
HAL Id: hal-00959620
https://hal.science/hal-00959620v1

Submitted on 17 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On IO-Copying and Mildly-Context Sensitive
Formalisms

Pierre Bourreau, Laura Kallmeyer, Sylvain Salvati

To cite this version:
Pierre Bourreau, Laura Kallmeyer, Sylvain Salvati. On IO-Copying and Mildly-Context Sensitive
Formalisms. Formal Grammar 2012, 2012, Opole, Poland. pp.1-16. �hal-00959620�

https://hal.science/hal-00959620v1
https://hal.archives-ouvertes.fr

On IO-copying and mildly-context sensitive formalisms

Pierre Bourreau1, Laura Kallmeyer2, and Sylvain Salvati1

1 Université Bordeaux 1

351, Cours de la Libération

33405 Talence Cedex, France

{bourreau,salvati}@labri.fr
2 Heine-Heinrich Universitat Dusseldorf

Universitatstr. 1

40225 Dusseldorf, Germany

kallmeyer@phil.uni-duesseldorf.de

Abstract. The class of mildly context-sensitive languages is commonly accepted

as fulfilling the requirements to describe natural language. Many formalisms are

known to generate languages which belong to this class, such as tree-adjoining

grammars, multiple context-free grammars or abstract categorial grammars. All

these formalisms share the property of being describe thanks to linear transfor-

mations, i.e. which avoid erasing or copying of material along derivations. We

show that restricted copying operations allow defining mildly context-sensitive

languages, thanks to the introduction of a new operation: IO-substition of lan-

guages.

Keywords: mildly context-sensitive languages, abstract families of languages, IO

substitution, PMCFG.

1 Introduction

The question of the amount of expressive power needed in order to deal with natural

languages is still an open question. In this context, the notion of mild-context-sensitivity

has been proposed. A grammar formalism is mildly context-sensitive if a) it is more

powerful that CFG, b) it generates only languages of constant growth, c) it can gener-

ate languages that describe a limited amount of cross-serial dependencies and d) it is

polynomially parsable. A well-known class of formalisms that is still mildly context-

sensitive is the class containing Linear Context-Free Rewriting Systems (LCFRS) and

equivalent formalisms such as Multiple Context-Free Grammars (MCFG), Minimalist

Grammar (MG) and set-local multicomponent Tree Adjoining Grammars (MCTAG).

This paper explores ways to characterize formally and linguistically interesting ex-

tensions of the class of LCFRL/MFCL that are still mildly context-sensitive. It follows

ideas from [Kal10] where a mildly context-sensitive LCFRS extension is defined that

allows for a limited amount of copying during derivations. The definition of this for-

malisms called Literal Movement Grammars of constant non-linearity (CNL-LMG) is,

however, based on properties of possible derivations in a grammar. Furthermore, it lacks

an independent characterization of the resulting class of string languages.

In this paper, we define first an operation on string languages that amounts to copy-

ing a substring into different places, called IO-substitution. The idea is roughly that we

generate some string w2 and a string w1 that contains several occurrences of a variable

x. This variable marks all the positions where the string w2 gets copied to. An impor-

tant point is that the string that gets copied does not increase while being copied. Once

we have such a copying operation, we define the closure of MCFL/LCFRL under this

operation as a new class IO-MCFL. We show that the languages in this class still have

the constant-growth property.

As an example, consider the languages (xd)∗x and a∗. IO-substitution of x in the

first language by all possible words from the second language means fixing a word an

from the second and replacing all occurrences of x in words from the first by an. As a

result, we obtain {(and)man |n,m ≥ 0} which is a generalization of the counting language

that is not a MCFL [Kal10].

In parallel to the definition of IO-substitution on strings, we then characterize pos-

sible rules in Literal Movement Grammars (LGM), an MCFG-extension, that describe

exactly the IO-subsitition operation. Based on this, a new grammar formalism is defined

that turns out to be mildly context-sensitive while being a proper extension of MCFG.

The structure of the paper is as follows: ... to be written ...

2 Preliminaries

2.1 Mildly context-sensitive languages

Let us consider a countable set Σ, called an alphabet. We write Σ∗ = (Σ, ·, ǫ) the (free)

monoid on Σ, where · is the operation of concatenation, and ǫ the identity element. Any

set L ⊆ Σ∗ is called a language on Σ.

Given a language L ∈ Σ∗, and w one of its elements (called words), we define the

usual notions of length and number of occurrences of a letter a ∈ Σ in w by induction

on w: |ǫ| = 0, |w| = 1 if w ∈ Σ and |w1 ·w2| = |w1|+ |w2|, for the length of w and |ǫ |a = 0,

|w|a = 1 if w = a, |w|a = 0 if w ∈ Σ − {a} and |w1 ·w2|a = |w1|a + |w2|a for the number of

occurrences of a in w.

The class MCSL of mildly context-sensitive languages [Jos85,Wei88] is defined as

the smallest set such that:

– MCSL contains all context-free languages.

– some restricted crossing-dependencies are taken in account by the languages L ∈

MCSL

– every language L ∈MCSL verifies the constant-growth property.

– every language L ∈MCSL is recognizable in polynomial-time.

The first property specifies that MCSL falls between the classes of context-free

languages and context-sensitive languages in Chomsky’s hierarchy: CFL ⊆MCSL ⊆

CSL. While vague, the second property ensures this class is bigger than the class of

context-free languages. Hence, these two properties are easily ensured when defining

some new formalisms.

This work mainly focuses on the last two properties. For the constant-growth prop-

erty, we consider the following definition [Kal10], which is stronger than the original

definition in [Wei88], and is based on the commonly-known notion of the Parikh image:

Notation 21 Let us consider an alphabet Σ and the vector space N|Σ |. Given a letter

a ∈ Σ and a vector −→v on N|Σ |, we note by −→v [a] the scalar of −→v on the coordinate

associated to a.

