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Abstract

We introduce a new constrained minimization problem that performs
template and pattern detection on a multispectral image in a compressive
sensing context. We use an original minimization problem from Guo and
Osher that uses L1 minimization techniques to perform template detec-
tion in a multispectral image. We first adapt this minimization problem
to work with compressive sensing data. Then we extend it to perform pat-
tern detection using a formal transform called the spectralization along a
pattern. That extension brings out the problem of measurement recon-
struction. We introduce shifted measurements that allow us to reconstruct
all the measurement with a small overhead and we give an optimality
constraint for simple patterns. We present numerical results showing the
performances of the original minimization problem and the compressed
ones with different measurement rates and applied on remotely sensed
data.

1 Introduction

The compressive sensing is a recent field of signal processing. It has been in-
troduced by Donoho [1] and Candès, Romberg and Tao [2]. The main idea is
that the acquisition and the compression steps are performed simultaneously
by taking a limited number of linear measurements on the signal. These linear
measurements are modelled as inner products against a signal x of size n:

yi = 〈φi, x〉, i = 1, . . . ,m (1)

where m is the number of linear measurements. This can be written y = Φx
where the φi’s are the columns of ΦT and Φ is referred to as the sensing matrix.
Recovering the signal x for the linear measurements y is a linear inverse problem
that has more unknowns than equations because m 6 n. But if the signal x is
sparse in a known basis, it can be recovered from the measurements. The signal
x is sparse in the orthonormal bases Ψ if we can decompose x as Ψu where u is
sparse. In that case, the following minimization problem involving a L0 norm1

recovers u.
argmin

u
‖u‖0 s.t. ΦΨu = y. (2)

Unfortunately, due to its combinatorial nature, that minimization problem is in-
tractable. Several methods have been proposed to find an approximate solution.

1The L0 norm just counts all the nonzero entries.
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Greedy approaches have been explored giving matching pursuit-like algorithms
(see [3, 4, 5, 6, 7, 8]). Another way to efficiently solve this problem is to con-
sider the closest convex problem that involves a L1 norm called the basis pursuit
problem [9]

argmin
u

‖u‖1 s.t. ΦΨu = y. (3)

The L1 norm just replaces the L0 norm. It is proved under certain circumstances
that the solutions of both problems coincides.

Multispectral imagery requires the acquisition of each band of the multi-
spectral image. In this regard, the compressive sensing paradigm becomes very
interesting since the standard acquisition process generates a huge flow of data
and thus requires a costly compression step. Some physical implementations
have already been proposed: the single-pixel hyperspectral camera [10] based
on digital micromirror device (DMD) or the Coded Aperture Snapshot Spectral
Imaging (CASSI) [11] based on two dispersive elements. Another benefit of such
a new acquisition paradigm is that the signal does not need to be fully recon-
structed before performing some processing task (see [12, 13]). That bypassing
technique has been applied to various hyperspectral image processing such as
spectral unmixing [14, 15, 16].

In this paper, we propose to apply it for signature detection in a multispec-
tral image. We build upon our previous work [17] that dealt with compressive
template detection and propose to extend it to perform compressive pattern
detection.

The outline of the paper is as follows. In section 2, we introduce the template
matching minimization problem of Guo and Osher and we bring elements of a
response that show why that minimization problem is succeeding. We then
briefly present how we solve this minimization problem and its variants. In
section 3, we explain how this minimization problem can be extended to work
with compressive data and we give a few numerical experiments demonstrating
the performance of the compressive template matching minimization problem.
In section 4, we study how we can extend the compressive template matching
minimization problem to perform compressive pattern matching and provide
numerical experiments. We give conclusions and perspectives in section 5.

2 Template matching

2.1 L1-based template matching

Template detection in a multispectral image is one of the first application when
dealing with multispectral data. It consists of locating a template within a
multispectral image. With the constant growing of the numbers of channels, this
problem becomes computationnaly challenging. Several algorithms have been
proposed so far to tackle down this problem, see [18] and references therein. On
a recent paper in [18], the following minimization problem is suggested:

argmin
u≥0

‖u‖1 s.t. ‖XTu− s‖2 < σ. (4)
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In this minimization problem, X is a matrix that stores the data collected by
multispectral sensors. Each column corresponds to a channel and each row is
the spectrum of a pixel. The vector s is the template we want to detect. We give
here intuitive arguments explaining why this minimization problem is working.
First, the term XTu can be interpreted as the linear combination of the rows
of X weighted by the vector u. So XTu is in fact a linear combination of the
pixels of X weighted by u. Moreover, the L1 norm promotes sparse solutions.
As a result, the minimization problem is looking for a reduced set of pixels
whose linear combination with coefficients in u yields s. There are three types
of solutions that satisfy that constraint:

• The solutions where u has a non-zero entry at every pixel of spectral
signature s. That way, we would have a linear combination of spectral
signatures approaching s which would give s.

• The solutions where u has a non-zero entry at some pixels of spectral
signature s but not all of them.

• The solutions that combine random pixels of X and nonetheless yields s.

