2)
where θ i and θ i represent the minimum and maximum values of θ i (t) , respectively.

A(•), B(•) are functions which depend affinely on the time-varying param-

eter vector θ(t) ∈ R l .
The matrices A(θ(t)), B(θ(t)) of the LPV system (1) with the affine parameter dependence ( 2) are represented such that:

A(θ(t)) = A 0 + l i=1 θ i (t) A i , B(θ(t)) = B 0 + l i=1 θ i (t) B i ∀θ(t) ∈ Γ (3)
The LPV system (1) with bounded parameters can be represented by a polytopic form where the summits S i of the polytope are defined such that [START_REF] Rodrigues | Fault tolerant control design for polytopic LPV system[END_REF]:

S i = A i B i C , ∀i ∈ [1, . . . , h] where h = 2 l .
The polytopic coordinates are denoted ρ(θ(t)) and vary within the convex set Ω:

Ω = ρ(θ(t)) ∈ R h , ρ(θ(t)) = [ρ 1 (θ(t)), ..., ρ h (θ(t))] T , ρ i (θ(t)) ≥ 0, ∀ i, h i=1 ρ i (θ(t)) = 1 (4)
Then, to ease the presentation, it is assumed that the matrices A(•) and B(•)

are given by convex combinations ∀t ≥ 0. Consequently, system (1) can be rewritten by a polytopic representation:

     E ẋ(t) = h i=1 ρ i (θ(t))(A i x(t)+B i u(t)) y(t) = Cx(t) (5) 
where A i ∈ R n×n , B i ∈ R n×p and C ∈ R m×n are time invariant matrices defined for the i th summit of the polytope.

Problem Statement

Let us consider an actuator fault on the previous descriptor system:

     E ẋ(t) = h i=1 ρ i (θ(t)) A i x(t) + B i (u(t) + f (t)) y(t) = Cx(t) (6) 
where A i ∈ R n×n , B i ∈ R n×p and C ∈ R m×n are time invariant matrices defined for the i th model. f (t) ∈ R p is the actuator fault vector. Actuator faults can be represented by an additive or a multiplicative external signal as in [START_REF] Rodrigues | Fault tolerant control design for polytopic LPV system[END_REF]. These malfunctions of an actuator can be represented by a faulty control input u f (t) = (I pγ)u(t) which can be rewritten as an external additive signal:

u(t) + f (t) where f (t) = -γu(t) with γ diag[γ 1 , γ 2 , . . . , γ p ], 0 ≤ γ k ≤ 1 such that    γ k = 1 → a total failure of the k th actuator k ∈ [1, . . . , p] γ k = 0 → the k th healthy actuator (7)
Note: in the following of the paper, γ k ∈ [0 1[ i.e a total loss of an actuator is not considered here. The term γ k represents the loss of effectiveness of k th actuator, i.e. for example a loss of effectiveness 60% of 1 st actuator will be represented by γ 1 = 0.60. When an actuator fault appears on the system, such actuator faults can cause system instability. Before starting the FTC design, we assume that [START_REF] Darouach | Design of observers for descriptor systems[END_REF], (Zhang et al., 2008) and (Hamdi et al., 2012):

Assumption A1: rank(CB i ) = rank(B i ) = p, ∀i = 1, . . . , h, Assumption A2: The triple matrix (E, A i , C) is R-observable, for all i = 1, . . . , h, i.e., rank   sE -A i C   = n, ∀s ∈ C. ( 8 
)
where C denotes the complex plane.

Assumption A3: The triple matrix (E, A i , C) is Impulse-observable, for all i = 1, . . . , h, i.e., rank

     E A i 0 E 0 C      = n + rank(E) (9) 
Assumption A4: The fault f (t) satisfies f (t) ≤ α 1 and the derivative of f (t) with respect to time is norm bounded i.e. ḟ (t) ≤ α 2 and

0 ≤ α 1 , α 2 < ∞.
Assumption A5: Only partial actuator faults are considered, i.e.,γ k ∈

[0 1[.