Definition 1. Let us consider a word w in a language L ⊆ Σ∗. The Parikh image of w,

written −→p (w) is such that, for every a ∈ Σ, −→p (w)[a] = |w|a. The Parikh image of L is

defined as −→p (L) = {−→p (w) | w ∈ L}.

Definition 2. A language L ∈ Σ∗ is said to verify the constant-growth property if there

exists a constant c ∈N−{0} such that, for every word w ∈ L verifying |w| > c, there exists
−→x ,−→y ∈ N|Σ | for which:

1. −→p (w) = −→x +−→y and

2. for every i ≥ 1, −→x + i−→y ∈ −→p (L).

The constant-growth property is a property weaker than the condition of semilin-

earity:

Definition 3. A set L of vectors on a vector space Nk is called a linear set if L = {−→x0 +

k1
−→x1+ . . .+ kn

−→xn | n ∈ N,k1, . . . ,kn ∈ N−{0}}.

A semilinear set is a finite union of linear sets.

Definition 4. A language L is said semilinear if −→p (L) is a semilinear set.

Many formalisms were created to generate languages that belong to MCSL, among

which are tree-adjoining grammars (TAGs) [JLT75], multiple context-free grammars

(MCFGs) [SMMK91], which will be introduced in the next section, or abstract catego-

rial grammars (ACGs) [dG01,Mus01]. It is known that the class of multiple context-free

languages (i.e. languages generated by MCFGs), which we will write MCFL, strictly

entails the class of tree-adjoining languages (i.e. languages generated by TAGs). Hence,

we consider MCFL as the best approximation of MCSL.

An important property of languages which belong to the class MCFL is that they

are semilinear. In this paper, we introduce the operation of IO-substitution on languages

in the class MCFL of languages; we will see that this operation allow the definition

of a new class of languages which are not semilinear, but verify the constant-growth

property.

2.2 Multiple context-free tree languages

In what follows, we define a multiple context-free language as the yield of a tree lan-

guage derived by a linear multiple context-free tree language (linear MCFTG). Thanks

to this definition, we will then prove that some specific MCFTGs are polynomial. The

tree languages derived by Linear MCFTGs are exactly the tree languages derived by ab-

stract categorial grammars[dG01,Mus01] of trees, and we write this class of languages

MCFTL.

In order to define the formalism of MCFTG, let us first define trees and tree contexts.

These objects will be defined as particular λ-terms types with simple types built on the

single type o: given an atomic type o, we define the set of types on o as the smallest set

To such that o ∈To and (α→ β) ∈To if α,β ∈To. Tthe usual convention of parenthesis

are taken: a type α1→ (α2→ α3) will be written α1→ α2→ α3. Given a type α ∈ To,

we define the order ord(α) by induction on α as ord(o) = 1, and ord(α1 → α2) =

max(1+ord(α1),ord(α2)).

Definition 5. An alphabet Σ is said typed if to every element a in Σ is associated a

type of To, written τ(a). A typed alphabet is called an n-order alphabet (where n ≥ 0) if

maxa∈Σ(ord(τ(a))) ≤ n.

In what follows, a type α→ . . .→ α
︸ ︷︷ ︸

n

→ γ ∈To will be abreviated into αn→ γ.

Given a typed alphabet Σ and n > 0, we note by Σn the smaller subset of Σ which

contains all the elements of Σ which associated type is of order less or equal to n.

Definition 6. Let us consider an enumerable typed alphabet Σ and a type α ∈ To. We

define Tα(Σ) the trees of type α on Σ as the smallest set such that:

– c ∈ Tα(Σ) if c ∈ Σ and τ(c) = α

– (t1t2) ∈ Tα(Σ) if t1 ∈ T
γ→α(Σ) and t2 ∈ T

γ(Σ).

The set T(Σ) of trees on Σ is defined as T(Σ) = To(Σ). Moreover, if Σ is 2-order, we

say that T(Σ) is a pure set of trees.

We take the usual conventions for parenthesis so that a tree (t1t2)t3 is written as

t1t2t3. The general form of a tree in T(Σ) is therefore ct1 . . . tn, where c ∈ Σ, τ(c) = α1→

. . .→ αn→ o and for every 1 ≤ i ≤ n, ti ∈ T
αi (Σ).

Given a type α ∈ To and a tree t ∈ Tα(Σ) and a ∈ Σ, we define |t|a as the number of

occurrences of a in t by induction on t: |a|a = 1, |c|a = 0 if c ∈Σ−{a}, and |t1t2|a = |t1|a|t2|a.

The yield function is a function which takes a tree t as its inputs and returns the

sequence of leafs of t from left to right. Formally, given a typed alphabet Σ, we define

yield : T(Σ) 7→ Σ∗, as yield(c) = c if c ∈ Σ, yield(t1t2) = yield(t2) if t1 = c ∈ Σ and

yield(t1t2) = yield(t1) · yield(t2) otherwise. We extend this notion to sets of trees:

given a set of trees L, yL = {yield(t) | t ∈ L}.

Definition 7. Let us consider a finite second-order alphabet Σ and a type α ∈ To. We

define the set Tα
[]

(Σ) of tree contexts of type α for T(Σ) as the smallest set of terms

such that λx1 . . . xn.t is in Tα
[]

(Σ) if X = {x1, . . . , xn} is a typed alphabet, where for every

1 ≤ i ≤ n, τ(xi) = αi, α = α1→ . . . ,→ αn→ o, and t ∈ T(Σ ∪X).

The set of tree contexts on (Σ) is defined by (Tα
[]

(Σ))α∈To . Finally, such a tree context

λx1 . . . xn.t is said:

– linear if |t|xi
= 1 for every 1 ≤ i ≤ n

– almost affine if for every 1 ≤ i ≤ n, |t|xi
> 1 iff xi ∈ Σ

1∪X1

Remark 1. In what follows, we will note trees by t, t′, t1, . . ., contexts by C,C′,C1,

Moreover, finite sequences of variables x1, . . . , xn will often be written as x, and identi-

cally, finite sequences of contexts of the form C1, . . . ,Cm will be noted by C.