The latter type of solutions is ruled out because the L1 norm of the corre-
sponding u is likely to be greater than 1. Solutions of the first two types are
then preferred. Figure 1 helps us to understand why solutions of the first type
are preferred. In Fig. 1a, we display the classic compressive sensing case where
the L1 minimization problem do find a sparse solution. Figure 1b illustrates the
case we are interested in where there are infinitely many solutions that minimize
the L1 norm and verify the constraint which are displayed in red. Some of the
solutions are sparse (the two red points on the axis in our case) and represent
solutions of the second type. The other solutions are less sparse but have the
same L1 norm and we observe that algorithms tends to select those solutions
that have the largest support among those that minimize the L1 norm. That is
why solutions of the first type are preferred.

u1

u2

(a) Classic compressive sensing
case

u1

u2

(b) Solutions to X
Tu = s mini-

mizing the L1 norm

Figure 1: Comparison with the classic compressive sensing case
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2.2 Numerical solution of the minimization problem

In the following sections, we will have to solve minimization problems of the
form (4) and to improve the results, we will add a regularization term based on
total variation. We then have the following minimization problem

argmin
u≥0

‖u‖1 + ‖u‖TV s.t. ‖Au− f‖2 < err, (5)

Those minimizations are special cases of the more general minimization problem

argmin
u≥0

‖φ(u)‖1 s.t. ‖Au− f‖2 < err, (6)

where φ is a linear operator that yields model (4) when equal to the identity or
model (5) when equal to





Id

Dx

Dy



 , (7)

where Id is the identity matrix and Dx and Dy are respectively the linear
operators giving the gradient along x and y.

Due to their simplicity and flexibility, we use split Bregman algorithms [19,
20] to solve these minimizations. We first apply the Bregman iteration to (6)
which gives







uk+1 = argmin
u≥0

‖φ(u)‖1 +
β1

2
‖Au− fk‖22 (8a)

fk+1 = fk + f −Auk+1 (8b)

with f0 = f . Then, we use a splitting technique (see [21, 19]) that introduces a
new unknown to solve each subproblem (8a).

argmin
u≥0,d

‖d‖1 +
β1

2
‖Au− fk‖22 s.t. d = φ(u). (9)

We then apply the Bregman iteration once more because we now have a con-
strained problem. We solve the minimization problem over u and d with an
alternating minimization by first minimizing with respect to u and then with
respect to d.











































ul+1 = argmin
u≥0

β1

2
‖Au− fk‖22

+
β2

2
‖dl − φ(u)− bl‖22

(10a)

dl+1 = argmin
d

‖d‖1 +
β2

2
‖d− φ(ul+1)− bl‖22 (10b)

bl+1 = bl + φ(ul+1)− dl+1 (10c)
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Solve: argmin
u≥0

‖φ(u)‖1 s.t. ‖Au− f‖2 < err

Data: φ,A, f, β1, β2, err
Result:
f0 := f ;
b0 := 0;
d0 := 0;
k := 0;

Dinv := (β1A
TA+ β2φ

Tφ)−1;
repeat

uk+1 := Dinv(β1A
T (f − fk) + β2φ

T (dk − bk));

uk+1 := max(uk+1, 0);

dk+1 := shrink(φ(uk+1) + bk, β2);

bk+1 := bk + φ(uk+1)− dk+1;

fk+1 := fk + f −Auk+1;
k := k + 1;

until ‖Auk+1 − f‖2 < err;

Algorithm 1: Constrained Split Bregman

If we limit the number of iterations to solve uk+1 to only one in equations (10)
and plug it back in equations (8), we finally have



















































uk+1 = argmin
u≥0

β1

2
‖Au− fk‖22

+
β2

2
‖dk − φ(u)− bk‖22

(11a)

dk+1 = argmin
d

‖d‖1 +
β2

2
‖d− φ(uk+1)− bk‖22 (11b)

bk+1 = bk + φ(uk+1)− dk+1 (11c)

fk+1 = fk + f −Auk+1 (11d)

The minimization problem (11a) is solved by first dropping the constraint u ≥ 0,
solving the resulting least square problem and then forcing the solution to be
non-negative. The minimization problem (11b) admits a closed-form solution
using the shrinkage operator shrink defined as follows

shrink(x, λ) = sgn(x) •max(0, |x| − 1

λ
), (12)

where the operator • is the entry-wise product.
The detailed algorithm is shown in Algorithm 1. In our experiments, we

take A = XT , f = s, err = 10−2, β1 = 1 and β2 = 1000.
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3 Compressive template matching

The previous template matching minimization problem needs the whole mul-
tispectral data cube to work. In this section, we propose a new minimization
problem working in a compressive sensing context where we only have access to
a small number of linear measurements on the multispectral image. The idea of
processing signals without reconstructing them first dates back to the work of
Davenport et al [12]. That bypassing idea has then been applied to multispec-
tral image processing problems such as unmixing. Here, we wish to reconstruct
the vector u solution of (4) without reconstructing the image first. This section
and the following ones extends the work done in a previous article [17].