Noting that, the R-observability characterizes the capacity to reconstruct only the state of the dynamic part and the Impulse-observability guarantees the capacity to estimate the state of static part of the descriptor system (6).

The main objective of an Active FTC is to find a control law such that the system remains stable despite the presence of actuator faults [START_REF] Rodrigues | Fault tolerant control design for polytopic LPV system[END_REF], (Zhang and Jiang, 2008). For this purpose, a FDI procedure is necessary for estimating both the states and faults. In the following, an AFTC with a state feedback will be used such that:

u(t) = - h i=1 ρ i (θ(t))K i x(t) -f (t) (10)
The following section is dedicated to synthesize an adaptive observer for Polytopic LPV descriptor systems.

Adaptive Polytopic Observer Design

Consider the following Adaptive Polytopic Observer (APO) defined as:

                         ż(t) = h i=1 ρ i (θ(t))(N i z(t) + G i u(t) + R i y(t) + B i f (t)) x(t) = z(t) + T 2 y(t) ŷ(t) = C x(t) ḟ (t) = Γ h i=1 ρ i (θ(t))U i ( ėy (t) + σe y (t)) e y (t) = y(t) -ŷ(t) = Ce x (t) (11) 
where z(t) is the state vector, f (t) is an estimate of the fault f (t) and ŷ(t) = C x(t) is the estimated output vector. The matrix Γ ∈ R f is a symmetric positive definite learning rate matrix. N i , G i , R i and T 2 are unknown matrices of appropriate dimensions to be determined. In the case of actuator faults, the matrix F i of the Observer developed in [START_REF] Rodrigues | Fault diagnosis based on adaptive polytopic observer for LPV descriptor systems[END_REF] is equal to B i .

Let us define the following state estimation error e x (t) from ( 6) and ( 11) such that:

e x (t) = x(t) -x(t) = (I n -T 2 C)x(t) -z(t) (12) 
Since for rank

  E C   = n, there exists nonsingular matrices T 1 ∈ R n×n and
T 2 ∈ R n×m such that:

T 1 E + T 2 C = I n (13)
Then, the state estimation error ( 12) is described by:

e x (t) = T 1 Ex(t) -z(t) (14) 
and the actuator fault estimation error e f (t) is defined by

e f (t) = f (t) -f (t) (15) 
First, the state estimation error dynamic is given by:

ėx (t) = T 1 E ẋ(t) -ż(t) (16) 
By using ( 6) with the state feedback control law defined in (10), the equation ( 16) becomes after some calculations

ėx (t) = h i=1 ρ i (θ(t)) N i e x (t) + (T 1 A i -N i T 1 E -R i C)x(t) + (T 1 B i -G i )u(t) +(B i + T 1 B i -G i )e f (t) + (G i -B i )f (t) (17) 
Then, if the following conditions hold true ∀ i = 1, . . . , h:

T 1 A i -R i C -N i T 1 E = 0 (18) T 1 B i -G i = 0 ( 19 
)
and by taking into account ( 6), ( 11) and ( 16), the state estimation error dynamic can be written as:

ėx (t) = h i=1 ρ i (θ(t)) N i e x (t)+B i e f (t)+M i f (t) (20) 
with

M i = (T 1 -I n )B i .
The substitution of ( 13) into (18) yields to:

N i = T 1 A i + (N i T 2 -R i )C = T 1 A i + L i C (21) 
where

L i = N i T 2 -R i .
Without loss of generality, let consider equation ( 13), one can write the following relationship:

T 1 T 2   E C   = I n (22) 
A solution T 1 T 2 exists if [START_REF] Darouach | Design of observers for descriptor systems[END_REF], (Hamdi et al., 2012) :

rank   E C   = n (23)
Then, a particular solution of ( 22) using the generalized inverse matrix denoted by (•) + is given by:

T 1 T 2 =   E C   + (24) 
Based on a fault estimation given by the APO, the objective of AFTC scheme is to design a feedback control law such that the system remains stable even if a fault occurs. The following section is dedicated to the stability conditions of this AFTC based on an actuator fault estimation from the Adaptive Polytopic Observer.

