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Abstract. We introduce new finite differences schemes to approximate one
dimensional dissipative semilinear hyperbolic systems with a BGK structure.

Using accurate analytical time-decay properties of the local truncation error,
it is possible to design schemes based on standard upwinding schemes, which
are increasingly accurate for large times when computing small perturbations

of constants asymptotic states.

1. Introduction. Consider the following class of one dimensional BGK systems:

∂tf
i + λi∂xf

i = Mi(u)− f i, i = 1, ...,m. (1)

Here f i ∈ R
k, u :=

∑m
i=1 f

i, x ∈ R and t > 0, and the functions Mi = Mi(u) ∈ R
k

are smooth functions of u such that:
∑m

i=1 Mi(u) = u.
To obtain the time decay rates of these solutions, we need to rewrite the problem

in more suitable coordinates. Following [3], we rewrite the BGK system in its
conservative-dissipative form for the new unknowns

Z = (u, Z̃)T .

It is proved in [3] that, under some dissipativity conditions and for initial data
which are small and smooth in some suitable norms, the time decay of the global
solutions, for large times and in the L∞-norm, is given by

∂l
xu = O(t−1/2−l/2), ∂l

xZ̃ = O(t−1−l/2),

and similar estimates are available for their time derivatives. Notice that the im-
proved estimate for Z̃ can only be obtained in these new coordinates.

The aim of this paper is to give a brief overview of the way it is possible to take
advantage of these precise decay estimates to build up more accurate numerical
schemes. Actually, we can see that, for standard numerical schemes, like for instance
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the upwind scheme with the source term approximated pointwise by the standard
Euler scheme, the truncation error has the following decay as t → +∞:

Tu(x, t) = O(∆x t−3/2) +O(∆t t−3/2),
TZ̃(x, t) = O(∆x t−3/2) +O(∆t t−3/2).

(2)

It can be seen numerically that the corresponding absolute error, for a fixed space
step, decays as

eu(t) = O(t−1/2),ez(t) = O(t−1),

which implies that the relative error is essentially constant in time.
Here, our main goal is to improve the decay estimates on the truncation order to

achieve an effective decay in time of the relative error, both in u and Z̃. To obtain
this result, we perform a detailed analysis of the behavior of the truncation error
for a general class of schemes, called ”Time Asymptotically High Order” (TAHO)
schemes, which generalize those introduced in [2]. Thanks to this analysis, we are
able to select some schemes such that the truncation order behaves as

Tu(x, t) = O(∆x t−2), TZ̃(x, t)) = O(∆x t−2), (3)

for a fixed CFL ratio and such that the numerical error observed in the practical
tests improves of t−1/2 on other schemes.

The plan of the paper is the following. In Section 2, we introduce our analytical
framework. The main schemes are derived in Section 3, where we show how to
improve the time decay of their local truncation error. Section 4 presents some
numerical tests which show the nice behavior of our new schemes in two test cases.

2. The analytical framework. Following [3], we rewrite system 1 in its conservative-
dissipative form. This means that we assume that there exists an invertible matrix

D =

(

D11 D12

D21 D22

)

, (4)

such that, setting m1 = k, m2 = k(m− 1), the new unknown

Z = Df = (u, Z̃)T ∈ R
k × R

m2 , (5)

solves the system
{

∂tu+A11∂xu+A12∂xZ̃ = 0,

∂tZ̃ +A21∂xu+A22∂xZ̃ = Q̃(u)− Z̃,
(6)

where A is symmetric and Q̃(u) is quadratic in u, i.e.: Q̃(0) = 0 and Q̃′(0) = 0.
Observe that, after this transformation, which a priori is not unique, the source
term is zero in the first component and the second one is the sum of a quadratic
term and of the dissipative term −Z̃.
Moreover, when transforming system 1 in system 7, we can always assume that
blocks D11 and D12 have the special form

D11 = Ik, D12 = (IkIk · · · Ik) ∈ R
k×m2 ,

and, setting Λ = diag(λ1Ik, ..., λmIk), we have that

A =

(

A11 A12

A21 A22

)

= DΛD−1.