3.1 Measurement model and problem formulation

We recall that the multispectral image is stored in a matrix X where each
column corresponds to a channel that is vectorized and each row is the spectrum
of a pixel. We will assume that the multispectral image has nP pixels and nB

bands. As a result, the matrix X has nP rows and nB columns. The acquisition
model is described as

M = FX, (13)

where F is a sensing matrix. This amounts to perform independently the same
measurements on each band of the image and store them is the corresponding
column of M . The sensing matrix F has to verify of few properties for the
recovering minimization problem to work. A popular one is the RIP condition
that is known to be verified by independent and identically distributed (iid)
Gaussian sensing matrix. However, these matrices are physically unrealistic and
one considers simpler matrices such as Bernouilli distributed ones or Hadamard
matrix. In this paper, we keep using Gaussian distributed sensing matrices as
a reference but also use Gaussian distributed circulant matrices that are much
more realistic from a physical point of view and that still are good sensing
matrix [22].

We then define the measurement rate p where 0 < p < 1 (also expressed as
a percentage), and what is its influence on the size of F . The measurement rate
p is the fraction of the overall data that we want to acquire. It means that the
number of elements of M is the number of elements of X multiplied by p. If
the matrix F is of size m × nP then the sensing matrix M is of size m × nB

and we have the relation

m · nB = p · nB · nP , (14)

which gives
m = p · nP . (15)

The number of rows of F is an integer so we will take m = ⌊p · nP ⌋ where ⌊·⌋ is
the operator mapping a number to its largest previous integer.
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The problem is then to solve the following minimization

argmin
u≥0

‖u‖1 s.t.

{

‖XTu− s‖2 < σ

M = FX
, (16)

where we add the constraint coming from the measurements. The problem is
to eliminate X from those two constraints since we no longer have access to the
multispectral data.

3.2 Compressive template minimization

One way to eliminate X from the two constraints XTu = s and M = FX

in (16) is to introduce a matrix between XT and u of the form F TA so we could
replace XTF T by MT and eliminate X. This matrix should theoretically be
equal to the identity. However that is impossible because F TA is not invertible.
Given a matrix F , we have to find a matrix A such that F TA ≈ InP

. In the
following, we will consider two candidates for A. The first candidate comes from
the observation that if F is a Gaussian distributed matrix, we have 1

m
F TF ≈

InP
as showed in [23]. We can then take A = 1

m
F and we will refer to this type

of matrix as type 1 (T1).
One other candidate for A is obtained by solving the following minimization

argmin
A

∥

∥

∥F
TA− InP

∥

∥

∥

F
, (17)

where ‖·‖F is the Frobenius norm which is basically the Euclidean norm of the
vectorized matrix. This is a well know problem involving the pseudo-inverse
of A. One can show that the solution writes A = (F T )+ where the + oper-
ator is the pseudo-inverse. Given that F is a sensing matrix, we will always
suppose that it is of full rank. In that case, A has an explicit formulation,
A = (FF T )−1F . However, that minimization does not help us determining F .

In fact, we can show that if F is of full rank, the norm
∥

∥

∥F
T (FF T )−1F − Inp

∥

∥

∥

F

is constant and is equal to
√
nP −m. Among all matrices of full rank F , some

are obviously better than others for a sensing matrix. For example, the matrix

F =
(

Im 0
)

, (18)

is a very bad candidate because we have

F T (FF T )−1F =

(

Im 0
0 0

)

, (19)

We note that the distance to Inp
is concentrated in a few entries which is why

this is a terrible choice for a sensing matrix. Rather, we would like the error to
be equally shared between all the entries of F . We then choose the max norm
instead of the L2 norm. Keeping (FF T )−1F as a possible candidate, we are
now interested in the minimization

argmin
λ

‖λF T (FF T )−1F − InP
‖∞, (20)
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0.6

0.8

1

1.2

1.4
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F
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−
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p
‖ ∞

Figure 2: λ minimizing maximum error

where ‖·‖∞ denotes the maximum norm. The solution is the right scaling of

the candidate (FF T )−1F so as to minimize the maximum error. If F is iid
Gaussian, we have already seen that FF T ≈ nP Im. We have also F TF ≈
mInP

. This suggests that λ = nP

m
. This is indeed what we find in Fig. 2 where

m = 30 and nP = 100, the minimum error is at λ ≈ 3 ≈ nP

m
.

We have two candidates. Type 1 (T1) is 1
m
F and type 2 (T2) is nP

m
(FF T )−1F .

Figure 3 depicts the maximum error for the two types of matrix A. We also try
two types of sensing matrix F : iid Gaussian and iid Gaussian circulant. Circu-
lant matrices are used as sensing matrices because it has been shown to be almost
as effective as the Gaussian random matrix for CS encoding/decoding [24, 22].
Even if candidate of type 1 come from a minimization of the Frobenius norm, it
is actually performing better than type 2. Quite surprisingly, the smallest error
is obtained when F is the first m rows of a circulant matrix generated from a iid
Gaussian vector. An intuitive explanation of this is that choosing a reduced set
of Gaussian coefficients for a circulant matrix (the first line only) rather than
a whole matrix reduces the chance of hitting a large number in absolute value
that would give a large inner product (an entry in FF T or F T (FF T )−1F ).
This large entry is then the final error since we are calculating the max norm.

From now on, we will consider matrix A of type 2. We can now eliminate
X from XTu = s and M = FX. We have

XT
(nP

m
F T (FF T )−1

)

Fu = s, (21)

and then, using M = FX, we have

MT (FF T )−1Fu =
m

nP

s. (22)
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Figure 3: Maximum error

The minimization problem then becomes

argmin
u≥0

‖u‖1 s.t. ‖MT (FF T )−1Fu− m

nP

s‖2 < σ′, (23)

with σ′ = nP

m
σ.

