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SCHR ÖDINGER OPERATORS ON A HALF-LINE WITH INVERSE SQUARE POTENTIALS

We consider Schrödinger operators Hα given by equation (1.1) below. We study the asymptotic behavior of the spectral density E(Hα, λ) for λ → 0 and the L 1 → L ∞ dispersive estimates associated to the evolution operator e -itHα . In particular we prove that for positive values of α, the spectral density E(Hα, λ) tends to zero as λ → 0 with higher speed compared to the spectral density of Schrödinger operators with a short-range potential V . We then show how the long time behavior of e -itHα depends on α. More precisely we show that the decay rate of e -itHα for t → ∞ can be made arbitrarily large provided we choose α large enough and consider a suitable operator norm.

Introduction

This paper is concerned with Schrödinger operators

H α = - d 2 dx 2 + α x 2 , α ≥ - 1 4 , (1.1) 
in L 2 (R + ) with Dirichlet condition at x = 0. In particular, we are interested in the dependence of various spectral properties of H α on the parameter α. Note that potentials of the type α/x 2 have a special role, since the resulting operator H α is scaling invariant. Moreover, it is known that the potentials which satisfy V (x) ∼ x -2 as x → ∞ represent a borderline case for certain important spectral inequalities such as dispersive or Strichartz estimates, see [GVV].

It is therefore not surprising that Schrödinger operators with inverse square potentials have recently attracted certain attention; we might mention for example the heat kernel bounds obtained in [START_REF] Milman | Heat kernel bounds and desingularizing weights[END_REF][START_REF] Milman | Global heat kernel bounds via desingularizing weights[END_REF], or Strichartz estimates in dimension three studied in [START_REF] Burq | Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential[END_REF][START_REF] Burq | Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay[END_REF]. Inverse square potentials appear naturally also in connection with two-dimensional Schrödinger operators with Aharonov-Bohm-type magnetic field, see [FFFP, GK].

Main objects of our interest here are the spectral density

E(H α , λ) = 1 2πi lim ε→0+ (H α -λ -iε) -1 -(H α -λ + iε) -1 , λ > 0 (1.2)
of H α , and the unitary group e -itHα . In particular, we are going to study the asymptotic behavior of E(H α , λ) for λ → 0 and the L 1 → L ∞ dispersive estimates associated to the evolution operator e -itHα . It is very well-known that the asymptotic behavior of E(H α , λ) for small λ is closely related to the asymptotic behavior of e -itHα for large t.

There is a huge amount of literature on this subject, see e.g. [START_REF] Erdogan | A weighted dispersive estimate for Schrödinger operators in dimension two[END_REF][START_REF] Goldberg | Dispersive estimates for Schrödinger operators in dimensions one and three[END_REF][START_REF] Jensen | Spectral properties of Schrödinger operators and time-decay of the wave functions[END_REF][START_REF] Murata | Asymptotic expansions in time for solutions of Schrödinger-type equations[END_REF][START_REF] Schlag | Dispersive estimates for Schrödinger operators in dimension two[END_REF][START_REF] Schlag | Dispersive estimates for Schrödinger operators: a survey[END_REF][START_REF] Weder | L p -L p ′ Estimates for the Schrödinger Equation on the Line and Inverse Scattering for the Nonlinear Schrödinger Equation with a Potential[END_REF][START_REF] Weder | The L p -L p estimate for the Schrödinger equation on the half-line[END_REF] and references therein. We are not going to discuss this connection any further since it will not be used in our proofs.

For general one-dimensional Schrödinger operators of the type H V = -d 2 dx 2 + V the behavior of both E(H V , λ) and e -itH V is known provided the potential V decays fast enough at infinity. In particular, if zero is a regular point of H V , (which is the generic case), then

E(H V , λ) ∼ λ 1 2 , λ → 0, (1.3)
in a suitable operator topology, see [START_REF] Goldberg | Transport in the one-dimensional Schrödinger equation[END_REF][START_REF] Murata | Asymptotic expansions in time for solutions of Schrödinger-type equations[END_REF][START_REF] Schlag | Dispersive estimates for Schrödinger operators: a survey[END_REF][START_REF] Weder | The L p -L p estimate for the Schrödinger equation on the half-line[END_REF]. Accordingly, for such short range potentials, under certain regularity conditions, Murata [Mu] proved

w -1 e -itH V w -1 L 2 (R)→L 2 (R) ≤ C t -3 2 ∀ t > 2, (1.4)
where w is a weight function with a sufficient growth at infinity. The corresponding L 1 → L ∞ was established by Schlag