Fault Tolerant Control by State-Feedback and Fault Estimation

The dynamic of the state estimation error (20) and the closed-loop system with the control law (10) are defined as follows:

ėx (t) = h i=1 ρ i (θ(t)) N i e x (t) + B i e f (t) +M i f (t) (25) E ẋ(t) = h i=1 h i=1 ρ i (θ(t))ρ j (θ(t)) Φ ij x(t) + B i K j e x (t) + B i e f (t) (26) 
with

N i = T 1 A i + L i C and Φ ij = (A i -B i K j ).
The goal is to ensure the stability of these two differential equations.

Stability analysis

In order to investigate the stability criteria, let us consider the following Lemma:

Lemma 1. (Zhang et al., 2008) Given a scalar µ > 0 and a symmetric positive definite matrix P 1 , the following inequality holds:

2x T y ≤ 1 µ x T P 1 x + µy T P -1 1 y x, y ∈ R n (27) 
In contrast to (Hamdi et al., 2012), here time-varying faults are considered. Then, it follows that ḟ (t) = 0 and consequently:

ėf (t) = ḟ (t) -ḟ (t) (28) 
Theorem 1. Under Assumptions A 1 to A 5 , given scalars σ, µ, β > 0, if there exists symmetric positive definite matrices X, Q, P 1 , P 2 and matrices W i and

S i such that, ∀ i ∈ [1, . . . , h], ∀ j ∈ [1, . . . , h]:            Θ ij B i W j B i 0 0 * -2δX 0 δI 0 * * -2δI 0 δI * * * Ω i Σ ij * * * * Υ ij            < 0 (29)
s.t.

E T P 1 = P T 1 E ≥ 0 (30) B T i Q -U i C = 0 ( 31 
)
where

Θ ij = (A i X -B i W j ) + (A i X -B i W j ) T (32) 
Ω i = (QT 1 A i -S i C) + (QT 1 A i -S i C) T + 1 µ P 1 (33) Σ ij = - 1 σ (A T j T T 1 Q -C T S T j )B i (34) Υ ij = - 1 σ (B T i QB j + B T j QB i ) + 2 σµ P 2 (35)
then, the state x(t) of the system, the state estimation error e x (t) and the fault estimation error e f (t) are bounded. The gains of the observer and the state feedback control law are given by

L i = Q -1 S i and K i = W i X -1 .
Proof 1. In order to prove the stability of the closed-loop system and the convergence of the state and fault estimation errors, let consider the Lyapunov function depending on x(t), e x (t) and e f (t):

V (t) = x T E T P 1 x + e T x (t)Qe x (t) + 1 σ e T f (t)Γ -1 e f (t) ( 36 
)
where P 1 , Q and Γ are symmetric positive definite matrices with appropriate dimensions. Stability condition for the estimation error yields that the time derivative of the Lyapunov function ( 36) should be negative definite. By taking into account the equations ( 25) and ( 26), the derivative of V (t) with respect to time is:

V (t) = h i=1 h i=1 ρ i (θ(t))ρ j (θ(t)) (E ẋ) T P 1 x + x T P T 1 E ẋ + e T x (t)[N T i Q + QN i ]e x (t) +2e T x (t)QM i f (t) + 2e T x (t)QB i e f (t) + 1 σ ėT f (t)Γ -1 e f (t) + 1 σ e T f (t)Γ -1 ėf (t) (37) 
By considering equations ( 30), ( 28) and the expression of f (t) in ( 11), we can obtain

