
HAL Id: hal-00959618
https://hal.science/hal-00959618

Submitted on 17 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MIX Is Not a Tree-Adjoining Language
Kanazawa Makoto, Sylvain Salvati

To cite this version:
Kanazawa Makoto, Sylvain Salvati. MIX Is Not a Tree-Adjoining Language. ACL 2012, 2012, South
Korea. pp.666-674. �hal-00959618�

https://hal.science/hal-00959618
https://hal.archives-ouvertes.fr

Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 666–674,
Jeju, Republic of Korea, 8-14 July 2012. c©2012 Association for Computational Linguistics

MIX Is Not a Tree-Adjoining Language

Makoto Kanazawa

National Institute of Informatics

2–1–2 Hitotsubashi, Chiyoda-ku

Tokyo, 101–8430, Japan

kanazawa@nii.ac.jp

Sylvain Salvati

INRIA Bordeaux Sud-Ouest, LaBRI

351, Cours de la Libération

F-33405 Talence Cedex, France

sylvain.salvati@labri.fr

Abstract

The language MIX consists of all strings over

the three-letter alphabet {a, b, c} that contain

an equal number of occurrences of each letter.

We prove Joshi’s (1985) conjecture that MIX

is not a tree-adjoining language.

1 Introduction

The language

MIX = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c }

has attracted considerable attention in computational

linguistics.1 This language was used by Bach (1981)

in an exercise to show that the permutation closure

of a context-free language is not necessarily context-

free.2 MIX may be considered a prototypical exam-

ple of free word order language, but, as remarked by

Bach (1981), it seems that no human language “has

such complete freedom for order”, because “typi-

cally, certain constituents act as ‘boundary domains’

for scrambling”. Joshi (1985) refers to MIX as rep-

resenting “an extreme case of the degree of free

word order permitted in a language”, which is “lin-

guistically not relevant”. Gazdar (1988) adopts a

similar position regarding the relation between MIX

1If w is a string and d is a symbol, we write |w|d to mean the

number of occurrences of d in w. We will use the notation |w| to

denote the length of w, i.e., the total number of occurrences of

symbols in w.
2According to Gazdar (1988), “MIX was originally de-

scribed by Emmon Bach and was so-dubbed by students in

the 1983 Hampshire College Summer Studies in Mathematics”.

According to Bach (1988), the name MIX was “the happy in-

vention of Bill Marsh”.

and natural languages, noting that “it seems rather

unlikely that any natural language will turn out to

have a MIX-like characteristic”.

It therefore seems natural to assume that lan-

guages such as MIX should be excluded from any

class of formal languages that purports to be a tight

formal characterization of the possible natural lan-

guages. It was in this spirit that Joshi et al. (1991)

suggested that MIX should not be in the class of so-

called mildly context-sensitive languages:

“[mildly context-sensitive grammars] cap-

ture only certain kinds of dependencies,

e.g., nested dependencies and certain lim-

ited kinds of cross-serial dependencies

(for example, in the subordinate clause

constructions in Dutch or some variations

of them, but perhaps not in the so-called

MIX (or Bach) language)”

Mild context-sensitivity is an informally defined no-

tion first introduced by Joshi (1985); it consists of

the three conditions of limited cross-serial depen-

dencies, constant growth, and polynomial parsing.

The first condition is only vaguely formulated, but

the other two conditions are clearly satisfied by tree-

adjoining grammars. The suggestion of Joshi et al.

(1991) was that MIX should be regarded as a vio-

lation of the condition of limited cross-serial depen-

dencies.

Joshi (1985) conjectured rather strongly that MIX

is not a tree-adjoining language: “TAGs cannot gen-

erate this language, although for TAGs the proof is

not in hand yet”. An even stronger conjecture was

made by Marsh (1985), namely, that MIX is not an

666

indexed language.3 (It is known that the indexed

languages properly include the tree-adjoining lan-

guages.) Joshi et al. (1991), however, expressed a

more pessimistic view about the conjecture:

“It is not known whether TAG . . . can

generate MIX. This has turned out to be

a very difficult problem. In fact, it is

not even known whether an IG [(indexed

grammar)] can generate MIX.”

This open question has become all the more press-

ing after a recent result by Salvati (2011). This re-

sult says that MIX is in the class of multiple context-

free languages (Seki et al., 1991), or equivalently,

languages of linear context-free rewriting systems

(Vijay-Shanker et al., 1987; Weir, 1988), which has

been customarily regarded as a formal counterpart

of the informal notion of a mildly context-sensitive

language.4 It means that either we have to aban-

don the identification of multiple context-free lan-

guages with mildly context-sensitive languages, or

we should revise our conception of limited cross-

serial dependencies and stop regarding MIX-like

languages as violations of this condition. Surely, the

resolution of Joshi’s (1985) conjecture should cru-

cially affect the choice between these two alterna-

tives.