ρ -1 e -itH V ρ -1 L 1 (R)→L ∞ (R) ≤ C t -3 2 ∀ t > 2, (1.5)
with ρ(x) = (1 + |x|), see [START_REF] Schlag | Dispersive estimates for Schrödinger operators: a survey[END_REF]. It is important to mention that the decay conditions on V , under which all the above results were obtained, imply that

V (x) = o(x -2 ) as |x| → ∞.
The goal of the present note is to show that if V is of type α x -2 with α > 0, then the asymptotic relation (1.3) is no longer valid and has to replaced by a new one, and, on the other hand, the estimates (1.4) and (1.5) can be improved. In particular E(H α , λ) decays faster to zero than in (1.3), see Theorem 2.1. Accordingly the decay in the dispersive estimate (1.5) can be improved provided the weight function ρ grows fast enough at infinity, see Theorem 2.4. Although our results regard a family of Schrödinger operators with explicit potentials, it can be expected that similar results should hold also if H α is perturbed by a sufficiently short-range perturbation.

It should be finally mentioned that our main results, i.e. Theorems 2.1 and 2.4, fail in the case of Schrödinger operators on the whole line due to the presence of the zero resonance.

Main results

2.1. Notation. We set ρ(x) = 1 + x on R + . For any s ∈ R we denote

L 2 s (R + ) = {u : ρ s u L 2 (R + ) < ∞}, u 0,s := ρ s u L 2 (R + ) .
Let B(s, s ′ ) be the space of bounded linear operators from L 2 s (R + ) to L 2 s ′ (R + ) and let • B(s,s ′ ) denote the corresponding operator norm. Finally, we put ν = 1/4 + α.

(2.1)

We have

Theorem 2.1. Let α > -1/4. Then for any ε > 0 and any

s ≥ ν + 1 + ε it holds E(H α , λ) = E 0 λ ν + O(λ ν+ε ) λ → 0+ (2.2) in B(s, -s)
, where E 0 is the integral operator in L 2 (R + ) with the kernel

E 0 (x, y) = (x y) ν+ 1 2 2 ν Γ 2 (ν + 1) .
Remark 2.2. Equation (2.2) shows that for positive values of α the density E(H α , λ) is of lesser order than in the case of a short-range potential, see equation (1.3).

Remark 2.3. For a throughout discussion of threshold expansion of resolvents of onedimensional operators with short-range potentials we refer to [JN]. Asymptotic behaviour of Schrödinger groups generated by operators with inverse square decay on conical manifolds was studied in [Wa] in the setting of weighted L 2 -spaces.

Theorem 2.4. Let α ≥ -1/4. Then for any s ∈ [0, ν + 1/2] there exists a constant C(α, s) such that

ρ -s e -itHα ρ -s L 1 (R + )→L ∞ (R + ) ≤ C(α, s) t -1 2 -s ∀ t > 0.
(2.3)

Remark 2.5. For -1/4 < α ≤ 0 the dispersive estimate (2.3) can be derived from [START_REF] Fanelli | Time decay of scaling critical electromagnetic Schrödinger flows[END_REF]Thm.1.11] by considering the restriction of inequality [START_REF] Fanelli | Time decay of scaling critical electromagnetic Schrödinger flows[END_REF]Eq.(1.29)] to radial functions. On the other hand, the result for α > 0, namely the faster decay of e -itHα in t is new. The maximal decay rate t -1-ν , achieved by the choice s = ν + 1/2, should be compared with the t -3 2 decay rate in the estimate (1.5).

Remark 2.6. Note also that in the border-line case α = -1/4, which means ν = 0, Theorem 2.4 with the choice s = 1/2 gives the decay rate t -1 , which is the decay rate of the free evolution e it∆ in dimension two. This is not surprising since the operator

-d 2 dx 2 -1 4x 2 in L 2 (R + )
with Dirichlet boundary condition at zero is unitarily equivalent, by means of the unitary mapping f

(x) → √ x f (x), to the Laplacian -∆ in L 2 (R 2 )
restricted to radial functions.

An immediate consequence of Theorem 2.4 is the following Corollary 2.7. Let α ≥ -1/4. Then for any s ∈ [0, ν + 1/2] and any β > s + 1/2 there exists a constant C 2 , depending only on α, β and s, such that

ρ -β e -itHα ρ -β L 2 (R + )→L 2 (R + ) ≤ C 2 t -1 2 -s ∀ t > 0.
(2.4)

Proof. Let u ∈ L 2 β (R + ) and let f = ρ s u.
Then by the Cauchy-Schwarz inequality f ∈ L 1 (R + ) and

f 2 L 1 (R + ) = ∞ 0 ρ s ρ -β ρ β u dx 2 ≤ C 1 ρ β u 2 L 2 (R + ) , (2.5) 
where we have used the fact that β > s + 1/2. Hence from Theorem 2.4 and (2.5) we obtain

ρ -β e -itHα u 2 L 2 (R + ) = ∞ 0 ρ(x) 2s-2β | ρ -s e -itHα ρ -s f | 2 dx ≤ C 2 (α, s) t -1-2s f 2 L 1 (R + ) ≤ C 2 (α, s) C 1 t -1-2s ρ β u 2 L 2 (R + )
. This proves (2.4). Inequality (2.4) should be compared with the estimate (1.4) valid for short-range potentials.