V (t) = h i=1 h i=1 ρ i (θ(t))ρ j (θ(t)) x T (t)Π ij x(t) + e T x (t)Ω i e x (t) + 2e T x (t)QM i f (t) +2e T x (t)QB i e f (t) + 2x T P 1 B i K j e x (t) + 2x T P 1 B i e f (t) -2 σ e T f (t)U i ( ėy (t) + σe y (t)) + 2 σ e T f (t)Γ -1 ḟ (t) (38)
with e y (t) = Ce x (t) and the following notations

Π ij = Φ T ij P 1 + P 1 Φ ij (39) Ω i = N T i Q + QN i (40)
By using the equation ( 25), it follows that

V (t) = h i=1 h i=1 ρ i (θ(t))ρ j (θ(t)) x T (t)Π ij x(t) + e T x (t)Ω i e x (t) + 2e T x (t)QM i f (t) +2e T x (t)QB i e f (t) + 2x T P 1 B i K j e x (t) + 2x T P 1 B i e f (t) -2 σ e T f (t)U i CN j e x (t) -2 σ e T f (t)U i CB j e f (t) -2e f (t) T U i Ce x (t) -2 σ e T f (t)U i CM j f (t) + 2 σ e T f (t)Γ -1 ḟ (t) (41)
By using Assumption A 1 and the equality ( 31), it follows that

V (t) = h i=1 h i=1 ρ i (θ(t))ρ j (θ(t)) x T (t)Π ij x(t) + e T x (t)Ω i e x (t) + 2e T x (t)QM i f (t) +2x T P 1 B i K j e x (t) + 2x T P 1 B i e f (t) -2 σ e T f (t)B T i QN j e x (t) -2 σ e T f (t)B T i QB j e f (t) -2 σ e T f (t)B T i QM j f (t) + 2 σ e T f (t)Γ -1 ḟ (t) (42)
Now, using the Assumption A 4 and applying Lemma 1 for three terms of the above inequality, it comes that:

2e T x (t)QM i f (t) ≤ 1 µ e T x (t)P 1 e x (t) + µf (t) T (M T i QP -1 1 QM i )f (t) ≤ 1 µ e T x (t)P 1 e x (t) + µα 2 1 λ max (M T i QP -1 1 QM i ) (43) 2 σ e T f (t)Γ -1 ḟ (t) ≤ 1 σµ e T f (t)P 2 e f (t) + µ σ ḟ T (t)(Γ -1 P -1 2 Γ -1 ) ḟ (t) ≤ 1 σµ e T f (t)P 2 e f (t) + µ σ α 2 2 λ max (Γ -1 P -1 2 Γ -1 ) (44) -2 σ e T f (t)B T i QM j f (t) ≤ 1 σµ e T f (t)P 2 e f (t) + µ σ f (t) T (M T j QB i P -1 2 B T i QM j )f (t) ≤ 1 σµ e T f (t)P 2 e f (t) + µ σ α 2 1 λ max (M T j QB i P -1 2 B T i QM j ) (45) V (t) ≤ h i=1 h i=1 ρ i (θ(t))ρ j (θ(t)) x T (t)Π ij x(t) + e T x (t)Ω i e x (t) + 2x T P 1 B i e f (t) +2x T P 1 B i K j e x (t) -2 σ e T f (t)B T i QN j e x (t) -2 σ e T f (t)B T i QB j e f (t) + 1 µ e T x (t)P 1 e x (t) + 2 σµ e T f (t)P 2 e f (t) + δ ( 46 
)
where

δ = max i,j µα 2 1 λ max (M T i QP -1 1 QM i ) + µ σ α 2 2 λ max (Γ -1 P -1 2 Γ -1 ) + µ σ α 2 1 λ max (M T j QB i P -1 2 B T i QM j ) (47)
The inequality ( 46) can be reformulated as follows