In this paper, we prove that MIX is not a tree-

adjoining language. Our proof is cast in terms of the

formalism of head grammar (Pollard, 1984; Roach,

1987), which is known to be equivalent to TAG

(Vijay-Shanker and Weir, 1994). The key to our

proof is the notion of an n-decomposition of a string

over {a, b, c}, which is similar to the notion of a

derivation in head grammars, but independent of any

particular grammar. The parameter n indicates how

unbalanced the occurrence counts of the three let-

ters can be at any point in a decomposition. We first

3The relation of MIX with indexed languages is also of in-

terest in combinatorial group theory. Gilman (2005) remarks

that “it does not . . . seem to be known whether or not the

word problem of Z × Z is indexed”, alluding to the language

O2 = {w ∈ {a, ā, b, b̄}
∗ | |w|a = |w|ā, |w|b = |w|b̄ }. Since O2 and

MIX are rationally equivalent, O2 is indexed if and only if MIX

is indexed (Salvati, 2011).
4Joshi et al. (1991) presented linear context-free rewriting

systems as mildly context-sensitive grammars. Groenink (1997)

wrote “The class of mildly context-sensitive languages seems to

be most adequately approached by LCFRS.”

show that if MIX is generated by some head gram-

mar, then there is an n such that every string in MIX

has an n-decomposition. We then prove that if every

string in MIX has an n-decomposition, then every

string in MIX must have a 2-decomposition. Finally,

we exhibit a particular string in MIX that has no 2-

decomposition. The length of this string is 87, and

the fact that it has no 2-decomposition was first ver-

ified by a computer program accompanying this pa-

per. We include here a rigorous, mathematical proof

of this fact not relying on the computer verification.

2 Head Grammars

A head grammar is a quadruple G = (N,Σ, P, S),

where N is a finite set of nonterminals, Σ is a fi-

nite set of terminal symbols (alphabet), S is a distin-

guished element of N, and P is a finite set of rules.

Each nonterminal is interpreted as a binary predicate

on strings in Σ∗. There are four types of rules:

A(x1x2y1, y2)← B(x1, x2),C(y1, y2)

A(x1, x2y1y2)← B(x1, x2),C(y1, y2)

A(x1y1, y2x2)← B(x1, x2),C(y1, y2)

A(w1,w2)←

Here, A, B,C ∈ N, x1, x2, y1, y2 are variables, and

w1,w2 ∈ Σ ∪ {ε}.
5 Rules of the first three types are

binary rules and rules of the last type are terminat-

ing rules. This definition of a head grammar actu-

ally corresponds to a normal form for head gram-

mars that appears in section 3.3 of Vijay-Shanker

and Weir’s (1994) paper.6

The rules of head grammars are interpreted as im-

plications from right to left, where variables can be

instantiated to any terminal strings. Each binary

5We use ε to denote the empty string.
6This normal form is also mentioned in chapter 5, section 4

of Kracht’s (2003) book. The notation we use to express rules

of head grammars is borrowed from elementary formal sys-

tems (Smullyan, 1961; Arikawa et al., 1992), also known as

literal movement grammars (Groenink, 1997; Kracht, 2003),

which are logic programs over strings. In Vijay-Shanker and

Weir’s (1994) notation, the four rules are expressed as follows:

A→ C2,2(B,C)

A→ C1,2(B,C)

A→ W(B,C)

A→ C1,1(w1 ↑ w2)

667

rule involves an operation that combines two pairs

of strings to form a new pair. The operation in-

volved in the third rule is known as wrapping; the

operations involved in the first two rules we call left

concatenation and right concatenation, respectively.

If G = (N,Σ, P, S) is a head grammar, A ∈ N, and

w1,w2 ∈ Σ
∗, then we say that a fact A(w1,w2) is

derivable and write ⊢G A(w1,w2), if A(w1,w2) can

be inferred using the rules in P. More formally, we

have ⊢G A(w1,w2) if one of the following conditions

holds:

• A(w1,w2)← is a terminating rule in P.

• ⊢G B(u1, u2), ⊢G C(v1, v2), and there is a bi-

nary rule A(α1, α2) ← B(x1, x2),C(y1, y2) in

P such that (w1,w2) is the result of substitut-

ing u1, u2, v1, v2 for x1, x2, y1, y2, respectively,

in (α1, α2).

The language of G is

L(G) = {w1w2 | ⊢G S(w1,w2) }.

