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5Inria Bordeaux-Sud Ouest, EPC MC2, France, 6KU Leuven, Research Institute EnergyVille, Belgium.
laurent.krahenbuhl@ec-lyon.fr

Abstract—The surface impedance methods are among the most
efficient for solving time-harmonic eddy-current problems with a
small penetration depth. When the solution is required for a wide
range of frequencies (or material conductivities) the standard
approach leads to the solution of a complex-valued problem for
each frequency (or conductivity). Hereafter we introduce a close
method, parametrized by the skin depth (δ), based on a formal
asymptotic expansion. It provides accurate results with a reduced
computational cost for a wide range of δ values.

Index Terms—Surface impedance, asymptotics, parametric
solutions.

I. SURFACE IMPEDANCES

The classical surface impedance method allows to solve
approximately and quite accurately a time-harmonic eddy-
current problem in a conductor (with a linear magnetic be-
havior), when the skin depth δ is small compared to the
characteristic size D of the conducting parts of the device
under study [1]. If the boundary Σ of the conductor is regular
enough, one can compute the electromagnetic field in the outer
domain Ω by imposing a surface impedance condition on Σ:

curlH = Js in Ω, (1)
n×E = Zsn× (n×H) on Σ, (2)

Zs =
1 + j

σδ
, (3)

with H the magnetic field, Js the source current density, E
the electric field, n the outward normal, j the imaginary unit
and Zs the so-called surface impedance that depends on the
electric conductivity σ and δ. The finite element solution is
straightforward, e.g. in a 2D plane case, the vector potential
(A) formulation gives (A and J with only one component):

−∆A = µ0Js in Ω; A = α δ ∂nA on Σ; α =
j− 1

2
. (4)

If the frequency (or conductivity) is modified, the solution has
to be performed again.

II. ASYMPTOTIC EXPANSION AND PARAMETRIZATION

The solution to Problem (4) can be expanded in a formal
series in power of αδ as in [2]:

A =
∑
i>0

(αδ)iAi, (5)

where the coefficients are real-valued solutions to elementary
problems (6)–(7) independent of δ:

−∆A0 = µ0Js in Ω; A0 = 0 on Σ. (6)
∀i > 1, −∆Ai = 0 in Ω; Ai = ∂nAi−1 on Σ. (7)

In practice, the computation of only 2, or 3 terms (A0, A1, A2)
suffices to ensure high accuracy (see Section III). Furthermore,
the solution (4) for any new small value δ can be simply
reconstructed by combining linearly the pre-computed terms as
in (5); what amounts to a considerable gain in computational
time for sensitivity or parametric studies.

III. NUMERICAL EXAMPLE

Fig. 1. Domain Ω with A0 on the left. Flux vs. δ/D on the right.

A simple test case is represented in Fig. 1. We enforce a
flux at part of the boundary Σ of a conducting angle. The
first term of (5) is depicted in Fig. 1, left. The flux through
segment MN , Φ = A(M)−A(N), is shown as a function of
δ/D and compared to the exact solution in Fig. 1, right. The
approximate flux is observed to be accurate for δ/D < 15%.

At the conference, we will detail how we compute the 3
first orders based on 2 solutions with surface impedance for
2 distinct values of δ, δ1 and δ2. The 3 first orders seem to
provide an “accurate” behavior; see Fig. 1, right. We will also
discuss error estimates, the case of a linear magnetic conductor
and the 3D formulations.
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