V (t) ≤ xT (t) h i=1 h i=1 ρ i (θ(t))ρ j (θ(t))Ξ ij x(t) + δ (48)
where

x(t) =      x(t) e x (t) e f (t)      and 
Ξ ij =      Π ij P 1 B i K j P 1 B i * Ω i + 1 µ P 1 -1 σ B T i QN j * * Υ ij      (49) 
Υ ij = -1 σ (B T i QB j + B T j QB i ) + 2 σµ P 2 (50)
Then, by taking into account Assumption A 1 and if the following inequality

holds h i=1 h i=1 ρ i (θ(t))ρ j (θ(t))Ξ ij < 0 (51)
We can obtain that

V (t) ≤ -ε x 2 +δ ( 52 
)
where ε > 0 is given by

ε = min λ min - h i=1 h i=1 ρ i (θ(t))ρ j (θ(t))Ξ ij < 0 (53)
which can also be bounded as follows

ε ≤ min i,j λ min -Ξ ij < 0 (54)
Then, V (t) < 0 if ε x 2 > δ, ∀t ≥ 0 which means that the state x(t), the state estimation error e x (t) and the fault estimation error e f (t) converge to a small set according to Lyapunov stability theory and lie in it.

To complete the proof by considering ( 51), let us introduce the following notations

Z ξ = h i=1 ρ i (θ(t))Z i (55) Z ξξ = h i=1 h i=1 ρ i (θ(t))ρ j (θ(t))Z ij ( 56 
)
where Z ξ and Z ξξ are given matrices. By using these notations, the inequality (51) becomes

∆ ξξ =   Π ξξ D ξξ D T ξξ Λ ξξ   ( 57 
)
with

D ij = P 1 B i K j P 1 B i (58) Λ ij =   Ω i + 1 µ P 1 -1 σ B T i QN j * Υ ij   (59)
Consider a symmetric matrix X defined as

X =   P -1 1 0 0 X 1   , X 1 =   P -1 1 0 0 I   ( 60 
)
By considering that for any positive definite matrix P and for any full column rank matrix Q, then QP Q T is a positive definite matrix. Then, by post and pre-multiplying the inequality ( 57) by X , we can obtain

  P -1 1 Π ξξ P -1 1 P -1 1 D ξξ X 1 * X 1 Λ ξξ X 1   (61)
The term X 1 Λ ξξ X 1 can be replaced by considering the following inequality which holds for any scalar β such that

(X 1 + βΛ -1 ξξ ) T Λ ξξ (X 1 + βΛ -1 ξξ ) ≤ 0 ⇔ X 1 Λ ξξ X 1 ≤ -2βX 1 -β 2 Λ -1 ξξ (62)
Considering ( 62) and with the Schur Complement, the inequality (61) becomes

     P -1 1 Π ξξ P -1 1 P -1 1 D ξξ X 1 0 * -2βX 1 βI * * Λ ξξ      < 0 (63)
Using the notations ( 55), 56) and the definitions of the matrices Π ξξ , D ξξ and Λ ξξ given by ( 40), ( 58) and ( 59), by making the change of variables

X = P -1 1 , W i = K i X, S i = QL i ,

we can obtain the inequalities given in Theorem 1 under equality constraint (31) which ends the proof.

It can be noticed that the conservatism introduced by the use of a common lyapunov function could be reduced by the use of parameter-dependent lyapunov function so as to get others solutions [START_REF] Rodrigues | Sensor fault detection and isolation filter for polytopic LPV systems: A winding machine application[END_REF]). Another strategy based on the Polya's Theorem [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of polya's theorem[END_REF] could also be used even if the number of LMI to be solved will increase to reduce the conservatism.

Illustrative example

The proposed example considers a descriptor model of a two-phase flash system [START_REF] Ben-Zvi | Identifiability of non-linear differential algebraic systems via a linearization approach[END_REF] represented in Figure 1, in which a volatile component flashes out of a dilute binary mixture. It is assumed that the level control is nearly instantaneous and that the liquid and vapor phases are at the same temperature. Since only one component is volatile, the gas phase contains the pure volatile component. Accumulation of energy and matter in the gas phase are neglected because the mass of liquid in the flash vessel is considerably larger than the mass of gas.