3. Proofs 3.1. Proof of Theorem 2.1. For simplicity we shall drop the index α in the sequel and write E(λ) instead of E(α, λ). We also use the notation

R(λ, x, y) = lim ε→0+ (H α -λ -iε) -1 (x, y).
We first study the solutions u ∈ L 2 (R + ) of the generalized eigenvalue equation

-u ′′ - α x 2 = λu. (3.1) After setting u(x) = √ x ψ( √ λ x), equation (3.1) writes z 2 ψ ′′ -x + z ψ ′ + (z 2 -ν 2 ) ψ = 0 , (3.2) with z = √ λ x.
The latter is a Bessel equation of the first kind, see [AS,Sec.9.1]. We now find two solutions u 1 , u 2 of (3.1) which satisfy u 1 (0) = 0 and

u 2 ∈ L 2 (1, ∞) for Im λ > 0. Since | J ν (z) + i Y ν (z) | ∼ 2 zπ | e iz | , |z| → ∞, Im z > 0,
see [AS,Eqs.9.1.3,9.2.3], and

J ν (z) = (z/2) ν Γ(ν + 1) + o(z ν ) z → 0. (3.3)
by [AS, Eq.9.1.7], the sought solutions u 1 and u 2 take the form

u 1 (x) = √ x J ν ( √ λ x) (3.4) u 2 (x) = √ x (J ν ( √ λ x) + i Y ν ( √ λ x)) . (3.5)
Hence by the theory of Sturm-Liouville problems we obtain the resolvent kernel

R(λ, x, y) = iπ 2 √ xy J ν ( √ λ x) (J ν ( √ λ y) + i Y ν ( √ λ y)) (x ≤ y) (3.6) R(λ, x, y) = iπ 2 √ xy J ν ( √ λ y) (J ν ( √ λ x) + i Y ν ( √ λ x)) (x ≥ y) (3.7)
The Stone formula (1.2) then implies that

E(λ, x, y) = 1 π Im R(λ, x, y) = 1 2 √ xy J ν ( √ λ x) J ν ( √ λ y) . (3.8)
From (3.3) we now easily verify that lim

λ→0+ λ -ν E(λ, x, y) = (x y) ν+ 1 2 2 ν Γ 2 (ν + 1) = E 0 (x, y). (3.9)
Let us define the rest term E 1 (λ) as the integral operator in L 2 (R + ) with the kernel given by

E 1 (λ, x, y) = E(λ, x, y) -E 0 (x, y) λ ν . (3.10)
To prove Theorem 2.1 we need the following Lemma 3.1. For any ε > 0 and any s > ν + 1 + ε we have

E 1 (λ) B(s,-s) = O(λ ν+ε ) λ → 0 + . (3.11)
Proof.-

We will use the fact that

E 1 (λ) B(s,-s) = ρ -s E 1 (λ)ρ -s L 2 (R + )→L 2 (R + ) .
(3.12)

From (3.10) we get that

ρ -s λ -ν E(λ) ρ -s = ρ -s E 0 ρ -s + ρ -s λ -ν E 1 (λ) ρ -s . (3.13)
Note that the operator E 0 is Hilbert-Schmidt in B(s, -s). This follows from the identity (3.12) applied to E 0 . Hence by applying the Taylor formula to the operator ρ -s λ -ν E(λ) ρ -s at λ = 0 we find that the claim of the Lemma will follow if we show that

ρ -s ∂ λ (λ -ν E(λ)) ρ -s HS(R + ) = ρ -s ∂ λ (λ -ν E 1 (λ)) ρ -s HS(R + ) = O(λ -1+ε ) λ → 0, (3.14) 
where • HS(R + ) denotes the Hilbert-Schmidt norm in L 2 (R + ). Using the recurrence relations for the derivatives of J ν :

J ′ ν (z) = -J ν+1 (z) + ν z J ν (z) J ′ ν (z) = J ν+1 (z) - ν z J ν (z),
see [AS,Eq.9.1.27], we get from (3.8)