Example 1. Let G = (N,Σ, P, S), where N =

{S, A, A′,C,D, E, F}, Σ = {a, ā, #}, and P consists of

the following rules:

S(x1y1, y2x2)← D(x1, x2),C(y1, y2)

C(ε, #)←

D(ε, ε)←

D(x1y1, y2x2)← F(x1, x2),D(y1, y2)

F(x1y1, y2x2)← A(x1, x2), E(y1, y2)

A(a, a) ←

E(x1y1, y2x2)← D(x1, x2), A
′(y1, y2)

A′(ā, ā)←

We have L(G) = {w#wR | w ∈ D{a,ā} }, where D{a,ā}
is the Dyck language over {a, ā} and wR is the re-

versal of w. All binary rules of this grammar are

wrapping rules.

If ⊢G A(w1,w2), a derivation tree for A(w1,w2) is

a finite binary tree whose nodes are labeled by facts

that are derived during the derivation of A(w1,w2).

A derivation tree for A(w1,w2) represents a “proof”

of ⊢G A(w1,w2), and is formally defined as follows:

• If A(w1,w2)← is a terminating rule, then a tree

with a single node labeled by A(w1,w2) is a

derivation tree for A(w1,w2).

S(aaāāaā, #āaāāaa)

D(aaāāaā, āaāāaa)

F(aaāā, āāaa)

A(a, a) E(aāā, āāa)

D(aā, āa)

F(aā, āa)

A(a, a) E(ā, ā)

D(ε, ε) A′(ā, ā)

D(ε, ε)

A′(ā, ā)

D(aā, āa)

F(aā, āa)

A(a, a) E(ā, ā)

D(ε, ε) A′(ā, ā)

D(ε, ε)

C(ε, #)

Figure 1: An example of a derivation tree of a head gram-

mar.

• If ⊢G A(w1,w2) is derived from ⊢G B(u1, u2)

and ⊢G C(v1, v2) by some binary rule, then a

binary tree whose root is labeled by A(w1,w2)

and whose immediate left (right) subtree is a

derivation tree for B(u1, u2) (for C(v1, v2), re-

spectively) is a derivation tree for A(w1,w2).

If w ∈ L(G), a derivation tree for w is a derivation

tree for some S(w1,w2) such that w1w2 = w.

Example 1 (continued). Figure 1 shows a derivation

tree for aaāāaā#āaāāaa.

The following lemma should be intuitively clear

from the definition of a derivation tree:

Lemma 1. Let G = (N,Σ, P, S) be a head grammar

and A be a nonterminal in N. Suppose that w ∈

L(G) has a derivation tree in which a fact A(v1, v2)

appears as a label of a node. Then there are strings

z0, z1, z2 with the following properties:

(i) w = z0v1z1v2z2, and

(ii) ⊢G A(u1, u2) implies z0u1z1u2z2 ∈ L(G).

Proof. We can prove by straightforward induction

on the height of derivation trees that whenever

A(v1, v2) appears on a node in a derivation tree for

B(w1,w2), then there exist z0, z1, z2, z3 that satisfy

one of the following conditions:

(a) w1 = z0v1z1v2z2, w2 = z3, and ⊢G A(u1, u2)

implies ⊢G B(z0u1z1u2z2, z3).

(b) w1 = z0, w2 = z1v1z2v2z3, and ⊢G A(u1, u2)

implies ⊢G B(z0, z1u1z2u2z3).

668

(c) w1 = z0v1z1, w2 = z2v2z3, and ⊢G A(u1, u2)

implies ⊢G B(z0u1z1, z2u2z3).

We omit the details. �

We call a nonterminal A of a head grammarG use-

less if A does not appear in any derivation trees for

strings in L(G). Clearly, useless nonterminals can be

eliminated from any head grammar without affecting

the language of the grammar.

3 Decompositions of Strings in MIX

Henceforth, Σ = {a, b, c}. Let Z denote the set of in-

tegers. Define functions ψ1, ψ2 : Σ
∗ → Z, ψ : Σ∗ →

Z × Z by

ψ1(w) = |w|a − |w|c,

ψ2(w) = |w|b − |w|c,

ψ(w) = (ψ1(w), ψ2(w)).

Clearly, we have ψ(a) = (1, 0), ψ(b) = (0, 1), ψ(c) =

(−1,−1), and

w ∈ MIX iff ψ(w) = (0, 0).

Note that for all strings w1,w2 ∈ Σ
∗, ψ(w1w2) =

ψ(w1)+ψ(w2). In other words, ψ is a homomorphism

from the free monoid Σ∗ to Z × Z with addition as

the monoid operation and (0, 0) as identity.

Lemma 2. Suppose that G = (N,Σ, P, S) is a head

grammar without useless nonterminals such that

L(G) ⊆ MIX. There exists a function ΨG : N → Z ×

Z such that ⊢G A(u1, u2) implies ψ(u1u2) = ΨG(A).