Finally, this minimization problem is a modified version of (4) but instead of
using XT we use the matrix MT (FF T )−1F that is an approximation of XT .

3.3 Numerical experiments

In this section, we illustrate both the regular template matching minimization
problem and its compressive counterpart onto two images. We test both mini-
mization problems with a measurement rate varying from 1 to 40 percent. In
both cases, once the algorithm finished, we apply the Lloyd-Max clustering algo-
rithm [25] on the recovered u to decide whether the detection is positive or not
for each pixel. We then count the number of errors by comparing the resulting
mask with the desired mask result. This reference mask is calculated manually
by choosing all the pixels that have a signature approaching the one we want to
detect. To improve the readability of the results, the images are inverted before
display. The algorithm runs in less than a minute on a classic computer.

9



The first image is a 64×64 color image of Giza, Egypt2 displayed in Fig. 4a.
The spectral signature s we want to detect is extracted from sandy areas. The
result of the template matching minimization (4) is shown in Fig. 4b. The
shape of all three sandy areas is well recovered. Figure 4c shows the compressive
template matching (23) with a L1 regularizer for a measurement rate of 30%.
We see that the detected pixels are scattered in the image. We improve the
detection by mixing the L1 regularizer with a geometrical one as we can see in
Fig. 4d where a TV/L1 regularizer is used.

(a) Original Giza color image (b) Template matching on Fig. a

(c) Compressive template match-
ing, 30% of data, L1 regularizer

(d) Compressive template match-
ing, 30% of data, TV/L1 regular-
izer

Figure 4: Signature detection on the Giza image

Figure 5 shows the results when the measurement rate is varying. As a
reference, the percentage of wrong detection of the template matching minimi-
zation (4) is 0.03 %. The minimization performs best when the sensing matrix is
Gaussian and the regularizer is TV/L1. Increasing the measurement rate after
10% does not improve much the detection. The more realistic case where the
sensing matrix is circulant is doing quite well when the measurement rate is
under 10%. Again, increasing the measurement rate after 10% does more harm
than good. On the contrary, the L1 regularizer shows a constantly decreasing
error rate as the measurement rate increases. Another indicator that shows
that Gaussian circulant sensing matrices are good sensing matrices is that pure
Gaussian sensing matrices perform only slightly better than Gaussian circulant
sensing matrices.

2Available at http://opticks.org/confluence/display/opticks/Sample+Data#SampleData
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Figure 5: Percentage of wrong detection for different measurement rate, sensing
matrix and regularizer on the Giza image
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The second multispectral image is extracted from the Moffett Field AVIRIS
multispectral image3. We selected 16 bands out of the 224 available and ex-
tracted a 64 × 64 image of interest shown in Fig. 7a. We would like to detect
the spectral signature of buildings shown in Fig. 6. Figure 7 shows some of
the results. As a reference, the percentage of wrong detection of the template
matching minimization (4) is 0.3 %.

Again, according to Fig. 8, the compressive template minimization performs
best when the sensing matrix is Gaussian and the regularizer is TV/L1. How-
ever, the difference is less obvious than in the previous experiment but we can
still see that TV/L1-based results show a better detection of connected objects.

0 5 10 15
0.2

0.4

0.6

0.8

Spectral bands

In
te
n
si
ty

Figure 6: Spectral signature of buildings

4 Compressive pattern detection

In the previous section, we developed a minimization problem to detect the
location of a known spectral signature from a limited number of measurements
without reconstructing the image. The purpose of this section is to generalize
that minimization problem to deal with pattern detection. We first introduce a
formal transform on a multispectral image called spectralization that depends
on the pattern P we wish to find. That formal transform essentially adds the
pattern information as spectral information in the new image. Then, we use the
previous minimization problem to detect signatures in this new image which are
in fact patterns in the original image. As we will see, we need to reconstruct
measurements because in fact we only have measurements on the original image
and not on the spectralized one.

4.1 Image spectralization along a pattern

We first have to define the structure of the pattern we wish to detect before
proceeding. It can be modelled as a finite subset of Z2. For example, if the

3Available at http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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(a) Moffett field image in false
color (b) Template matching on Fig. a

(c) Compressive template match-
ing, 30% of data, L1 regularizer

(d) Compressive template match-
ing, 30% of data, TV/L1 regular-
izer

Figure 7: Signature detection on Moffett field image

structure we are interested in is a 2 × 2 hook, the corresponding pattern as a
subset of Z2 will be represented as

i

j

(24)

We then need to fix an order on that subset. The first point which will serve
as a reference point is always the point (0, 0). The pattern’s structure is now a
n-tuple of couples. In the previous example, we choose

P = ((0, 0), (1, 0), (1, 1)). (25)

Now that we have an ordered structure of the pattern P , we can define the
spectralization of an image I with respect to P . Roughly speaking, the spectral-
ization of I is just stacked copies of I that are shifted according to the ordered
pattern we choose. This can be generalized to multispectral images. Let us first

13
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Figure 8: Percentage of wrong detection for different measurement rate, sensing
matrix and regularizer on the Moffett image
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introduce some definitions and convenient notations related to image shifting
and matrix stacking. We will then define the spectralized image of a grayscale
image and extend it to multispectral images.