∂ λ (λ -ν E(λ, x, y)) = - λ -ν-1/2 4 √ x y (x J ν+1 ( √ λ x) J ν ( √ λ y) + y J ν+1 ( √ λ y) J ν ( √ λ x) . (3.15) 
Hence by the Cauchy-Schwarz inequality

ρ -s ∂ λ (λ -ν E(λ)) ρ -s 2 HS(R + ) = = ∞ 0 ∞ 0 |∂ λ (λ -ν E(λ, x, y))| 2 ρ(x) -2s ρ(y) -2s dxdy ≤ C λ -1-2ν I(λ) J (λ) (3.16)
where

I(λ) = ∞ 0 x 3 J 2 ν+1 ( √ λ x) (1 + x) -2s dx J (λ) = ∞ 0 y J 2 ν ( √ λ y) (1 + y) -2s dy
and C is a constant independent of λ. To estimate the last two integrals we will need a point-wise estimate on the Bessel function J ν . From the integral representation

J ν (z) = 2 ( z 2 ) ν √ π Γ(ν + 1 2 ) 1 0 (1 -t 2 ) ν-1 2 cos(zt) dt,
see [AS,Eq.9.1.20], it follows that |J ν (z)| ≤ C ν z ν for all z > 0 and ν > 0.

On the other hand, by [AS,Eq.9.1.20] we have |J ν (z)| ≤ 1 for all z > 0 and ν ≥ 0. A combination of these two upper bounds then implies that for any -1/2 ≤ µ ≤ ν there exists a constant C(µ, ν) such that

|J ν (z)| ≤ C(µ, ν) z µ ∀ z > 0, ∀ µ ∈ - 1 2 , ν .
(3.17) Using (3.17) with µ = ν -1 + 2ε in I(λ) and with µ = ν in J (λ) together with the fact that s ≥ ν + 1 + ε, we find

I(λ) = O(λ ν-1+2ε ), J (λ) = O(λ ν ) λ → 0.
In view of (3.16) this implies (3.14) and therefore completes the proof.

Theorem 2.1 now follows from (3.10) and (3.11).

3.2. Proof of Theorem 2.4. We will prove Theorem 2.4 by estimating the integral kernel of the operator e -itHα . To provide a formula for the integral kernel, we will follow [START_REF] Kovařík | Heat kernels of two-dimensional magnetic Schrödinger and Pauli operators[END_REF]Sec.5], where the formula for the integral of the heat semi-group e -tHα was established, see also [GK]. Equation (3.8) in combination with the Weyl-Titchmarsh-Kodaira Theorem, cf. [START_REF] Dunford | Linear Operators, Part II[END_REF]Chap.13], shows that the operator H α is unitarily equivalent to a multiplication operator, namely we have

U ν H α U -1 ν f (p) = p f (p), f ∈ U ν (D(H α )), (3.18) 
where D(H α ) denotes the operator domain of H α and the mappings U

ν , U -1 ν : L 2 (R + ) → L 2 (R + ) are given by (U ν g)(p) = ∞ 0 g(x) √ x J ν (x √ p) dx (U -1 ν f )(x) = 1 2 ∞ 0 f (p) √ x J ν (x √ p) dp (3.19)
The mapping U ν and U -1 ν define unitary operators on L 2 (R + ). Let g ∈ C ∞ 0 (R + ). By [START_REF] Teschl | Mathematical Methods in Quantum Mechanics With Applications to Schrödinger Operators[END_REF]Thm.3.1] e -itHα g = lim ε→0+ e -(ε+it) Hα g.

(3.20)

In view of (3.18) we thus get where we have used [START_REF] Erdelyi | Tables of integral transforms[END_REF]Eq.4.14(39)] to calculate the integral with respect to p. Moreover, from [AS,Eq.9.6.18] it follows that the function is bounded on every compact interval uniformly with respect to ε > 0. Since the support of g is compact, we can use the dominated theorem and interchange the limit and integration in (3.21). Taking the limit ε → 0 and using the identity I ν (iz) = e -iνπ/2 J ν (z), see [AS,Eq.9.6.3], we obtain The last equations now imply that

lim ε→0+ e -(ε+it)Hα g (r) = lim ε→0+ U -1 ν e -(ε+it) p U ν g (x) = lim ε→0+ 1 2 ∞ 0 √ xy ∞ 0 e -(ε+it) p J ν (x √ 
ρ -s e -itHα ρ -s f L ∞ (R + ) ≤ C(α, s) t -1 2 -s f L 1 (R + )
for all f ∈ L 1 (R + ). This proves inequality (2.3).

  the upper bound (3.17) with µ = s -1/2 ∈ [-1/2, ν] and z = xy 2t .
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