Proof. Since G has no useless nonterminals, for

each nonterminal A of G, there is a derivation tree

for some string in L(G) in which A appears in a node

label. By Lemma 1, there are strings z0, z1, z2 such

that ⊢G A(u1, u2) implies z0u1z1u2z2 ∈ L(G). Since

L(G) ⊆ MIX, we have ψ(z0u1z1u2z2) = (0, 0), and

hence

ψ(u1u2) = −ψ(z0z1z2). �

A decomposition of w ∈ Σ∗ is a finite binary tree

satisfying the following conditions:

• the root is labeled by some (w1,w2) such that

w = w1w2,

• each internal node whose left and right children

are labeled by (u1, u2) and (v1, v2), respectively,

is labeled by one of (u1u2v1, v2), (u1, u2v1v2),

(u1v1, v2u2).

• each leaf node is labeled by some (s1, s2) such

that s1s2 ∈ {b, c}
∗ ∪ {a, c}∗ ∪ {a, b}∗.

Thus, the label of an internal node in a decomposi-

tion is obtained from the labels of its children by left

concatenation, right concatenation, or wrapping. It

is easy to see that ifG is a head grammar over the al-

phabet Σ, any derivation for w ∈ L(G) induces a de-

composition ofw. (Just strip off nonterminals.) Note

that unlike with derivation trees, we have placed no

bound on the length of a string that may appear on

a leaf node of a decomposition. This will be conve-

nient in some of the proofs below.

When p and q are integers, we write [p, q] for the

set { r ∈ Z | p ≤ r ≤ q }. We call a decomposition of

w an n-decomposition if each of its nodes is labeled

by some (v1, v2) such that ψ(v1v2) ∈ [−n, n]×[−n, n].

Lemma 3. If MIX = L(G) for some head grammar

G = (Σ,N, P, S), then there exists an n such that each

w ∈ MIX has an n-decomposition.

Proof. We may suppose without loss of generality

that G has no useless nonterminal. Since MIX =

L(G), there is a function ΨG satisfying the condition

of Lemma 2. Since the set N of nonterminals of G

is finite, there is an n such that ΨG(A) ∈ [−n, n] ×

[−n, n] for all A ∈ N. Then it is clear that a derivation

tree for w ∈ L(G) induces an n-decomposition of

w. �

If w = d1 . . . dm ∈ Σ
m, then for 0 ≤ i ≤ j ≤ m,

we write w[i, j] to refer to the substring di+1 . . . d j
of w. (As a special case, we have w[i, i] = ε.) The

following is a key lemma in our proof:

Lemma 4. If each w ∈ MIX has an n-

decomposition, then each w ∈ MIX has a 2-

decomposition.

Proof. Assume that each w ∈ MIX has an n-

decomposition. Define a homomorphism γn : Σ
∗ →

Σ
∗ by

γn(a) = a
n,

γn(b) = b
n,

γn(c) = c
n.

669

Clearly, γn is an injection, and we have ψ(γn(v)) =

n · ψ(v) for all v ∈ Σ∗.

Let w ∈ MIX with |w| = m. Then w′ = γn(w) ∈

MIX and |w′| = mn. By assumption, w′ has an n-

decomposition D. We assign a 4-tuple (i, j, k, l) of

natural numbers to each node of D in such a way

that (w′[i, j],w′[k, l]) equals the label of the node.

This is done recursively in an obvious way, start-

ing from the root. If the root is labeled by (w1,w2),

then it is assigned (0, |w1|, |w1|, |w1w2|). If a node is

assigned a tuple (i, j, k, l) and has two children la-

beled by (u1, u2) and (v1, v2), respectively, then the

4-tuples assigned to the children are determined ac-

cording to how (u1, u2) and (v1, v2) are combined at

the parent node:

u1 u2 v1 v2

i j k l

i + |u1| i + |u1u2|

u1 u2 v1 v2

i j k l

k + |u2| k + |u2v1|

u1 v1 v2 u2

i j k l

i + |u1| k + |v2|

Now define a function f : [0,mn] → { kn | 0 ≤

k ≤ m } by

f (i) =

i if n divides i,

n · ⌊i/n⌋ if n does not divide i and

w′[i − 1, i] ∈ {a, b},

n · ⌈i/n⌉ if n does not divide i and

w′[i − 1, i] = c.

Clearly, f is weakly increasing in the sense that i ≤ j

implies f (i) ≤ f (j). LetD′ be the result of replacing

the label of each node inD by

(w′[f (i), f (j)],w′[f (k), f (l)]),

where (i, j, k, l) is the 4-tuple of natural numbers as-

signed to that node by the above procedure. It is easy

to see that D′ is another decomposition of w′. Note

that since each of f (i), f (j), f (k), f (l) is an integral

multiple of n, we always have

(w′[f (i), f (j)],w′[f (k), f (l)]) = (γn(u), γn(v))

for some substrings u, v of w. This implies that for

h = 1, 2,

ψh(w
′[f (i), f (j)]w′[f (k), f (l)])

is an integral multiple of n.