It is important to remark that T(Σ) = To
[]

(Σ). Moreover, tree contexts are defined as

particular simply-typed λ-terms. In the rest of the document, we will take as granted the

usual notions of substitutions, α-conversion, β-reduction and η-conversions defined in

the simply-typed λ-calculus (see [Bar84,SU06] for details). These notions will be used

to define a tree context substition: given a typed alphabet X, σ = [x1 :=C1, . . . , xn :=Cn]

(where xi ∈ X and Ci ∈ T
τ(xi)

[]
(Σ) for every i ∈ {1, . . . ,n}) is a term substitution from

X to T[](Σ); the application of σ to a tree context C is defined as |C ·σ|β, i.e. the

normal form of the application of the λ-term substitution σ to the λ-term C. Finally,

we define the application of tree contexts C1, . . . ,Cn to a tree context λx1 . . . xn.t by

app(C,C1, . . . ,Cn) = |C · [x1 :=C1, . . . , xn :=Cn]|β.

Definition 8. An alphabet Σ is said multi-typed if to every element a in Σ is associated

a natural number n ∈ N, called the rank of a (written r(a)), and to every pair (a, i),

where a ∈ Σ and 1 ≤ i ≤ r(a) is associated a type in To (written τ(a, i))

We are in position of defining MCFTGs. These grammars can be seen as MCFGs

on tree contexts.

Definition 9. A multiple context-free tree grammar (MCFTG for short) is a tuple G =

(N,Σ,Y,P,S) where:

– N is a finite multi-typed alphabet of elements called non-terminals.

– Σ is a finite second-order alphabet of elements called terminals.

– Y is an enumerable typed alphabet of variables disjoint from Σ.

– S ∈ N is called the starting non-terminal of G and verifies r(S) = 1.

– P is a finite set of production rules of the form:

A0(C1, . . . ,Cr0
)→ A1(x1,1, . . . , x1,r1

), . . . ,An(xn,1, . . . , xn,rn)

where
• for very 0 ≤ i ≤ n, r(Ai) = ri.

• for every 1 ≤ k ≤ r, Ck ∈ T
αi

[]
(Σ ∪Y), where αi = t(A0,k).

• for every i ∈ {1, . . . ,n} and j ∈ {1, . . . ,ri}, xi, j ∈ Y is of type t(Ai, j) and verifies

Σ1≤k≤r0
|Ck |xi, j = 1. Moreover, given i1, i2 ∈ {1, . . . ,n} and j1 ∈ {1, . . . ,ri1 }, j2 ∈

{1, . . . ,ri2 }, we have xi1, j1 = xi2, j2 iff i1 = i2 and j1 = j2

Such a grammar is said linear (resp. almost affine) if for every rule π ∈ P of the

form A0(C1, . . . ,Cr0
)→ A1(x1,1, . . . , x1,r1

), . . . ,An(xn,1, . . . , xn,rn), the contexts C1, . . . ,Cr0

are linear (resp. almost affine).

Example 1. Let us consider the MCFTG G = (N,Σ,Y,P,S) where N = {S ,A1,A2}, Σ =

{a,b,c,d, ǫ,e, f }, and P is made of the following production rules:

S (ex1x2x3x4) → A1(x1, x3),A2(x2, x4)

A1(ǫ, ǫ)

A1(f ax1, f cx3) → A1(x1, x3)

A1(ǫ, ǫ)

A1(f bx2, f dx4)→ A1(x2, x4)

This MCFTG is a linear MCFTG. Moreover, r(S) = 1, r(A1) = r(A2) = 2 and τ(S ,1) =

τ(A1,1) = τ(A1,2) = τ(A2,1) = τ(A2,2) = o.

Definition 10. Given a MCFTG G = (N,Σ,Y,P,S), and a non-terminal A ∈ N of arity

r, we define the relation of derivation→∗
G

by:

1. if A(C1, . . . ,Cr) is a production rule in P, then→∗
G

A(C1, . . . ,Cn)

2. →∗
G

A(C1 ·σ, . . . ,Cr ·σ) if:
– σ is a substitution from Y to T[](Σ)

– there exists a rule A(C1, . . . ,Cr)→ A1(x1,1, . . . , x1,r1
), . . . ,An(xn,1, . . . , xn,rn) in P

– for every 1 ≤ i ≤ n, the relation→∗
G

Ai(x1,1 ·σ, . . . , xi,ri
·σ) is verified.

The language L(G) generated by a MCFTG G = (N,Σ,Y,P,S) is defined as the set

{t ∈ T[](Σ) | →∗
G

S (t)}. The class of tree languages MCFTL is defines as the smallest

set which contains every language derived by some MCFTG.

In the previous example, the language L(G) derived by the MCFTG G is

{c(f a(f a . . . f a
︸ ︷︷ ︸

m

ǫ)...)(f b(f b . . . f b
︸ ︷︷ ︸

n

ǫ)...)(f c(f c . . . f c
︸ ︷︷ ︸

m

ǫ)...)(f d(f d . . . f d
︸ ︷︷ ︸

m

ǫ)...) | n,m ∈ N}

Moreover, we can remark that yL(G) = {ambncmdn l n,m ∈ N} which is known to be a

MCFL. This result is generalized in the following theorem:

Theorem 1 ([dGP04,Kan06]). A language L belongs to MCFL iff there is a linear

MCTFG G such that yL(G) = L.

Finally, we give the following theorem related to the complexity of the recognition

problem of tree languages derived by a MCFTG.

Theorem 2 ([Kan07,Yos06], [BS11]). The recognition problem of an almost affine

MCFTG is LOGCFL.

Because the class of problems LOGCFL is a sub-class of the problem solvable in

polynomial-time, this theorem will be of particular importance so as to prove that the

new class of language we define in this article is recgnizable in polynomial time, and is

hence included in MCSL.