The continuous isothermal reactor can be modeled by using a LPV descriptor representation as follows: where

   E ẋ(t) = A(θ(t))x(t) + B(θ(t))u(t) y(t) = Cx(t) (64) 
A(θ(t)) =            -Mw(Q L 0 -(kmA+θ 1 (t))) ρV 0 Mw(kmA+θ 1 (t)) ρV 0 Mwx 0 ρV -(kmA+θ 1 (t))(hv +θ 2 (t)) ρV Cp MwQ L 0 ρV (hv+θ 2 (t))(kmA+θ 1 (t)) ρV Cp 0 MwT 0 ρV 0 0 1 -1 H 0 0 -b (T 0 +c) 2 0 1 P 0 ln(10) 0 (kmA+θ 1 (t)) 2 (hv+θ 2 (t)) ρV Cp -(kmA+θ 1 (t))MwQ L 0 ρV -(kmA+θ 1 (t)) 2 (hv+θ 2 (t)) ρV Cp 0 -(kmA+θ 1 (t))Mw T 0 ρV            E =            1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0            , B(θ(t)) =            -Mwx Q ρv -MwT Q ρv 0 0 (kmA+θ 1 (t))MwT Q ρv            , C =      0 0 1 0 0 0 0 0 1 0 0 0 0 0 1     
where x l (t), x 2 (t), x 3 (t), x 4 (t) and x 5 (t) are the Liquid mole fraction of volatile component, Flash tank temperature, Equilibrium mole fraction, Pressure in flash tank and Liquid out-flow rate respectively. So, we get:

[x l x 2 x 3 x 4 x 5 ] T = [x L T x * P Q L ] T .
The system parameters are listed in the following Table 1. l = 2. As usually done in LPV framework and as in system (1), these parameters are assumed to be available as in [START_REF] Alwi | Fault reconstruction using a LPV sliding mode observer for a class of LPV systems[END_REF] or in [START_REF] Rodrigues | Sensor fault detection and isolation filter for polytopic LPV systems: A winding machine application[END_REF].

Variable

As there are 2 parameters which vary in this LPV descriptor system (64), then 2 2 = 4 models are considered as explained in Section 2. The parameters evolution functions ρ(θ(t)) vary within a convex set like in (4) and are depicted in Figure (2).

In this case, the descriptor polytopic LPV representation (64) can be rewritten as follows:

     E ẋ(t) = 4 i=1 ρ i (θ(t))(A i x(t)+ B i (u(t) + f (t)) y(t) = Cx(t) (65) 
The matrices of the system can be determined at the vertices of the polytope for extrema values of parameters ρ i . So, matrices A i are defined as follows: 

A 1 =            -0.
           A 2 =            -0.
           A 3 =            -0.
          
and

B i = B =            -1.2152 -251.8143 0 0 201.4515           
The weighting functions ρ i (θ(t)) are defined as combinations of θ j (Hamdi et al., 2012) and are given as follows: The physical measurement method of the coefficient of mass transfer k m A consists of measuring the oxygen concentration C e before the entry of the reactor, and the oxygen concentration inside the reactor C L . The liquid phase in the reactor is assumed to be perfectly mixed. The coefficient k m A can be deduced from the following expression:

ρ 1 (θ(t)) = θ 1 (t) -θ 1 θ 1 -θ 1 θ 2 (t) -θ 2 θ 2 -θ 2 = (θ 1 (t) + 0.018)(θ 2 (t) + 2.32) 0.167 ρ 2 (θ(t)) = θ 1 (t) -θ 1 θ 1 -θ 1 θ 2 -θ 2 (t) θ 2 -θ 2 = (θ 1 (t) + 0.018)(2.32 -θ 2 (t)) 0.167 ρ 3 (θ(t)) = θ 1 -θ 1 (t) θ 1 -θ 1 θ 2 (t) -θ 2 θ 2 -θ 2 = (0.018 -θ 1 (t))(θ 2 (t) + 2.32) 0.167 ρ 4 (θ(t)) = θ 1 -θ 1 (t) θ 1 -θ 1 θ 2 -θ 2 (t) θ 2 -θ 2 = (0.018 -θ 1 (t))(2.
k m A.V (C * -C L ) = Q L (C L -C e )
C * : saturation of oxygen concentration in the liquid 