Claim. D′ is a 2n-decomposition.

We have to show that every node label (v1, v2) in D
′

satisfies ψ(v1v2) ∈ [−2n, 2n] × [−2n, 2n]. For h =

1, 2, define ϕh : [0,mn] × [0,mn]→ Z as follows:

ϕh(i, j) =

ψh(w
′[i, j]) if i ≤ j,

−ψh(w
′[j, i]) otherwise.

Then it is easy to see that for all i, j, i′, j′ ∈ [0,mn],

ϕh(i
′, j′) = ϕh(i

′, i) + ϕh(i, j) + ϕh(j, j
′).

Inspecting the definition of the function f , we can

check that

ϕh(f (i), i) ∈ [0, n − 1]

always holds. Suppose that (i, j, k, l) is assigned

to a node in D. By assumption, we have

ψh(w
′[i, j]w′[k, l]) ∈ [−n, n], and

ψh(w
′[f (i), f (j)]w′[f (k), f (l)])

= ψh(w
′[f (i), f (j)]) + ψh(w

′[f (k), f (l)])

= ϕh(f (i), f (j)) + ϕh(f (k), f (l))

= ϕh(f (i), i) + ϕh(i, j) + ϕh(j, f (j))

+ ϕh(f (k), k) + ϕh(k, l) + ϕh(l, f (l))

= ϕh(f (i), i) + ψh(w
′[i, j]) + ϕh(j, f (j))

+ ϕh(f (k), k) + ψh(w
′[k, l]) + ϕh(l, f (l))

= ψh(w
′[i, j]w′[k, l]) + ϕh(f (i), i) + ϕh(f (k), k)

+ ϕh(j, f (j)) + ϕh(l, f (l))

∈ { p + q1 + q2 + r1 + r2 | p ∈ [−n, n],

q1, q2 ∈ [0, n − 1], r1, r2 ∈ [−n + 1, 0] }

= [−3n + 2, 3n − 2].

Since ψh(w
′[f (i), f (j)]w′[f (k), f (l)]) must be an in-

tegral multiple of n, it follows that

ψh(w
′[f (i), f (j)]w′[f (k), f (l)]) ∈ {−2n,−n, 0, n, 2n}.

This establishes the claim.

670

We have shown that each node ofD′ is labeled by

a pair of strings of the form (γn(u), γn(v)) such that

ψ(γn(u)γn(v)) ∈

{−2n,−n, 0, n, 2n} × {−2n,−n, 0, n, 2n}.

Now it is easy to see that inverting the homomor-

phism γn at each node of D
′

(γn(u), γn(v)) �→ (u, v)

gives a 2-decomposition of w. �

4 A String in MIX That Has No

2-Decomposition

By Lemmas 3 and 4, in order to prove that there is no

head grammar for MIX, it suffices to exhibit a string

in MIX that has no 2-decomposition. The following

is such a string:

z = a5b14a19c29b15a5.

In this section, we prove that the string z has no 2-

decomposition.7

It helps to visualize strings in MIX as closed

curves in a plane. If w is a string in MIX, by plotting

the coordinates of ψ(v) for each prefix v of w, we can

represent w by a closed curve C together with a map

t : [0, |w|] → C. The representation of the string z is

given in Figure 2.

Let us call a string w ∈ {a, b, c}∗ such that ψ(w) ∈

[−2, 2] × [−2, 2] long if w contains all three letters,

and short otherwise. (If ψ(w) � [−2, 2] × [−2, 2],

then w is neither short nor long.) It is easy to see

that a short string w always satisfies

|w|a ≤ 4, |w|b ≤ 4, |w|c ≤ 2.

The maximal length of a short string is 6. (For ex-

ample, a4c2 and b4c2 are short strings of length 6.)

We also call a pair of strings (v1, v2) long (or short)

if v1v2 is long (or short, respectively).

According to the definition of an n-

decomposition, a leaf node in a 2-decomposition

7This fact was first verified by the computer program ac-

companying this paper. The program, written in C, imple-

ments a generic, memoized top-down recognizer for the lan-

guage {w ∈ MIX | w has a 2-decomposition }, and does not rely

on any special properties of the string z.

0 5

19 38

67

82
87 a5

b14

a19

c29

b15

a5

Figure 2: Graphical representation of the string z =

a5b14a19c29b15a5. Note that every point (i, j) on the di-

agonal segment has i > 7 or j < −2.

must be labeled by a short pair of strings. We call

a 2-decomposition normal if the label of every

internal node is long. Clearly, any 2-decomposition

can be turned into a normal 2-decomposition by

deleting all nodes that are descendants of nodes

with short labels.