3 IO-substitutions, semilinearity and constant-growth

3.1 IO-substitution and copies

In this section, we introduce a new operation on languages, which we will use to de-

fine constant-growth languages. This operation, which we call IO-substitution enables

a specific kind of copying operation. Thanks to this operation, we want to capture some

languages which do not belong to MCFL, but still verify the constant-growth property,

as shown in [Kal10]:

Example 2. The language La,b{(a
nbn)m | n,m ∈ N− {0}} is not a MCFL. Nevertheless,

it is a semilinear language, as its Parikh’s image is {(1,1)+ k(1,1) | k ∈ N}.

The language Lcount = {(a
nd)man | n,m ∈N} is not a semilinear language, but verifies

the constant-growth property.

The language Lexp = {a
2n
| n ∈ N} is neither a semilinear, nor a language which veri-

fies the constant-growth property.

Interestingly, those languages are also known to be generated by IO-macro gram-

mars [Fis68b,Fis68a], in which copying operations are allowed in a specific way, which

we will not discuss in detail in this article. In brief words, Fischer makes a clean dis-

tinction between IO derivations, in which every copies of the same occurrence of a

non-terminal are replaced using the same rewriting rule, and an OI derivation, in which

such a constraint does not exist. For instance, let us consider a word w = α1Aα2Aα3,

where A does not appear in α1α2α3, and the two occurrences of A are supposed to result

from a copying operation. We consider the rewritings of A as w1 or w2. An IO deriva-

tion forces the two occurrences of A to be rewritten using the same rewriting rule; it

hence defines the language {α1wα2wα3 | w ∈ {w1,w2}}. An OI derivation would lead to

the derivation of the language {α1w′
1
α2w′

2
α3 | w

′
1
,w′

2
∈ {w1,w2}}. We use the same ideas

to define the IO-substitution on languages, as contrasted with the classic susbstitution,

which can be seen as an OI-substitution.

Definition 11. Let us consider an alphabet Σ and a variable x, and two languages

L1 ∈ (Σ∪{x})∗ and L2 ∈ Σ
∗. Given words w1 ∈ L1, w2 ∈ L2 and x ∈ χ, we define the word

w1[x := w2]IO ∈ Σ by induction:

– x[x := w2]IO = w2

– a[x := w2]IO = a if a , x

– ww′[x := w2]IO = w[x := w2]IOw′[x := w2]IO

The language L1[x := L2]IO is then defined as {w1[x := w2]IO ∈ Σ | w1 ∈ L1,w2 ∈ L2}.

Based on this operation, we can build the languages La,b and Lcount easily from

context-free languages. Indeed, given L1 = {x
n | n ∈ N − {0}} and L2 = {a

mbm | m ∈

N− {0}}, the language La,b is the language L1[x := L2]IO. In the same way, Lcount =

L′
1
[x := L′

2
]IO, where L′

1
= {(xd)mx | m ∈ N} and L′

2
= {an | n ∈ N}. On the other hand,

there is no trivial way to use the IO-substitution operation on context-free languages or

mildly context-sensitive languages to generate Lexp. One can also remark that L1,L2,L
′
1

and L′
2

are context-free languages, and are therefore semilinear languages (hence, ver-

ifiy the constant-growth property). It is therefore natural to investigate the conditions

under which semilinearity and the constant-growth propery are preserved by the IO-

substitution operation.

3.2 Preserving the semilinearity and constant-growth properties

In the previous examples, we have seen that the newly introduced operation of IO-

substitution allows, in some cases, building semilinear languages or constant-growth

languages from semilinear languages. We now investigate the conditions which allow

preserving these properties.

Definition 12. Let us consider a semilinear language L ⊆ Σ∗ and its Parikh image

p(L) =
⋃

i∈I S i (I ⊂ N finite), where for every i ∈ I,

S i = {
−−→vi,0+n1

−−→vi,1+ . . .+nri

−−→vi,ri
| n1, . . . ,nri

∈ N}

Given a ∈ Σ, L is said a-isolating if, for every i ∈ I, there exists a unique li ∈ {0, . . . ,ri}

such that:

– for every j ∈ {0, . . .rl},
−→vi, j(ka) , 0 iff j = li.

– for every c ∈ Σ −{a}, −−→vi,li (kc) = 0

Example 3. The language {xn | n ∈N} is obviously x-isolating. The language abx(a)∗x∗

is not x-isolating as its Parikh image is {(1,1,1)+n(1,0,0)+m(0,0,1) | n,m ∈N}. Finally,

the language (xa)∗x is not x-isolating, its Parikh image being {(0,1)+n(1,1) | n ∈ N}.

Remark 2. Given a language L ∈ Σ∗ and a ∈ Σ such that L is a-isolating, each linear set

S ∈ {S 1, . . . ,S l}, such that
⋃l

i=1 S i = p(L) can be written as:

Σi∈Ini
−→xi +nt

−→xt

where n0 = 1, t < I, for every i ∈ I ∪ {t} −→xi(ka) , 0 iff i = t, and −→xt(kc) = 0 for every

c ∈ Σ −{a}.

We now show that the IO-substitution of a letter a by a semilinear language, on a

a-isolating language generates a semilinear language.

Theorem 3. Given a semilinear language L1 ∈ (Σ∪{x})∗, x-isolating, and a semilinear

language L2, the language L1[x := L2]IO is semilinear.

Proof. Let us consider the language L = L1[x := L2]IO, and a word w ∈ L. By definition,

there exist w1 ∈ L1 and w2 ∈ L2 such that w = w1[x := w2]IO. Because L1 and L2 are

semilinear, for p(L1) and p(L2) the Parikh images of L1 and L2 respectively, there exist

linear sets S 1 ⊂ p(L1) and S 2 ⊂ p(L2) such that p(w1) ∈ S 1 and p(w2) ∈ S 2; hence:

– p(w1) ∈ {−→x0+n1
−→x1+ . . .+np

−→xp | n1, . . . ,np ∈ N}

– p(w2) ∈ {−→y0+m1
−→y1+ . . .+mr

−→yr | m1, . . . ,mr ∈ N}

Moreover, because L1 is x-isolating, we can write

p(w1) ∈ {Σi∈Ini
−→xi +nt

−→xt | for all i ∈ I∪{t},ni ∈ N and n0 = 1}

where t < I, I∪{t} = {0, . . . , p}, −→xi(kx) = 0 for every i ∈ I, and −→xt(kc) = 0 for every c ∈ Σ.