Given an element p = (i, j) of Z2, we define the operator Sp on a matrix
which shifts all its entries by p. For example, the entry at (1, 1) is shifted to the
place (i+ 1, j + 1). More formally, if I is of size N × P we have

[Sp(I)]ab = I(a+i−1 mod N)+1,(b+j−1 mod P )+1. (26)

We have the obvious properties that S(0,0) is the identity, S(0,0) = id and that
composing Sp1

and Sp2
yields Sp1+p2

, Sp1+p2
= Sp1

◦ Sp2
. If the pattern’s

structure is
P = (p1, . . . , p|P |), (27)

with the convention that p1 = (0, 0), we will consider the |P | corresponding
shifting functions Sp1

= id, Sp2
, . . . , Sp|P |

where |P | denotes the number of ele-
ments of P .

The operator Sp is acting on I; the corresponding matrix acting on vec(I),
the vectorized version of the matrix I, is denoted Qp and we have

vec(Sp(I)) = Qp(vec(I)). (28)

Since the matrix Qp is a permutation matrix, it is orthogonal and we have

Q−p = Q−1
p = QT

p . (29)

We will also need to stack and merge matrices. If A and B are matrices
with the same number of rows, [A,B] will denote the concatenation of A and
B along their columns. If A and B are two matrices of the same size, A ∧B

will denote the 3-dimensional matrix obtained by stacking them along a third
dimension.

We can now give a precise definition of the spectralization of the matrix I

with respect to the pattern P = (p1, . . . , p|P |). It is a 3-dimensional matrix
obtained by stacking the matrices S−p1

(I), . . . , S−p|P |
(I). For example, if the

image I and the pattern P are defined as follows

I =





1 2 3
4 5 6
7 8 9



 , (30)

P = ((0, 0), (1, 0), (1, 1)) or

i

j

, (31)
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we have

S(0,0)(I) =





1 2 3
4 5 6
7 8 9



 = I, (32)

S−(1,0)(I) =





4 5 6
7 8 9
1 2 3



 , (33)

S−(1,1)(I) =





5 6 4
8 9 7
2 3 1



 . (34)

The spectralized image specP (I) of I with respect to the pattern’s structure
P is the 3-dimensional matrix [I ∧ S−(1,0)(I) ∧ S−(1,1)(I)]. In its linearized
form, we have specP (I) = [vec(I), vec(S−(1,0)(I)), vec(S−(1,1)(I))] which can
also be written [vec(I),Q−(1,0) vec(I),Q−(1,1) vec(I)] using (28). We then have
the following definition.

Definition 1. Given a gray-scale image I and a pattern structure P , the spec-
tralized image specP (I) is the matrix

[vec(I),Q−p2
vec(I), . . . ,Q−p|P |

vec(I)]. (35)

Using the previous example, we have

specP (I) =





























1 4 5
4 7 8
7 1 2
2 5 6

5 8 9
8 2 3
3 6 4
6 9 7
9 3 1





























(36)

Thus, if we want to detect the pattern
(

2 ⋆
5 6

)

, (37)

corresponding to the structure P in the image I, it suffices to look for the
signature (2, 5, 6) in the spectralized image (36).

Figure 9 shows the spectralization of a grayscale image. The pattern used is
shown in Fig. 9a. The spectralization of the image along this pattern is shown
in Fig. 9b. As in the previous example, we see that the spectralized image is
formed by copies of the original image put side by side. Each of these copies is
shifted.

Following the last writing of specP (I), we define the spectralized image of a
multispectral image X with respect to P .
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(a) Grayscale image (b) Spectralization along
the hook pattern

Figure 9: Spectralization of a grayscale image along the hook pattern

Definition 2. Given a multispectral image X and a pattern structure P , the
spectralized image specP (X) is the matrix,

[X,Q−p2
X, . . . ,Q−p|P |

X].

4.2 Measurements reconstruction

We have just established that a pattern detection on a multispectral image X

is equivalent to a signature detection on the spectralized image of X denoted by
specP (X). The problem is that we need measurements on specP (X) to solve
the minimization problem and the only measurements we have are on X. We
somehow have to reconstruct measurements on specP (X) based on X’s ones.

To measure the efficiency of the reconstruction of measurements, we intro-
duce the following ratio depending on a given pattern P

α(P ) =
effective measurements

virtual measurements
. (38)

The effective measurements are measurements performed on the real image.
These are measurements that we could use in our calculations. On the contrary,
virtual measurements are measurements on the fictive image specP (X) that
ought to be reconstructed from the effective ones. The ratio α(P ) measures how
many more measurements we need to make to fully reconstruct measurements on
specP (X). The ratio α(P ) has simple bounds. Indeed, one virtual measurement
requires at least one effective measurement to be reconstructed. As a result we
have α(P ) ≥ 1. On the other hand, one virtual measurement requires at most
|P | measurements on X because specP (X) has |P | times more bands than X.
We then have α(P ) ≤ |P |. In conclusion, we have

1 ≤ α(P ) ≤ |P |. (39)
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For example, if we wish to detect the hook pattern consisting of 3 pixels, we
have to make at most three times more measurements to reconstruct all virtual
measurements in order to apply the minimization. If we want a measurement
rate of 30% of the virtual image we need at most a 90% measurement rate on
the original image. Fortunately, this upper bound can be lowered by properly
choosing the measurements to make.