One important property of the string z is the fol-

lowing:

Lemma 5. If z = x1vx2 and ψ(v) ∈ [−2, 2]× [−2, 2],

then either v or x1x2 is short.

Proof. This is easy to see from the graphical rep-

resentation in Figure 2. If a substring v of z has

ψ(v) ∈ [−2, 2] × [−2, 2], then the subcurve corre-

sponding to v must have initial and final coordi-

nates whose difference lies in [−2, 2] × [−2, 2]. If

v contains all three letters, then it must contain as

a substring at least one of ba19c, ac29b, and cb15a.

The only way to satisfy both these conditions is to

have the subcurve corresponding to v start and end

very close to the origin, so that x1x2 is short. (Note

that the distance between the coordinate (5, 0) corre-

sponding to position 5 of z and the diagonal segment

corresponding to the substring c29 is large enough

that it is impossible for v to start at position 5 and

end in the middle of c29 without violating the condi-

tion ψ(v) ∈ [−2, 2] × [−2, 2].) �

Lemma 5 leads to the following observation. Let

us call a decomposition of a string concatenation-

free if each of its non-leaf labels is the wrapping of

the labels of the children.

671

Lemma 6. If z has a 2-decomposition, then z has a

normal, concatenation-free 2-decomposition.

Proof. Let D be a 2-decomposition of z. Without

loss of generality, we may assume that D is nor-

mal. Suppose that D contains a node µ whose la-

bel is the left or right concatenation of the labels

of its children, (u1, u2) and (v1, v2). We only con-

sider the case of left concatenation since the case

of right concatenation is entirely analogous; so we

suppose that the node µ is labeled by (u1u2v1, v2).

It follows that z = x1u1u2x2 for some x1, x2, and

by Lemma 5, either u1u2 or x1x2 is short. If u1u2
is short, then the left child of µ is a leaf because

D is normal. We can replace its label by (u1u2, ε);

the label (u1u2v1, v2) of µ will now be the wrapping

(as well as left concatenation) of the two child la-

bels, (u1u2, ε) and (v1, v2). If x1x2 is short, then we

can combine by wrapping a single node labeled by

(x1, x2) with the subtree ofD rooted at the left child

of µ, to obtain a new 2-decomposition of z. In ei-

ther case, the result is a normal 2-decomposition of

z with fewer instances of concatenation. Repeat-

ing this procedure, we eventually obtain a normal,

concatenation-free 2-decomposition of z. �

Another useful property of the string z is the fol-

lowing:

Lemma 7. Suppose that the following conditions

hold:

(i) z = x1u1v1yv2u2x2,

(ii) x1yx2 is a short string, and

(iii) both ψ(u1u2) and ψ(v1v2) are in [−2, 2] ×

[−2, 2].

Then either (u1, u2) or (v1, v2) is short.

Proof. Suppose (u1, u2) and (v1, v2) are both long.

Since (u1, u2) and (v1, v2) must both contain c, either

u1 ends in c and v1 starts in c, or else v2 ends in c

and u2 starts in c.

Case 1. u1 ends in c and v1 starts in c. Since

(v1, v2) must contain at least one occurrence of a,

the string v1yv2 must contain cb
15a as a substring.

a5b14 a19 c29 b15 a5

v1yv2

Since x1yx2 is short, we have |y|b ≤ 4. It follows that

|v1v2|b ≥ 11. But v1yv2 is a substring of c
28b15a5,

so |v1v2|a ≤ 5. This clearly contradicts ψ(v1v2) ∈

[−2, 2] × [−2, 2].

Case 2. v2 ends in c and u2 starts in c. In this

case, cb15a5 is a suffix of u2x2. Since x1yx2 is short,

|x2|a ≤ 4. This means that cb
15a is a substring of u2

and hence |u2|b = 15.

a5b14 a19 c29 b15 a5

u2 x2v1yv2u1

On the other hand, since (v1, v2) must contain at least

one occurrence of b, the string v1yv2 must contain

ba19c as a substring. This implies that |u1u2|a ≤ 10.

But since |u2|b = 15, we have |u1u2|b ≥ 15. This

clearly contradicts ψ(u1u2) ∈ [−2, 2] × [−2, 2]. �

We now assume that z has a normal,

concatenation-free 2-decomposition D and de-

rive a contradiction. We do this by following

a certain path in D. Starting from the root, we

descend in D, always choosing a non-leaf child, as

long as there is one. We show that this path will

never terminate.

The i-th node on the path will be denoted by

µi, counting the root as the 0-th node. The la-

bel of µi will be denoted by (wi,1,wi,2). With each

i, we associate three strings xi,1, yi, xi,2 such that

xi,1wi,1yiwi,2xi,2 = z, analogously to Lemma 1. Since

ψ(wi,1wi,2) ∈ [−2, 2] × [−2, 2] and ψ(z) = (0, 0), we

will always have ψ(xi,1yixi,2) ∈ [−2, 2] × [−2, 2].