Then, by construction, the Parikh image of w can be written as

p(w) = −→z0 +n1
−→z1 + . . .+np

−→zp

where, for every i ∈ {0, . . . , p}, −→zi =
−→xi +
−→xi(kx)−→p (w2). Let us write −→xi(kx) = Ki, for every

i ∈ {0, . . . , p}

The Parikh image of w can be rewritten according to the following results:

1. −→zi =
−→xi , for every i ∈ I, because Ki = 0

2. −→zt = Kt
−→p (w2), because −→xt(ka) = 0 for every a , x. Hence,

−→zt = Kt(
−→y0+m1

−→y1+ . . .+mr
−→yr)

= Kt
−→y0+m1Kt

−→y1+ . . .+mrKt
−→yr

Finally,

p(w) ∈ {Σi∈Ini
−→xi +ntΣ j∈{1,...,r}m jKt

−→y j | ∀i ∈ {1, . . . ,r}, j ∈ I∪{t},mi,n j ∈ N}

∈ {Σi∈Ini
−→xi +ntΣ j∈{1,...,r}m j

−→y jt | ∀i ∈ {1, . . . ,r}, j ∈ I∪{t},mi,n j ∈ N}

∈ {Σi∈Ini
−→xi +Σ j∈{1,r}m j

−→
y′jt | ∀i ∈ {1, . . . ,r}, j ∈ I∪{t},mi,n j ∈ N}

belongs to a linear set.

Moreover, for w′ =w′
1
[x :=w′

2
]IO, where −→p (w′

1
) and −→p (w′

2
) belong to the same linear

sets as −→p (w1) and −→p (w2), it is easy to verify that −→p (w′) belongs to the same linear set as
−→p (w). The set of linear sets built in the proof is trivially finite because −→p (L1) and −→p (L2)

are finite. Hence L is a semilinear language.

We now show that the preservation of the constant-growth property is more direct,

as substituting a letter by a constant-growth language, in a constant-growth language

suffices.

Theorem 4. Given a constant-growth language L1 ⊆ (Σ∪{x})∗, and a constant-growth

language L2 ⊆ Σ
∗. The language L1[x := L2]IO is constant-growth.

Proof. Let us a consider a word w1 in L1, and a word w2 in L2. We note by k the number

of occurrences of x in w1 (i.e. −→p (w1)(kx) = k).

By definition of a constant-growth language, for every i ∈ {1,2}, there exists a con-

stant ci ∈ N such that, for every word w′
i
∈ Li verifying |w′

i
| ≥ ci, there exist −→x ,−→y ∈ N|Σ |

such that −→p (w′
i
) = −→x +−→y and, for every k ≥ 1, −→x + k−→y ∈ −→p (Li).

Let us first suppose |w2| ≥ c2. Then −→p (w1[x :=w2]IO)=−→z +k
−→
p′(w2)=−→z +k

−→
x′

2
+k
−→
y′

2
,

where −→z is the Parikh image of w1 on Σ, and
−→
p′(w2) is the Parikh image of w2 on the

same alphabet. By hypothesis, we can consider an integer i ≥ 1 and a word w′
2
∈ L2 such

that −→p (w′
2
) = −→x2+ i−→y2. Then, −→p (w1[x := w′

2
]IO) = −→z + k

−→
p′(w′

2
) = −→z + k

−→
x′ + ki

−→
y′ .

Otherwise, suppose |w2| < c2 and |w1| ≥ c1. Then −→p (w1) = x1 + y1, and given i > 1,

there exist a word w′
1
∈ L1 such that −→p (w′

1
) = −→x1+ i−→y1. We give k1 =

−→x1(x) and k2 =
−→y1(x).

Then

– −→p (w1[x := w2]IO) =
−→
x′

1
+ k1

−→
p′(w2)+

−→
y′

1
+ k2

−→
p′(w2)

– −→p (w′
1
[x := w2]IO) =

−→
x′

1
+ k1

−→
p′(w2)+ i

−→
y′

1
+ ik2

−→
p′(w2)

where given −→x a Parikh vector on Σ ∪{x},
−→
x′ is the same vector on Σ; and

−→
p′(w2) is the

Parikh image of w2 on the same alphabet.

As a conclusion, L1[w := L2]IO is a constant-growth language. We can consider the

constant associated to the growth of this language as c1c2.

Thanks to the two previous theorems, we proved that the constant-growth and semi-

linearity properties of languages can be preserved by the IO-substitution operation. In

the following section, we seek a class of languages bigger than MCFL which is in-

cluded in MCSL, by using this operation.

4 IO-Multiple Context-Free Languages

4.1 Definition

In the previous section, we proved some properties on the IO-substitution which

allows preserving the semilinearity or constant-growth properties. As mentionned in

the first section, we can consider the class of multiple context-free languages as the

biggest class approximating mildly context-sensitive languages. We now extend the

class MCFL by using the IO-substition operation.

Definition 13. We consider the family of IO-mildly context sensitive languages (writ-

ten IO-MCFL) as the smallest family such that L ∈ IO-MCFL if:

– L ∈MCFL or

– if L = L1[x := L2]IO where L1,L2 ∈ IO-MCFL.

Thanks to this definition, languages La,b and Lcount can be considered to belong to

IO-MCFL. The following theorem is a direct corrolary of Theorem 4.

Theorem 5. Every language L in IO-MCFL verifies the constant-growth property.

Proof. We proceed by induction on L. If L ∈ MCFL, the result is given by the fact

that L is semilinear. Otherwise, there exist L1 ∈ IO-MCFL and L2 ∈ IO-MCFL such

that L = L1[x := L2]IO. By induction hypothesis, L1 and L2 verify the constant-growth

property. According to Theorem 4, L is constant-growth.