Therefore, we can rewrite our system in a more compact form:

∂tZ +A∂xZ = −Z +DM(u). (7)
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To guarantee the existence of the matrix D in 5, we can assume that our system
is strictly entropy dissipative in the sense of [5] and verifies the Shizuta-Kawashima
condition [6, 5, 3].
For instance, using Bouchut’s Entropy dissipation condition [4], it is possible to
prove the existence of a matrix D in 5, with all the above properties.

2.1. The simplest example: the Jin-Xin 2× 2 relaxation system. Consider
the following system

{

∂tu+ ∂xv = 0,
∂tv + λ2∂xu = F (u)− v,

(8)

with λ > 0. The unknowns u and v are scalar and the function F = F (u) is smooth,
with F (0) = 0. This case is obtained from 1 for k = 1, m = 2, and λ2 = −λ1 = λ,
by setting

u = f1 + f2, v = λ(f2 − f1), F (u) = λ(M2 −M1).

Under the condition

λ > |F ′(0)|, (9)

the problem is dissipative, at least in a small neighborhood of the origin, in the
sense of [5] and the Shizuta-Kawashima condition is verified.
In this case the conservative-dissipative form is obtained by using

D =

(

1 1
−µa+ µa−

)

,

where a = F ′(0), µ = (λ2 − a2)−1/2 is real and positive, a± = λ ± a > 0, from
assumption 10.

2.2. A 3 × 3 BGK example. Let us now compute the conservative-dissipative
form for the following 3× 3 BGK model,







∂tf1 − λ∂xf1 = M1(u)− f1,
∂tf2 = M2(u)− f2,
∂tf3 + λ∂xf3 = M3(u)− f3.

Let F = F (u) be a smooth scalar function such that F (0) = 0 and let γ be such
that γ′(u) = |F ′(u)|, with γ(0) = 0. We choose our three maxwellian functions as
follows, for β ∈]0, 1[ and λ > 0

M1(u) =
1

2

(

γ(u)− F (u)

λ
+ βu

)

,M3(u) =
1

2

(

γ(u) + F (u)

λ
+ βu

)

,

M2(u) = u−M1(u)−M3(u) = (1− β)u− γ(u)

λ
.

The functions Mi, i = 1, 2, 3, are strictly increasing if for any u under consideration

λ >
|F ′(u)|
1− β

,

and so the entropy dissipation condition [4] is verified. Let a = F ′(0) and α =
|a| + βλ, following the results in [4, 5, 3], the matrix D for the transformation in
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the conservative–dissipative form 6 is given by

D =

















1 1 1

α+a
α−a

√

λ(α−a)
α(α+a) 0 −

√

λ(α−a)
α(α+a)

−
√

λ−α
α −

√

λ−α
α + λ√

α(λ−α)
−
√

λ−α
α

















.

3. The numerical approximation. In this section we first introduce general fi-
nite difference approximations for system 1. Then, we compute the local truncation
error of these schemes and we discuss its decays properties. The main result is
given in Theorem 3.1, where a class of Time Asymptotically High Order (TAHO)
schemes is fully characterized. First, we approximate the differential part following
the direction of the characteristic velocities, so we study the methods for the system
in diagonal form 1.

We denote by f = (f1, ..., fm) the exact solution. Let ∆x the uniform mesh-
length and xj = j∆x the spatial grid points for all j ∈ Z. The time levels tn, with
t0 = 0, are also spaced uniformly with mesh-length ∆t = tn+1 − tn for n ∈ N. We
denote by ρ the CFL ratio ρ = ∆t/∆x, which is taken constant through all the
paper.

We consider the Cauchy problem for system 1 possibly subjected to some stability
conditions. The initial data f0 is supposed to be smooth and approximated by its
node values. The approximate solution (f1

j,n, ..., f
m
j,n)

T , f i
j,n ∈ R

k, i = 1, ...,m, for
j ∈ Z and n ∈ N, is given by

f i
j,n+1 − f i

j,n

∆t
+

λi

2∆x

(

f i
j+1,n − f i

j−1,n

)

− qi
2∆x

δ2xf
i
j,n

=
∑

l=−1,0,1

(

Bi
l(uj+l,n)− βi

lf
i
j+l,n

)

,
(10)

with f i
j,0 = f i

0(xj) and δ2xfj,n = (fj+1,n − 2fj,n + fj+1,n), for all i = 1, ...,m.