Initially, (w0,1,w0,2) is the label of the root µ0 and

x0,1 = y0 = x0,2 = ε. If µi is not a leaf node, let

(ui,1, ui,2) and (vi,1, vi,2) be the labels of the left and

right children of µi, respectively. If the left child

is not a leaf node, we let µi+1 be the left child,

in which case we have (wi+1,1,wi+1,2) = (ui,1, ui,2),

xi+1,1 = xi,1, xi+1,2 = xi,2, and yi+1 = vi,1yvi,2. Oth-

erwise, µi+1 will be the right child of µi, and we

have (wi+1,1,wi+1,2) = (vi,1, vi,2), xi+1,1 = xi,1ui,1,

xi+1,2 = ui,2xi,2, and yi+1 = yi.

The path µ0, µ1, µ2, . . . is naturally divided into

two parts. The initial part of the path consists of

nodes where xi,1yixi,2 is short. Note that x0,1y0x0,2 =

ε is short. As long as xi,1yixi,2 is short, (wi,1,wi,2)

must be long and µi has two children labeled

by (ui,1, ui,2) and (vi,1, vi,2). By Lemma 7, either

(ui,1, ui,2) or (vi,1, vi,2) must be short. Since the length

672

of z is 87 and the length of a short string is at most 6,

exactly one of (ui,1, ui,2) and (vi,1, vi,2) must be long.

We must eventually enter the second part of

the path, where xi,1yixi,2 is no longer short. Let

µm be the first node belonging to this part of the

path. Note that at µm, we have ψ(xm,1ymxm,2) =

ψ(xm−1,1ym−1xm−1,2) + ψ(v) for some short string v.

(Namely, v = um−1,1um−1,2 or v = vm−1,1vm−1,2.)

Lemma 8. If u and v are short strings and ψ(uv) ∈

[−2, 2]× [−2, 2], then |uv|d ≤ 4 for each d ∈ {a, b, c}.

Proof. Since u and v are short, we have |u|a ≤

4, |u|b ≤ 4, |u|c ≤ 2 and |v|a ≤ 4, |v|b ≤ 4, |v|c ≤ 2. It

immediately follows that |uv|c ≤ 4. We distinguish

two cases.

Case 1. |uv|c ≤ 2. Since ψ(uv) ∈ [−2, 2] × [−2, 2],

we must have |uv|a ≤ 4 and |uv|b ≤ 4.

Case 2. |uv|c ≥ 3. Since |u|c ≤ 2 and |v|c ≤ 2,

we must have |u|c ≥ 1 and |v|c ≥ 1. Also, ψ(uv) ∈

[−2, 2] × [−2, 2] implies that |uv|a ≥ 1 and |uv|b ≥ 1.

Since u and v are short, it follows that one of the

following two conditions must hold:

(i) |u|a ≥ 1, |u|b = 0 and |v|a = 0, |v|b ≥ 1.

(ii) |u|a = 0, |u|b ≥ 1 and |v|a ≥ 1, |v|b = 0.

In the former case, |uv|a = |u|a ≤ 4 and |uv|b = |v|b ≤

4. In the latter case, |uv|a = |v|a ≤ 4 and |uv|b =

|u|b ≤ 4. �

By Lemma 8, the number of occurrences of each

letter in xm,1ymxm,2 is in [1, 4]. This can only be if

xm,1xm,2 = a
j,

ym = c
kbl,

for some j, k, l ∈ [1, 4]. This means that the string z

must have been split into two strings (w0,1,w0,2) at

the root of D somewhere in the vicinity of position

67 (see Figure 2).

It immediately follows that for all i ≥ m, wi,1 is

a substring of a5b14a19c28 and wi,2 is a substring of

b14a5. We show by induction that for all i ≥ m, the

following condition holds:

(†) ba19c17 is a substring of wi,1.

The condition (†) clearly holds for i = m. Now as-

sume (†). Then (wi,1,wi,2) is long, and µi has left and

right children, labeled by (ui,1, ui,2) and (vi,1, vi,2), re-

spectively, such that wi,1 = ui,1vi,1 and wi,2 = vi,2ui,2.

We consider two cases.

Case 1. ui,1 contains c. Then ba
19c is a substring

of ui,1. Since ui,2 is a substring of b
14a5, it cannot

contain any occurrences of c. Since ψ1(ui,1ui,2) ∈

[−2, 2], it follows that ui,1 must contain at least 17

occurrences of c; hence ba19c17 is a substring of ui,1.

Since (ui,1, ui,2) is long, (wi+1,1,wi+1,2) = (ui,1, ui,2).

Therefore, the condition (†) holds with i+ 1 in place

of i.