In order to see if IO-MCFL is a better approximation of the class MCSL, we then

need to know if such languages are tractable in polynomial time. In order to do so, we

give a formalism which exactly captures the IO-MCFL class of languages, thanks to

the multiple context-free tree languages given in section 2.2.

4.2 IO-MCFGs as quasi-affine MCFTGs

As mentionned in section 2.2, the class MCFTL is connected to MCFL through

theorem 1. In what follows, we seek the characterization of some MCFTGs which yield

are exactly IO-MCFLs.

Intuitively, given a language L1 ∈ Σ ∪ {x}, where L1 and L2 are MCFLs, we can

remark that the letter x may have many occurrences in w1 ∈ L1. Given a MCFTG G1

such that yL(G1), the idea is too consider x not as a leaf in the trees derived by G1,

but by a variable which can be substituted by a word w2 ∈ L2. Therefore, we need

to build a MCFTG G′
1

such that t ∈ L(G1) iff λx.t ∈ L(G′
1
), and then apply a simple

S (x1x2)→ S ′
1
(x1),S (x2) where S ′

1
and S 2 are the starting non-terminals of G′

1
and G2

respectively.

Remark that, because x will now be considered as a variable, the contexts appearing

in the left-hand side of a production rule in G′
1

will not be linear anymore. But x being a

leaf, its type is τ(x) = o, and the contexts will therefore be almost affine, which still en-

sures the recognizability problem belongs to LOGCFL, hence to the class of problems

solvable in polynomial-time.

Definition 14. Given a MCFTG G = (N,Σ ∪ {x},Y,P,S) where τ(x) = α, we define the

MCFTG

abs(G, x) = (abs(N, x),Σ,abs(Y, x),abs(P, x),abs(S , x))

as follows:

– given a type α = α1 → . . .→ αn → α0 in To, we define abs(α, x) = τ(x)→ α1 →

. . .→ αn→ α0.

– for every A ∈ N, abs(A, x) = A such that r(A′) = r(A) and for every 1 ≤ i ≤ r(A),

t(A′, i) = abs(t(A, i), x). Finally, abs(N, x) = {abs(A, x) | A ∈ N}.

– y ∈ Y and τ(y) = γ in Y iff y ∈ abs(Y, x) and τ(y) = abs(y, x) in abs(Y, x).

– given a tree context C in T[](Σ ∪Y), we define abs(C, x) ∈ T[](Σ ∪ abs(Y, x)), as

λx.abs(C, x), where:

• abs(λy.C′, x) = λy.abs(C′, x), for C′ ∈ T[](Σ ∪Y})

• abs(c, x) = c for c < Y

• abs(y, x) = (yx), for y ∈ Y.

• abs(t1t2, x) = abs(t1, x)abs(t2, x).
Finally a rule

A0(C1, . . . ,Cr)→ A1(x1,1, . . . , x1,r1
), . . . ,An(xn,1, . . . , xn,rn)

belongs to P iff

A′0(C′1, . . . ,C
′
r)→ A′1(x′1,1, . . . , x

′
1,r1

), . . . ,A′n(x′n,1, . . . , x
′
n,rn

)

belongs to abs(P, x), where A′
i
= abs(Ai, x) and x′

i, j
= abs(xi, j, x) for every 0 ≤ i|eqn

and 1 ≤ j ≤ ri, and C′
k
= abs(Ck, x) for every1 ≤ k ≤ r.

The transformation given by abs intuitively result in considering x as a variable, on

which tree context substitutions can be applied. This is made explicit in the following

theorem.

Lemma 1. Given a MCFTG G = (N,Σ∪{x},Y,P,S), the language L(abs(G, x)) is equal

to {λx.C ∈ T[](Σ) | C ∈ L(G)}.

Proof. We consider the general form of a MCFTG so that the language derived is a

tuple of tree contexts, and We proceed by induction on the derivation of such a tuple

C ∈ L. Let us consider the last rule π used to derive C in G, which general form is:

A0(C1, . . . ,Cr)→ A1(x1), . . . ,An(xn)

If n = 0, then C = (C1, . . . ,Cr) and abs(π, x) = abs(A0, x)(C′
1
, . . . ,C′r), where for every

1 ≤ i ≤ r, C′
i
= abs(Ci, x). Moreover, C′

i
∈ T[](Σ) and C′

i
= λx.Ci by construction. The

tuple (λx.C1, . . . ,λx.Cr) is therefore recognized by abs(G, x).

If n, 0; by induction hypothesis, for every 1≤ k ≤ n, the following statement stands:

→∗
G

Ak(Ck,1, . . . ,Ck,rk
) iff→∗

abs(G,x)
abs(Ak, x)(λx.Ck,1, . . . ,λx.Ck,rk

). Therefore, given a

tree context substitution σ = [x1,1 := C1,1, . . . , x1,r1
:= C1,r1

, . . . ,Cn,1, . . . , xn,rn := Cn,rn],

such that C = (C1 ·σ, . . . ,Cr ·σ), we build σ′ = [x′
1,1

:= λx.C′
1,1
, . . . , x′n,rn

:= λx.C′n,rn
]

where x′
i, j

:= abs(xi, j, x) and C′
i, j

:= abs(Ci, j, x), for every 1 ≤ i ≤ n and every 1 ≤ j ≤ ri.

By construction, we obtain C = (λx.C1, . . . ,λx.Cr).

We now need to build the MCFTG which produces the substitution of x in a tree

context C1 derived in abs(G1, x) by a tree context C2 derived by G2. In particular, if

¢tau(x) = o, x may appear in the yield of any tree derived by G1, and replacing every

occurrence of x in t1 =C1 by the tree t2 =C2, resumes to yt1[x := yt2]IO.

First, we define disjunction of MCFTGs as follows: given two MCFTGs G1 =

(N1,Σ1,Y1,P1,S 1) and G2 = (N2,Σ2,Y2,P2,S 2), G1 and G2 are said disjoint if N1 ∩

N2 = ∅. Remark that such a relation implies P1∩P2 = ∅ and S 1 , S 2.

