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Acceleration For Petri Nets

Jérôme Leroux⋆

LaBRI, Université de Bordeaux, CNRS

Abstract. The reachability problem for Petri nets is a central problem
of net theory. The problem is known to be decidable by inductive invari-
ants definable in the Presburger arithmetic. When the reachability set is
definable in the Presburger arithmetic, the existence of such an induc-
tive invariant is immediate. However, in this case, the computation of
a Presburger formula denoting the reachability set is an open problem.
Recently this problem got closed by proving that if the reachability set
of a Petri net is definable in the Presburger arithmetic, then the Petri
net is flat, i.e. its reachability set can be obtained by runs labeled by
words in a bounded language. As a direct consequence, classical algo-
rithms based on acceleration techniques effectively compute a formula in
the Presburger arithmetic denoting the reachability set.

1 Introduction

Petri Nets are one of the most popular formal methods for the representation and
the analysis of parallel processes [1]. The reachability problem is central since
many computational problems (even outside the realm of parallel processes)
reduce to this problem. Sacerdote and Tenney provided in [14] a partial proof of
decidability of this problem. The proof was completed in 1981 by Mayr [13] and
simplified by Kosaraju [8] from [13,14]. Ten years later [9], Lambert provided a
further simplified version based on [8]. This last proof still remains difficult and
the upper-bound complexity of the corresponding algorithm is just known to
be non-primitive recursive. Nowadays, the exact complexity of the reachability
problem for Petri nets is still an open-question. Even an Ackermannian upper
bound is open (this bound holds for Petri nets with finite reachability sets [2]).

Basically, a Petri net is a pair (T, cinit) where T ⊆ N
d × N

d is a finite set of
transitions, and cinit ∈ N

d is the initial configuration. A vector c ∈ N
d is called

a configuration. Given a transition t = (p,q), we introduce the binary relations
t
−→ over the configurations defined by x

t
−→ y if there exists v ∈ N

d such that
x = p + v and y = q + v. Notice that in this case y − x is the vector q − p.
This vector is called the displacement of t, and it is denoted by ∆(t). Let σ =

t1 . . . tk be a word of transitions tj ∈ T . We denote by ∆(σ) =
∑k

j=1
∆(tj), the

displacement of σ. We introduce the binary relation
σ
−→ over the configurations

defined by x
σ
−→ y if there exists a sequence c0, . . . , ck of configurations such that

c0 = x, ck = y, and such that cj−1

tj
−→ cj for every 1 ≤ j ≤ k. A configuration
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c ∈ N
d is said to be reachable if there exists a word σ ∈ T ∗ such that cinit

σ
−→ c.

The reachability set of a Petri net is the set of reachable configurations.
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Fig. 1. The Hopcroft and Pansiot net.

Example 1.1. The Petri net depicted in Figure 1 was introduced in [7] as an
example of Petri net having a reachability set which cannot be defined by a
formula in the logic FO (N,+), called the Presburger arithmetic. In fact, the
reachability set is equal to:

{

(p1, p2, p3, p4, p5) ∈ N
5 |

( p1 = 1 ∧ p4 = 0 ∧ 1 ≤ p2 + p3 ≤ 2p5 ) ∨
( p1 = 0 ∧ p4 = 1 ∧ 1 ≤ p2 + 2p3 ≤ 2p5+1 )

}

Recently, in [10], the reachability sets of Petri nets were proved to be al-

most semilinear, a class of sets that extends the class of Presburger sets (the
sets definable in FO (N,+)) inspired by the semilinear sets [5]. Note that in
general reachability sets are not definable in the Presburger arithmetic [7] (see
Example 1.1). An application of the almost semilinear sets was provided; a final
configuration is not reachable from an initial one if and only if there exists a
forward inductive invariant definable in the Presburger arithmetic that contains
the initial configuration but not the final one. Since we can decide if a Presburger
formula denotes a forward inductive invariant, we deduce that there exist check-
able certificates of non-reachability in the Presburger arithmetic. In particular,
there exists a simple algorithm for deciding the general Petri net reachability
problem based on two semi-algorithms. A first one that tries to prove the reach-
ability by enumerating finite sequences of actions and a second one that tries
to prove the non-reachability by enumerating Presburger formulas. Such an al-
gorithm always terminates in theory but in practice an enumeration does not



provide an efficient way for deciding the reachability problem. In particular the
problem of deciding efficiently the reachability problem is still an open question.

When the reachability set is definable in the Presburger arithmetic, the exis-
tence of checkable certificates of non-reachability in the Presburger arithmetic is
immediate since the reachability set is a forward inductive invariant (in fact the
most precise one). The problem of deciding if the reachability set of a Petri is de-
finable in the Presburger arithmetic was studied twenty years ago independently
by Dirk Hauschildt during his PhD [6] and Jean-Luc Lambert. Unfortunately,
these two works were never published. Moreover, from these works, it is difficult
to deduce a simple algorithm for computing a Presburger formula denoting the
reachability set when such a formula exists.

For the class of flat Petri nets [3, 12], such a computation can be performed
with accelerations techniques. A Petri net (T, cinit) is said to be flat if there exist
some words σ1, . . . , σk ∈ T ∗ such that for every reachable configuration c, there
exists a word σ ∈ σ∗

1 . . . σ
∗

k such that cinit

σ
−→ c. (A language included in σ∗

1 . . . σ
∗

k

is said to be bounded [4]). Acceleration techniques provide a framework for de-
ciding reachability properties that works well in practice but without termina-
tion guaranty in theory. Intuitively, acceleration techniques consist in computing
with some symbolic representations transitive closures of sequences of actions.
For Petri nets, the Presburger arithmetic is known to be expressive enough for

this computation. In fact, denoting by
σ∗

−→ the binary relation
⋃

n∈N

σn

−−→ where

σ ∈ T ∗, the following lemma shows that
σ∗

−→ can be denoted by a formula in the
Presburger arithmetic.

Lemma 1.2 ( [3]). For every word σ ∈ T ∗ and n ≥ 1, we have x
σn

−−→ y if, and

only if, the following formula holds:

∃x′,y′ x
σ
−→ x′ ∧ y − x = n∆(σ) ∧ y′ σ

−→ y

As a direct consequence, since the Presburger arithmetic is a decidable logic,
the following algorithm can be implemented by denoting the sets C with Pres-
burger formulas.

Acceleration(T, cinit)
(1) C← {cinit}

(2) while there exists c
t
−→ c′ with c ∈ C, t ∈ T and c′ 6∈ C

(3) select σ ∈ T ∗

(4) C← {y ∈ N
d | ∃c ∈ C c

σ∗

−→ y}
(5) return C

Naturally, when this algorithm terminates, it returns the reachability set.
Moreover, under a fairness condition on line (3), this algorithm terminates on
any flat Petri net. Basically, it is sufficient to assume that the infinite sequence of
words σ1, σ1, . . ., selected during repeated executions of line (3), contains, as sub-
sequences, all the finite sequences of words in T ∗. As a direct consequence flat
Petri nets have reachability sets effectively definable in the Presburger arith-
metic [12]. Recently, we proved that many classes of Petri nets with known



Presburger reachability sets are flat [12], and we conjectured that Petri nets
with reachability sets definable in the Presburger arithmetic are flat. In fact, the
following theorem shows that the conjecture is true. As a direct consequence,
classical tools implementing the previous acceleration algorithms always termi-
nate on the computation of Presburger formulas denoting reachability sets of
Petri nets when such a formula exists.

Theorem 1.3 ( [11]). A Petri net is flat if, and only if, its reachability set is

definable in the Presburger arithmetic.
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