Case 2. ui,1 does not contain c. Then (ui,1, ui,2) is

short and (wi+1,1,wi+1,2) = (vi,1, vi,2). Note that vi,1
must contain at least 17 occurrences of c, but vi,2 is

a substring of b14a5 and hence cannot contain more

than 14 occurrences of b. Since ψ2(vi,1vi,2) ∈ [−2, 2],

it follows that vi,1 must contain at least one occur-

rence of b. Therefore, ba19c17 must be a substring

of vi,1 = wi+1,1, which shows that (†) holds with i+1

in place of i.

We have proved that (†) holds for all i ≥ m. It fol-

lows that for all i, µi has two children and hence µi+1
is defined. This means that the path µ0, µ1, µ2, . . .

is infinite, contradicting the assumption that D is a

2-decomposition of z.

We have proved the following:

Lemma 9. There is a string in MIX that has no 2-

decomposition.

Theorem 10. There is no head grammar G such that

L(G) = MIX.

Proof. Immediate from Lemmas 3, 4, and 9. �

References

Setsuo Arikawa, Takeshi Shinohara, and Akihiro Ya-

mamoto. 1992. Learning elementary formal systems.

Theoretical Computer Science, 95(1):97–113.

Emmon Bach. 1981. Discontinuous constituents in gen-

eralized categorial grammars. In Victoria Burke and

James Pustejovsky, editors, Proceedings of the 11th

Annual Meeting of the North East Linguistic Society,

pages 1–12.

Emmon Bach. 1988. Categorial grammars as theories

of language. In Richard T. Oehrle, Emmon Bach, and

Deirdre Wheeler, editors, Categorial Grammars and

Natural Language Structures, pages 17–34. D. Reidel,

Dordrecht.

673

Gerald Gazdar. 1988. Applicability of indexed gram-

mars to natural languages. In U. Reyle and C. Rohrer,

editors,Natural Language Parsing and Linguistic The-

ories, pages 69–94. D. Reidel Publishing Company,

Dordrecht.

Robert Gilman. 2005. Formal languages and their ap-

plication to combinatorial group theory. In Alexan-

dre V. Borovik, editor, Groups, Languages, Algo-

rithms, number 378 in Contemporary Mathematics,

pages 1–36. American Mathematical Society, Provi-

dence, RI.

Annius V. Groenink. 1997. Mild context-sensitivity and

tuple-based generalizations of context-free grammar.

Linguistics and Philosophy, 20:607–636.

Aravind K. Joshi, Vijay K. Shanker, and David J. Weir.

1991. The converence of mildly context-sensitive

grammar formalisms. In Peter Sells, Stuart M.

Shieber, and ThomasWasow, editors, Foundational Is-

sues in Natural Language Processing, pages 31–81.

The MIT Press, Cambridge, MA.

Aravind K. Joshi. 1985. Tree-adjoining grammars: How

much context sensitivity is required to provide reason-

able structural descriptions? In David Dowty, Lauri

Karttunen, and Arnold M. Zwicky, editors, Natural

Language Parsing, pages 206–250. Cambridge Uni-

versity Press, Cambridge.

Markus Kracht. 2003. The Mathematics of Language,

volume 63 of Studies in Generative Grammar. Mou-

ton de Gruyter, Berlin.

William Marsh. 1985. Some conjectures on indexed

languages. Paper presented to the Association for

Symbolic Logic Meeting, Stanford University, July

15–19. Abstract appears in Journal of Symbolic

Logic 51(3):849 (1986).

Carl J. Pollard. 1984. Generalized Phrase Structure

Grammars, Head Grammars, and Natural Language.

Ph.D. thesis, Department of Linguistics, Stanford Uni-

versity.

Kelly Roach. 1987. Formal properties of head gram-

mars. In Alexis Manaster-Ramer, editor,Mathematics

of Language, pages 293–347. John Benjamins, Ams-

terdam.

Sylvain Salvati. 2011. MIX is a 2-MCFL and the word

problem in Z
2 is captured by the IO and the OI hierar-

chies. Technical report, INRIA.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and

Tadao Kasami. 1991. On multiple context free gram-

mars. Theoretical Computer Science, 88(2):191–229.

Raymond M. Smullyan. 1961. Theory of Formal Sys-

tems. Princeton University Press, Princeton, NJ.

K. Vijay-Shanker and D. J. Weir. 1994. The equivalence

of four extensions of context-free grammars. Mathe-

matical Systems Theory, 27:511–546.

K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi.

1987. Characterizing structural descriptions produced

by various grammatical formalisms. In 25th Annual

Meeting of the Association for Computational Linguis-

tics, pages 104–111.

David J. Weir. 1988. Characterizing Mildly Context-

Sensitive Grammar Formalisms. Ph.D. thesis, Univer-

sity of Pennsylvania, Philadephia, PA.

674