Definition 15. A MCFTG G is called an IO-MCFTG if

1. G is a linear MCFTG or

2. there exist G1 = (N1,Σ ∪ {x},Y1,P1,S 1) and G2 = (N2,Σ,Y2,P2,S 2), two disjoint

IO-MCFTGs, such that given G′
1
= (N′

1
,Σ,Y′

1
,P′

1
,S ′

1
) = abs(G1, x), G = (N′

1
∪N2∪

{S },Σ,Y′
1
∪Y2,P

′
1
∪P2∪{π},S) where:

(a) S < N′
1
∪N′

2
and r(S) = 1, t(S ,1) = o.

(b) π < P′
1
∪P2 and π = S (x1x2)→ S ′

1
(x1),S 2(x2).

We now prove that this formalism exactly captures tree languages which yield form

IO-MCFLs:

Theorem 6. A language L is a IO−MCFL iff there exists a IO−MCFTG such that

L = yL(G).

Proof. We proceed by induction on L. If L is a MCFL, there exists a linear MCFTG G

such that yL(G) = L, and G si a IO-MCFTG by definition. Conversely, for G a linear

MCFTG, yL(G) is a IO-MCFL. If there exist L1 ⊆ (Σ ∪{x})∗ and L2 ⊆ Σ
∗ two MCFLs,

such that L = L1[x := L2]IO, by induction hypothesis, there exist two MCFTGs G1 =

(N1,Σ ∪ {x},Y1,P1,S 1) and G2 = (N2,Σ,Y2,P2,S 2), which can be considered disjoint,

and such that L1 = yL(G1) and L2 = yL(G2). According to Lemma 1, L(abs(G1, x)) =

{λx.t ∈ To→o
[]

(Σ) | t ∈ L(G1)}. We consider the grammar

G = (abs(N1, x)∪N2∪{S },Σ,abs(Y1, x)∪Y2,abs(P1, x)∪P2{π},S)

such that S < abs(N1, x)∪N2 and π= S (x1x2)∪abs(S 1, x)(x1),S 2(x2). A t tree is recog-

nized by this grammar iff there exist t1 ∈ L(G1) and t2 ∈ L(G2) such that t = app(t1, t2)

which is the result of substituting every occurrence of x in t1 by t2. Finally, yL(G) =

{w1[x := w2]IO ∈ Σ | w1 ∈ L1,w2 ∈ L2}. Conversely, the yield of the language of an IO-

MCFTG is an IO-MCFL.

It now suffices to show that the recognizability problem in this formalism can be

solved in polynomial-time, which is a direct consequence of the following lemma.

Lemma 2. If G is an almost affine MCFTG, then abs(G, x) is an almost affine MCFTG.

Proof. In order to prove this property, it suffices to prove that, given an almost affine

tree context C in T[](Σ ∪ {x}), λx.abs(C, x) is a tree context in T[](Σ). Therefore, given

the general form λx
α1

1
. . . x

αn
n .t of C, if a variable yα < Σ ∪ {x}) verifies |C|y , 1 then

there exists 1 ≤ j ≤ n such that y = x j and α j = o. Moreover, x might have a number of

occurrences in C different from 0, which implies the same property is verified on λx.C,

which therefore remains almost affine.

Corollary 1. The recognition problem of an IO-MCFL belongs to LOCGCFL.

As a conclusion, we proved that MCFL (IO-MCFL ⊆ MCSL. This new class

of languages can therefore be taken as the best approximation of the class of mildly

context-sensitive languages.

While we proved that the recognition problem can be solved in polynomial-time,

we next prove some usual properties taken to test the robustness of parsing in a given

formalism, so as to explore additional proeprties of IO-MCFL.

4.3 Closure properties

In what follows, we study other properties enjoyed by IO-MCFLs. In particular, we

are interested in the usual closure properties so as to know whether IO-MCFLs define

a full abstract family of languages.

Definition 16. A family of languages L is called a (full)-abstract family of languages

(written (full)-AFL) if L is closed by homomorphism, inverse homomorphism, intersec-

tion with a regular set, union, concatenation and the Kleene star.

In what follows, we show that most of this properties are verified.

Remark 3. A language L ∈ MCFL can be written L = L[x := L′]IO, where x has no

occurrence in L. The general form a IO-MCFL is therefore L′[x := L′′]IO

Definition 17. Given an alphabet Σ, a function H : Σ 7→ Σ is called a renaming.

Lemma 3. The family IO-MCFL is closed by renaming.

Proof. Trivial.

The next closure properties are verified through direct proofs.

Theorem 7. The family IO-MCFL is closed by homomorphism, union, intersection,

concatenation and the Kleene star.

Proof. Let us consider L,L1,L2 ∈ IO-MCFL, languages built on the alphabet Σ:

– we consider a homomorphism H : Σ∗ 7→ Σ∗, and show that H (L) ∈ IO-MCFL by

induction on L. If L is a MCFL, the property is verified as the family of MCFLs is

an AFL. Otherwise, there exist L1,L2 ∈ IO−MCLF such that L = L1[x := L2]IO;

then H (L) = H (L[:=L]I O). We built the L′
1
= F (L1), where F is a sym-

bol replacement such that F (x) = x′ and H (x′) = x′; F (a) = a otherwise. Then

L1[x := L2]IO = L′
1
[x′ := L2]IO, and H (L) =H (L′

1
[x′ := L2]IO) =H (L′

1
)[x :=

H (L2)]. By induction hypothesis, H (L′
1
),H (L2) ∈ IO-MCFL and by construc-

tion, H (L) ∈ IO-MCFL.

– We show that L1∪L2 ∈ IO-MCFL. We can consider the general form Li = L′
i
[xi :=

L2]IO, for i ∈ {1,2}. Moreover, x1 and x2 can be renamed so that x1 (resp. x2) has

no occurrence in L2 (resp. L1). Then

L1∪L2 = L′1[x1 := L′′1]IO∪L′2[x2 := L′′2]IO

= ((L′1∪L′2)[x := L′′1]IO)[x := L′′2]IO

= ((L′1∪L′2)[x := L′′2]IO)[x := L′′1]IO

and L′
1
∪L′

2
is a IO−MCLF by induction hypothesis (the result is given in the case

L′
1

and L′
2

are MCFLs), which implies L1∪L2 is a IO-MCFL by construction.