4.3 Reconstruction using shifted measurements

The first idea that comes to mind is to take measurements that are not indepen-
dent but shifted from one another. Indeed, a shifted measurement on a shifted
image could be the same as the original measurement on the original image.
One effective measurement could be used to reconstruct more than one virtual
measurement.

Let us first see how a measurement vector f that is shifted by a vector e
writes. Let B be the measurement matrix that is the 2-dimensional version of
the measurement vector f . We then have

vec(B) = f.

If the measurement matrix B is shifted by a vector e, it becomes Se(B). The
vectorized form is vec(Se(B)). According to (28), the shifted measurement
vector fe is then

fe = vec(Se(B))

= Qe vec(B)

= Qef. (40)

Suppose all our virtual measurements are a shifted version of one measure-
ment f . The shifting information is modelled as a subset E of Z2 containing the
point (0, 0). The point (0, 0) represents the original measurement. All the other
points represent shifted measurements of the original one. According to (29),
the measurements writes

me = (Qef)
T specP (X)

= fTQ−e specP (X),

for all e ∈ E. This can be written Mvirt = F virt specP (X) where

E = {e1, . . . , e|E|},

and

Mvirt =







me1

...
me|E|






and F virt =











fT

fTQ−e2
...

fTQ−e|E|











(41)
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Further, we have

Mvirt =











fT

fTQ−e2
...

fTQ−e|E|











[

X, Q−p2
X, . . . , Q−p|P |

X
]

=
(

fTQ−ei
Q−pj

X
)

1≤i≤|E|
1≤j≤|P |

=
(

(Qei+pj
f)TX

)

1≤i≤|E|
1≤j≤|P |

. (42)

In other words, to reconstruct Mvirt that gathers the results of measurements
on the virtual image specP (X), we need to take the shifted measurements rep-
resented by E′ = E + P where E + P denotes the set

{ei + pj | ei ∈ E, 1 ≤ i ≤ |E|, pj ∈ P, 1 ≤ j ≤ |P |} . (43)

Therefore, we choose

F eff =













fT

fTQ−e′
2

...
fTQ−e′

|E′|













, (44)

as an effective sensing matrix, so we have

Meff = F effX =













fTX

(Qe′
2

f)TX
...

(Qe′
|E′|

f)TX













. (45)

The matrix Meff gathers the measurements taken on the real image X by the
sensing matrix F eff and it contains all the information we need to reconstruct
the matrix Mvirt in (42).

We are now able to write the measurement reconstruction ratio

α(P ) =
|E + P |

|E| , (46)

which reflects the fact that we have to take |E + P | effective measurements to
reconstruct the |E| virtual ones.

Proposition 4.1. For a fixed pattern P we have

inf
E

|E + P |
|E| = 1.
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Proof. We already know that |E+P | ≥ |E| and hence |E+P |
|E| ≥ 1. Let R be a a

rows and b columns rectangle containing the pattern P . For n ≥ 1, let E be a
na rows and nb columns rectangle. It is easy to see that E+R is a (n+1)a− 1
rows and (n+ 1)b− 1 columns rectangle. Thus we have

|E +R|
|E| =

((n+ 1)a− 1) ((n+ 1)b− 1))

n2ab n −→ +∞
1.

This proposition suggests that we choose E so that |E| has the highest
possible value. Unfortunately, we have |E| ≤ |E+P | and the number of effective
measurements |E + P | is limited by the size of the image: we cannot take too
many measurements.

The problem is then to find the structure of E minimizing the ratio with |E|
bounded. For a fixed pattern P , the problem is

argmin
|E|=A

|E + P |
|E| . (47)

The problem (47) is a difficult one due to its combinatorial nature. Still, we
can solve it if the pattern P has a simple shape. Suppose that P is a rectangle.
To minimize α(P ), the measurement pattern E should also be a rectangle that
has the same shape as the pattern P . This result is formalized in the following
proposition. The details of the proof are shown in appendix.

Proposition 4.2. Suppose that the pattern P is a rectangle. Then, a measure-
ment pattern E such that |E| = A minimizing the ratio (46) is obtained when
E is rectangular-shaped and its height h minimizes the functional

(a− 1)

⌈

A

h

⌉

+ (b− 1)h,

where a and b are respectively the height and the width of P and ⌈·⌉ is the
operator mapping a number to its smallest following integer.

