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laurent.krahenbuhl@ec-lyon.fr Abstract-The surface impedance methods are among the most efficient for solving time-harmonic eddy-current problems with a small penetration depth. When the solution is required for a wide range of frequencies (or material conductivities) the standard approach leads to the solution of a complex-valued problem for each frequency (or conductivity). Hereafter we introduce a close method, parametrized by the skin depth (δ), based on a formal asymptotic expansion. It provides accurate results with a reduced computational cost for a wide range of δ values.

Index Terms-Surface impedance, asymptotics, parametric solutions.

I. SURFACE IMPEDANCES

The classical surface impedance method allows to solve approximately and quite accurately a time-harmonic eddycurrent problem in a conductor (with a linear magnetic behavior), when the skin depth δ is small compared to the characteristic size D of the conducting parts of the device under study [START_REF] Yuferev | Selection of the surface impedance boundary conditions for a given problem[END_REF]. If the boundary Σ of the conductor is regular enough, one can compute the electromagnetic field in the outer domain Ω by imposing a surface impedance condition on Σ:

curl H = J s in Ω, (1) n × E = Z s n × (n × H) on Σ, (2) 
Z s = 1 + j σδ , (3) 
with H the magnetic field, J s the source current density, E the electric field, n the outward normal, j the imaginary unit and Z s the so-called surface impedance that depends on the electric conductivity σ and δ. The finite element solution is straightforward, e.g. in a 2D plane case, the vector potential (A) formulation gives (A and J with only one component):

-∆A = µ 0 J s in Ω; A = α δ ∂ n A on Σ; α = j -1 2 . (4) 
If the frequency (or conductivity) is modified, the solution has to be performed again.

II. ASYMPTOTIC EXPANSION AND PARAMETRIZATION

The solution to Problem (4) can be expanded in a formal series in power of αδ as in [START_REF] Poignard | Approximate conditions replacing thin layers[END_REF]:

A = i 0 (αδ) i A i , (5) 
where the coefficients are real-valued solutions to elementary problems ( 6)-( 7) independent of δ:

-∆A 0 = µ 0 J s in Ω; A 0 = 0 on Σ. (6) ∀i 1, -∆A i = 0 in Ω; A i = ∂ n A i-1 on Σ. (7)
In practice, the computation of only 2, or 3 terms (A 0 , A 1 , A 2 ) suffices to ensure high accuracy (see Section III). Furthermore, the solution (4) for any new small value δ can be simply reconstructed by combining linearly the pre-computed terms as in ( 5); what amounts to a considerable gain in computational time for sensitivity or parametric studies. At the conference, we will detail how we compute the 3 first orders based on 2 solutions with surface impedance for 2 distinct values of δ, δ 1 and δ 2 . The 3 first orders seem to provide an "accurate" behavior; see Fig. 1, right. We will also discuss error estimates, the case of a linear magnetic conductor and the 3D formulations.

III. NUMERICAL EXAMPLE

Fig. 1 .

 1 Fig. 1. Domain Ω with A 0 on the left. Flux vs. δ/D on the right.