– We show that L1∩L2 ∈ IO-MCFL, in a similar way:

L1∩L2 = L′1[x1 := L′′1]IO∩L′2[x2 := L′′2]IO

= ((L′1∩L′2)[x := L′′1]IO)[x := L′′2]IO

= ((L′1∩L′2)[x := L′′2]IO)[x := L′′1]IO

and L′
1
∩L′

2
is a IO−MCLF by induction hypothesis, (the result is given in the case

L′
1

and L′
2

are MCFLs) which implies L1 ∩ L2 belongs to IO-MCFL by construc-

tion.

– we show L1 ·L2 belongs to IO-MCFL in a similar way:

L1 ·L2 = L′1[x1 := L′′1]IO ·L
′
2[x2 := L′′2]IO

= ((L′1 ·L
′
2)[x := L′′1]IO)[x := L′′2]IO

= ((L′1 ·L
′
2)[x := L′′2]IO)[x := L′′1]IO

and L′
1
· L′

2
∈ IO−MCLF by induction hypothesis, (the result is given in the case

L′
1

and L′
2

are MCFLs) which implies L1 ·L2 is a IO-MCFL by construction.

– the closure by Kleene star is a generalization of the previous result.

Property 1. The family IO-MCFL is closed by intersection with a regular set.

Proof. Let us consider a IO-MCFL L and a regular language L. We prove that L∩R

belongs to IO-MCFL, by induction on L. If L is a MCFL, the result is given by the fat

that MCFLs form a AFL. Let us suppose L = L1[x := L2]IO. We considerMR = (M , ·, ǫ)

the syntactic monoid of R, where M is finite according to Myhill-Nerode. Then, there

exists a homomorphism φ : Σ 7→MR and N ⊆MR such that R= φ−1(N). Given m ∈M

let us consider the homomorphism φm : Σ ∪ {x} 7→ MR defined by φm(x) = m and for

every a ∈ Σ, φm(a) = φ(a). We consider the regular set Rm = φ
−1
m (N). By induction

hypothesis, L1,m = L1∩Rm is in IO-MCFL. The language L2,m = L2∩φ
−1({m}) enjoys

the same property, and by construction, Lm = L1,m[x := L2,m]IO belongs to IO-MCFL.

Finally, because L∩R =
⋃

m∈M Lm, which is a finite union, and IO-MCFL is closed by

union, we can conclude that L∩R is a IO-MCFL.

While all these properties can be proved in quite easily, the closure under inverse ho-

momorphism does not seem as trivial. Actually, we can conjecture that such a property

does not stand.

5 Conclusion

References

[Bar84] Henk Barendregt. λ-calculus: its syntax and semantics. Elsevier Science Publishers

Ltd., 1984.

[BS11] Pierre Bourreau and Sylvain Salvati. A Datalog recognizer for almost affine λ-CFGs.

In Makoto Kanazawa, Andreàs Kornai, Marcus Kracht, and Hiroyuki Seki, editors,

MOL, volume 6878 of Lecture Notes in Artificial Intelligence, pages 21–38. Springer,

2011.

[dG01] Philippe de Groote. Towards abstract categorial grammars. In Association for Com-

putational Linguistics, 39th Annual Meeting and 10th Conference of the European

Chapter, Proceedings of the Conference, pages 148–155, 2001.

[dGP04] Philippe de Groote and Sylvain Pogodalla. On the expressive power of abstract cate-

gorial grammars: Representing context-free formalisms. Journal of Logic, Language

and Information, 13(4):421–438, 2004.

[Fis68a] Michael J. Fischer. Grammars with macro-like productions. In IEEE Conference

Record of 9th Annual Symposium on Switching and Automata Theory, pages 131–

142. IEEE, 1968.

[Fis68b] Micheal J. Fischer. Grammars with macro-like productions. PhD thesis, Harvard

University, 1968.

[JLT75] Aravind K. Joshi, Leon S. Levy, and Masako Takahashi. Tree adjunct grammars. J.

Comput. Syst. Sci., 10(1):136–163, 1975.

[Jos85] Aravind K. Joshi. Tree-adjoining grammars: How much context-sensitivity is re-

quired to provide reasonable strucutral descriptions? Natural Language Parsing:

Psychological, Computational and Theoretical Perspectives, pages 206–250, 1985.

[Kal10] Laura Kallmeyer. On mildly context-sensitive non-linear rewriting. Research on

Language and Computation, 8(2):341–363, 2010.

[Kan06] Makoto Kanazawa. Abstract families of abstract categorial grammars. In Stan-

ford University CSLI, editor, Proceedings of WoLLIC, 2006.

[Kan07] Makoto Kanazawa. Parsing and generation as Datalog queries. In Proceedings of

the 45th Annual Meeting of the Association for Computational Linguistics, pages

176–183, Prague, 2007. Association for Computational Linguistics.

[Mus01] Reinhard Muskens. Lambda Grammars and the Syntax-Semantics Interface. In

R. van Rooy and M. Stokhof, editors, Proceedings of the Thirteenth Amsterdam Col-

loquium, pages 150–155, Amsterdam, 2001.

[SMMK91] Hiroyuki Seki, Takashi Matsamura, Fujii Mamoru, and Tadao Kasami. On multiple

context-free grammars. Theoretical Computer Science, 88(2):191–229, 1991.

[SU06] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard iso-

morphism. Elsevier Science, 2006.

[Wei88] David Weir. Characterizing Mildly Context-Sensitive Grammar Formalisms. PhD

thesis, University of Pennsylvania, 1988.

[Yos06] Ryo Yoshinaka. Linearization of affine abstract categorial grammars. In Proceedings

of the 11th Conference on Formal Grammar, pages 185–199, Malaga, Spain, 2006.