The artificial diffusion terms qi are diagonal matrices in R
k×k
+ . The source term

approximation is defined, for l = −1, 0, 1, by the diagonal matrices βi
l ∈ R

k×k and
by the vectors of functions Bi

l(·) ∈ R
k.

We assume the scheme 11 is consistent with system 1, i.e, for all i = 1, ...,m

βi
−1 + βi

0 + βi
1 = Ik +∆xCi,

Bi
−1(u) + Bi

0(u) + Bi
1(u) = Mi(u) + ∆xCi(u),

where Ci = diag(ci1, ..., c
i
k) ∈ R

k×k and Ci(u) are k functions to be defined.

3.1. Decay properties of the local truncation error. In this section we focus
on the local truncation error for the general scheme 11. By applying the time decay
properties given in [3], we will show how it is possible to build up numerical schemes
which are more accurate for large times.

Set, for i = 1, ...,m,

C = diag(Ci), C̄ = DCD−1, C(u) = (Ci(u))T , γi = (βi
1 − βi

−1).

Scheme 11 is clearly consistent. Now, using the time decay estimates in [3] and
similar estimates for their time derivatives, we obtain for a general approximation
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the following estimates for the local truncation error, as t → +∞:

Tu(x, t) = O(∆x t−3/2) +O(∆t t−3/2),Tz(x, t) = O(∆x t−3/2) +O(∆t t−3/2).

We would like to improve the decay property of this local truncation error to build
up more accurate numerical schemes. The main idea is to chose the free parameters
of the scheme to delete the terms that decay more slowly in the Taylor expansion
of the local truncation error (see [1] for details).

Let gi = diag(γ(i−1)k+1, ..., γik) for i = 1, ...,m and G = diag(g1, ..., gm).

Theorem 3.1 (Local Truncation Error). Let ∆t/∆x = ρ be fixed and let H =
diag(h1, . . . , hm) be the block diagonal matrix given by H = DTD and set P =
∑m

i=1 λ
2
ih

−1
i . Assume A11 6= 0 and that the following condition holds:

the matrix (λiIk −A11) is invertible for i = 1, ...,m.

If we make the following choice for the coefficients of the scheme 11,

C = −ρ

2
Ikm, C = CM(u) = −ρ

2
M(u), (11)

gi = −
(

1

2
qih

−1
i − ρ

2
h−1
i

(

P − (λiIk −A11)
2
)

)

(λiIk −A11)
−1hi (12)

and

Γ′

i(u) = giM
′

i(u) +
ρ

2



(h−1
i −M ′

i(u))A11 + λiM
′

i(u)− h−1
i

m
∑

j=1

λjM
′

j(u)



 , (13)

both for i = 1, ...,m, then the scheme 11 is TAHO and the local truncation error

reads

Tu(x, t) = O
(

∆x t−2
)

+O
(

∆x2 t−3/2
)

,Tz(x, t) = O
(

∆x t−2
)

+O
(

∆x2 t−3/2
)

.

For the proof and further considerations in case A11 = 0 we refer to [1].

4. Numerical tests. In this Section we show how, for large time simulations,
TAHO schemes give better numerical results than standard approximations for both
examples considered in Sections 2.1 and 2.2.

Specifically, we shall compare our TAHO scheme with two numerical approxi-
mations: i) a source pointwise approximation, denoted by STD and defined by 11
with Γi = 0, γi = 0, Ci = 0 and Ci = 0, for i = 1 =, ...,m; ii) a source upwinding
approximation, denoted by ROE and defined by

f i
j,n+1 − f i

j,n

∆t
+

λi

2∆x

(

f i
j+1,n − f i

j−1,n

)

− |λi|
2∆x

δ2xf
i
j,n

=
Mi(u

n
j−1) + 2Mi(u

n
j ) +Mi(u

n
j+1)

4
+

sgn(λi)

4
(Mi(u

n
j−1)−Mi(u

n
j+1))

−
f i
j−1,n + 2f i

j,n + f i
j+1,n

4
− sgn(λi)

4
(f i

j−1,n − f i
j+1,n).

(14)

To complete the definition of scheme 11 coupled with conditions 12-14 it is still
necessary to choose some free parameters, such as for the 2×2 case B1,2

0 (·) and β1,2
0 .