For example, suppose we wish to detect a rectangular pattern P of size 6×10
in a 128× 128 color image. The spectralized image is then of size 128× 128 and
has 6 × 10 × 3 = 180 bands. Suppose we want a 25% virtual measurement
rate, we then need 128 × 128 × 25/100 = 4096 different measurement vectors
according to (15). Given that we use shifted measurements, if E denotes the
shifting pattern of the virtual measurements, we have |E| = 4096. Accord-
ing to equation (46), we need to perform the effective measurements denoted
by the shifting pattern E + P to be able to reconstruct all the virtual mea-
surements. The pattern P is rectangular so to minimize α(P ) and according
to proposition 4.2 the measurement pattern E should be rectangular-shaped
and contained in a rectangle of height 50 and width 82. That way, we have
|E| = 4096 and E + P , as defined in (43), is obtained by shifting the pattern
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Data: Pattern P , Measurement rate p, Image X, Spectralized signature
s

Result:
Compute the measurement pattern E that minimizes α(P );
Generate a random measurement f ;
Take the effective measurements according to E + P ;
Reconstruct Mvirt from Meff;

Compute A = MT
virt

(F virtF
T
virt

)−1F virt;
Solve argmin

u≥0
‖φ(u)‖1 s.t. ‖Au− s‖2 < err;

Algorithm 2: Compressive Pattern Matching algorithm

E with every element of P . The pattern E + P is then rectangular-shaped and
contained in a rectangle of height 50 + 6 − 1 and width 82 + 10 − 1. More
precisely, we have |E + P | = 5001 which gives α(P ) ≈ 1.22. The effective
measurement rate is then 1.22 × 25 ≈ 31% which means that we have to take
effective measurements at a rate of 31% on the color image to be able to run
the pattern matching minimization problem with a 25% measurement rate on
the spectralized image.

4.4 Numerical experiments

In this section, we illustrate our compressive pattern matching minimization.
The detailed algorithm is described in Algorithm 2. Given the pattern P and
the measurement rate p, we first compute the measurement pattern E that
minimizes α(P ). For a rectangular-shaped pattern, the proposition 4.2 gives us
the optimal solution. For more complex patterns, if they are compact, they can
be approximated by their enclosing rectangle and the proposition 4.2 applies.
We then generate the effective measurements Meff from the shifting pattern
E + P and a random measurement f . The results of those measurements are
stored in Meff. We showed that Mvirt can be reconstructed from Meff: it
consists essentially in duplicating and reordering entries of Meff. However,
that process can be tricky to perform in an efficient way especially in Matlab.
For convenience and testing purposes, we rather build the spectralized image
specP (X) and compute Mvirt = F virt specP (X) to more easily get the matrix
Mvirt. Of course, given the size of specP (X) which can be huge, this method
shows its limits and we therefore limit ourselves to images of maximum size
64 × 64. The reconstructed Mvirt allows us to compute the matrix A that is
used in our algorithm. To improve the readability of the results, the images are
inverted before display. The algorithm runs in less than a minute on a classic
computer.

We first test our algorithm on a publicly available color image of Giza, Egypt.
We extract a 64 × 64 image shown in Fig. 13a and we want to detect the
locations where there is sand surrounded by vegetation. For that purpose, we
use a pattern whose shape is described in Fig. 10. The centre of the pattern
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i

j

Figure 10: Pattern to detect on the Giza image

detects the sand and the four other squares detects the vegetation. The pattern
is included in a square of size 12 × 12 so we use the measurement pattern as
stated in the proposition 4.2. The minimization problem is first tested for several
virtual measurement rates ranging from 1 to 40 percent. Figure 11 depicts the
effective measurement rate with respect to the virtual measurement rate for the
pattern. As pointed out by proposition 4.1, α which is the ratio of these two
values decreases to 1 as the virtual measurements increases.
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Figure 11: Effective measurement rate with respect to virtual measurement rate
for the pattern displayed in Fig. 10

Figures 13b, 13c and 13d show the results of the compressive pattern de-
tection algorithm for a virtual measurement rate of respectively, 10%, 20% and
30%. The locations are well recovered for a virtual measurement rate of 20%
and 30%. Only one target seems to be detected when a 10% measurement rate
is taken. More precisely, the graph in Fig. 12 describes the number of pattern
detection for various virtual measurement rate. We test two types of measure-
ments and for each effective measurement rate we take the average number of
errors of 10 minimizations. The random measurements serve as a reference since
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using them would require a huge effective measurement rate and thus totally
defeats the purpose of compressive sensing.
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Figure 12: Average number of pattern detection errors with respect to virtual
measurement rate

We then test the same image contaminated with Gaussian noise. Figure 14
sums up the our results. We fixed the virtual measurement rate to 20% and
add Gaussian noise ranging from 0 to 10%. The minimization problem appears
to be stable when it comes to Gaussian noise. This is not surprising since the
minimization without noise is operating on MT (FF T )−1F which is already a
noisy version of the original image XT .

On the next numerical experiments, we use a real-world multispectral image
collected by ACTIMAR as part of the HYPLITT project, supported by the
DGA (General Directorate for Armament), France. See [26]. The study site is
located in Quiberon Peninsula, on the West coast of France.

From the original image of size 316 × 302 with 160 bands, we extracted a
100×100 image and selected 12 bands. We wish to detect the checkered pattern
in the top left corner. This time, the structure of the pattern used is

P = ((0, 0), (0, 3), (0, 6),

(3, 0), (3, 3), (3, 6),

(6, 0), (6, 3), (6, 6))

(48)

Since the pattern structure is a scaled square, to minimize α(P ) the measure-
ment pattern should be a scaled square as well. The results of the different
minimizations are shown in Fig. 15. Figure 15a is the multispectral image in
false color. We first apply the template detection minimization (4) that is able
to recover the checkered structure. The compressive template detection minimi-
zation problem in Fig. 15c fails to detect the checkered structure. By contrast,
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(a) Giza image (b) Compressive pattern match-
ing, 10% of data

(c) Compressive pattern matching,
20% of data

(d) Compressive pattern match-
ing, 30% of data

Figure 13: Pattern detection on Peppers image

the compressive pattern detection minimization problem for a 30% measure-
ment rate shown in Fig. 15d clearly detects a checkered structured as described
by the pattern P .