Fault tolerant control design for a two-phase flash system

Let us consider an additive actuator fault signal f (t) affecting the polytopic LPV descriptor system (6) defined as follows:

f (t) = 0, t < 15s f (t) = 25sin(2.5t), 15s ≤ t < 25s f (t) = 15, 25s ≤ t < 35s f (t) = 0, t > 35s
The observer based control law given by the equations ( 11), is designed by solving the LMI problem defined in the Theorem 1. One can check that the necessary assumptions (A2) and (A3) are verified. Afterwards and according to the proposed methodology defined in paragraph 4, matrices T 1 and T 2 can be computed from equation ( 24). The gains matrices of the APO and the controllers are obtained by solving the LMIs (29) with parameter value δ = 1, 442. noticed into the example part of [START_REF] Rodrigues | Sensor fault detection and isolation filter for polytopic LPV systems: A winding machine application[END_REF] for the same reasons.

L 1 =            -0.
           , L 2 =            -1.
           L 3 =            -5
           , L 4 =            -0.
           K 1 = -0.
The Figures (5-7) illustrate a comparison between the outputs of the nominal model (i.e. without any fault), the outputs of the faulty system without FTC (with a classical control law by a state feedback) and finally the outputs with our proposed FTC. It can be noticed that the outputs without FTC do not converge to the nominal dynamic: it underlines that the system is perturbed by the actuator fault and it is not robust against such faults. The proposed APO under the Fault Tolerant control law (10) makes the system robust against actuator fault since the outputs's trajectories of the system with FTC reach the outputs of nominal model. An extension of this paper should consider Fault-Tolerant Control for Markovian systems as in [START_REF] Liu | Fault-tolerant control for nonlinear markovian jump systems via proportional and derivative sliding mode observer technique[END_REF] with our FTC strategy.

Conclusion

In this paper, an actuator Fault Tolerant Control methodology to address polytopic LPV descriptor system has been studied. The FTC scheme is based on an Adaptive Polytopic Observer that is able to simultaneously estimate time varying faults and state variables with a good accuracy. The stability analysis has been formulated and solved within a set of linear matrix inequalities under equalities constraints. The developed scheme has been applied to a two-phase flash system with an additive actuator fault so as to illustrate the effectiveness of this method.
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  Parameters k m A and h v are considered as varying variables denoted respectively θ 1 (t) and θ 2 (t) which vary such that: θ 1 ∈ [-0.018, 0.018] and θ 2 ∈ [-2.32, 2.32],

		Definition	Values/Units
		state x(t)	
	x L (t)	Liquid mole fraction of volatile component	-
	T (t)	Flash tank temperature	K
	x ⋆ (t)	Equilibrium mole fraction	-
	P (t)	Pressure in fash tank	KP a
	Q L (t)	Liquid out-flow rate	mol/s
		Input u(t)	
	Q(t)	Feed Flow rate	4, 377 mol/s
		Parameters	
	ρV	Mass of liquid	23.7 kg
	k m A	Mass-transfer coefficient	0, 12 ∓ 15% mol/s
	h v	Heat of vaporization	23, 24 ∓ 10% kJ/mol
		Known constants	
	C p	Average heat capacity	4.2 kJ/K.g
	M w	Average molecular weight of liquid	50 g/mol
	C v	Valve flow coefficient	16, 8 (kP a) -1/2 mol/s
	V	Liquid volume	19 m 3
	x Q	Volatile component mol-fraction in feed	1
	T Q	Temperature of feed	500 K
	H	Henry's Law constant	313 K
	P ref	Downstream pressure	10 KP a
	b	Antoine Equation constant	130.63 0 C -1
	c	Antoine Equation constant	23.426 0 C