For both cases considered, such parameters can be defined by applying monotonicity
conditions to the scheme. We refer to [1] for more details.

For all tests, we focus our attention on the numerical error as a function of time:
we plot the error e(t) = ‖(uH − Uh)(t)‖L∞ as the time t = n∆t increases, where
uH is the reference solution obtained by the ROE scheme 15, with ∆x = O(10−4).
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Then, given different numerical approximations Uh, we look for a constant C and
γ which best fit the equality

e(t) = ‖(uH − Uh)(t)‖L∞ = Ct−γ . (15)

Given N data points (ti, e(ti))i=1,N , we shall define γ and C as the solution of the
following least squares problem,

min
C,γ

N
∑

i=1

| ln(e(ti))− ln(Ct−γ)|2.

For all schemes, we fix the steps ratio ρ to verify all the CFL conditions. Since
all schemes are of first order approximation, to emphasize the good behaviour of
TAHO compared to the others schemes, we compute the numerical solutions Uh by
using a quite big grid step ∆x = O(10−1).

All numerical results we present show that for standard approximations, such as
STD and ROE, the absolute error e(t), for a fixed space step, decays as

eu(t) = O(t−1/2), ez(t) = O(t−1),

while for the TAHO scheme, it improves of t−1/2 on the previous schemes.

4.1. Results for the Jin–Xin 2 × 2 system. We fix q = λ and we compare for
the 2×2 case the TAHO scheme coupled with monotonicity assumptions, with ROE
and STD scheme. We shall consider as initial datum the function

u0 = χ[−1,1]

(

−x2 + 1
)

, z0 =
1

λ
F (u0(x)),

and we fix

F (u) = a
(

u− u2
)

.

The numerical results 1 show a better performance of the TAHO scheme; for both
conservative and dissipative variable, the numerical solution obtained by TAHO
fit better the benchmark curve. Again, the decay of the errors eu(t) and ez(t),
Figure 1-(c)-(d), goes faster for the TAHO scheme, as confirmed by Table 1. There
the decay parameter γ is numerically computed for all three schemes. The value
obtained for the TAHO scheme improve of t−1/2 on the others. We stress on that
the numerical solutions are computed with quite big step ∆x = 0.1.

4.2. Results for the 3× 3 system. As initial data, we take the smooth function
u0 defined by

u0(x) = χ[−1,1] exp

(

1− 1

1− x2

)

.

Then we set f0(x) = M(u0(x)). We choose a = 1, λ = 2.1, β = (α − a)/λ = 0.1.
The discretization parameters are ∆x = 0.1, ρ = 1

2λ , which satisfy all monotonicity
requirements, see [1].

The numerical results show as in the 2×2 case a better performance of the TAHO
scheme. In Figure 2-(a)-(b), we plot the time evolution of the l∞ errors eu(t) and
ez(t). They show how for the TAHO scheme both errors decay as time increases
more quickly than other. This result is also confirmed by Table 2, where the values
of γ and C are computed. Looking at the different values of γ, it is clear that for
the TAHO approximation the decay velocity of the absolute error improves of t−1/2

on the previous schemes.
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scheme Cu γu Cz γz
STD 0.013797 0.374708 0.010744 0.341554
ROE 0.004874 0.333634 0.007850 0.439996
TAHO 0.111380 1.151517 0.495480 1.451030

Table 1. The 2 × 2 Test, see subsection 4.1. Evaluation of con-
stants γ and C for eu(t) = Cut

−γu and ez(t) = Czt
−γz defined

in 16. For standard approximation STD and ROE, the absolute
error decays as eu,z(t) ≈ O(t−1/2); while, for the TAHO scheme it

improves of t−1/2.
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Figure 1. The 2×2 Test, see subsection 4.1. (a)-(b) Zoom on the
solutions u and z respectively obtained by the different schemes
at final time T . The plot show that TAHO scheme gives better
results than others with a quite big step ∆x = 0.1. (c)-(d) Time
evolution of the l∞ errors eu(t) and ez(t) defined in 16 for the
different schemes. As expected by our asymptotic analysis, for the
TAHO scheme the absolute errors eu,z(t) decay faster as the time
increases. This result is confirmed in Table 1, where we compute
the decay parameters γ of absolute errors previously plotted.
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