5 Conclusions and perspectives

After a brief introduction of a new minimization problem from Guo and Os-
her that performs template matching on a multispectral image, we first provide
evidence that explains why that minimization problem is working. Then, we
extend it in several ways. We first show that this minimization problem can be
adapted to work with compressive sensing data. Basically, we obtained compa-
rable results but with limited number of measurements on the image. Then, we
extend the minimization problem to perform pattern detection with compressive
sensing data. For this purpose, we introduce a formal transformation called the
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Figure 14: Average error detection with respect to noise percentage for a fixed
measurement rate of 30%

spectralization that depends on the structure of the pattern we want to detect.
Numerical experiments are conducted on both synthetic and real-world images
that validates both approaches. Future work could consider choosing a sensing
matrix that could ease the computation of the matrix A in algorithm 2. This
would allow us to test our algorithms on larger images with a large number
of bands. In particular, we could consider circulant matrices and orthogonal
circulant matrices. One can also study if the recovery is better if the sensing
matrix is built with several different measurements that are then shifted instead
of only one.
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Proof of proposition 4.2. Without loss of generality, we suppose that the pat-
tern P is defined by

P = {(i, j), 0 ≤ i < a, 0 ≤ j < b} .

Let E be a measurement pattern such that |E| = A and let ni and mi be
respectively the number of elements of E + P and E of ordinate i. We have

∑

i∈Z

ni = |E + P | , (49)

25



(a) Original image in false color (b) Non-compressive template de-
tection

(c) Compressive template detec-
tion, 30% of data

(d) Compressive pattern detec-
tion, 30% of data

Figure 15: Pattern detection on multispectral image

and
∑

i∈Z

mi = |E| . (50)

We also remark that for all i ∈ Z and j ∈ {i, i− 1, . . . , i− a+ 1}, we have
{

mj = 0 if ni = 0,

ni ≥ mj + b− 1 if ni 6= 0.

If we set
(φa(u))i := max

k∈{i,i−1,...,i−a+1}
uk, (51)

we can write
{

(φa(m))i = 0 if ni = 0,

ni ≥ (φa(m))i + b− 1 if ni 6= 0.
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Summing ni for i ∈ Z, we have

|E + P | ≥
∑

i∈Z

(φa(m))i +
∑

i∈Z

ni 6=0

b− 1 (52)

≥
∑

i∈Z

(φa(m))i + (|m|+ a− 1)(b− 1). (53)

If we take the lower bound on the left side of the inequality for all possible
measurement patterns E such that |E| = A, we have

|E + P | ≥ inf
h≥1

[

inf
|m|=h

∑

i∈Z

(φa(m))i + (h+ a− 1)(b− 1)

]

. (54)

Using lemma .1 and plugging it back in (54) we have

|E + P | ≥ A+ (a− 1)(b− 1) + inf
h≥1

(a− 1)

⌈

A

h

⌉

+ (b− 1)h. (55)

Lemma .1. Let a be a non-negative integer, u a non-negative integer valued
sequence indexed by Z such that

∑

i∈Z
ui = A ≥ h and φ defined by (51). We

have

inf
|u|=h

∑

i∈Z

(φa(u))i = A+ (a− 1)

⌈

A

h

⌉

, (56)

and a minimizing sequence is

vi =











q + 1 if 0 ≤ i < r,

q if r ≤ i < h,

0 otherwise,

where q and r are respectively the quotient and the remainder in the Euclidean
division of A by h.

Proof. It is easy to show that v obeys

∑

i∈Z

vi = A and
∑

i∈Z

(φa(v))i = A+ (a− 1)

⌈

A

h

⌉

.

Then, it suffices to show that,

∑

i∈Z

(φa(u))i ≥
∑

i∈Z

(φa(v))i,

for all u such that |u| = h and
∑

i∈Z
ui = A ≥ h. Without loss of generality

we can suppose that the support of u is a contiguous subset of Z and that this
subset is J0, h− 1K. We then divide our problem into two cases:
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• If for all i, j ∈ J0, h− 1K, |ui − uj | ≤ 1, we have

∑

i∈Z

(φa(u))i ≥
∑

i∈Z

(φa(v))i. (57)

• If not, let i0 ∈ J0, h−1K be an index such that ui0 ≥ 2+ui for all i 6= i0. We
choose another index j0 distinct from i0 and we construct a new sequence
u′ corresponding to the measurement pattern E′ as follows

u′
i =











ui − 1 if i = i0,

ui + 1 if i = j0,

ui otherwise.

(58)

We remark that
∑

i∈Z

(φa(u))i ≥
∑

i∈Z

(φa(u
′))i.

By induction on ui0 we are reduced to the first case.

Thus, for all u such that |u| = h, we have

∑

i∈Z

(φa(u))i ≥ A+ (a− 1)

⌈

A

h

⌉

,

which concludes the proof.
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