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SCHRÖDINGER OPERATORS ON A HALF-LINE WITH INVERSE

SQUARE POTENTIALS

HYNEK KOVAŘÍK AND FRANÇOISE TRUC

Abstract. We consider Schrödinger operators Hα given by equation (1.1) below.

We study the asymptotic behavior of the spectral density E(Hα, λ) for λ → 0 and

the L1
→ L∞ dispersive estimates associated to the evolution operator e−itHα . In

particular we prove that for positive values of α, the spectral density E(Hα, λ) tends

to zero as λ → 0 with higher speed compared to the spectral density of Schrödinger

operators with a short-range potential V . We then show how the long time behavior

of e−itHα depends on α. More precisely we show that the decay rate of e−itHα for

t → ∞ can be made arbitrarily large provided we choose α large enough and consider

a suitable operator norm.

1. Introduction

This paper is concerned with Schrödinger operators

Hα = − d2

dx2
+
α

x2
, α ≥ −1

4
, (1.1)

in L2(R+) with Dirichlet condition at x = 0. In particular, we are interested in the

dependence of various spectral properties ofHα on the parameter α. Note that potentials

of the type α/x2 have a special role, since the resulting operator Hα is scaling invariant.

Moreover, it is known that the potentials which satisfy V (x) ∼ x−2 as x→ ∞ represent a

borderline case for certain important spectral inequalities such as dispersive or Strichartz

estimates, see [GVV].

It is therefore not surprising that Schrödinger operators with inverse square potentials

have recently attracted certain attention; we might mention for example the heat kernel

bounds obtained in [MS, MS2], or Strichartz estimates in dimension three studied in

[BPST1, BPST2]. Inverse square potentials appear naturally also in connection with

two-dimensional Schrödinger operators with Aharonov-Bohm-type magnetic field, see

[FFFP, GK].

Main objects of our interest here are the spectral density

E(Hα, λ) =
1

2πi
lim

ε→0+

(

(Hα − λ− iε)−1 − (Hα − λ+ iε)−1
)

, λ > 0 (1.2)

of Hα, and the unitary group e−itHα . In particular, we are going to study the asymptotic

behavior of E(Hα, λ) for λ → 0 and the L1 → L∞ dispersive estimates associated to

the evolution operator e−itHα . It is very well-known that the asymptotic behavior of

E(Hα, λ) for small λ is closely related to the asymptotic behavior of e−itHα for large t.

There is a huge amount of literature on this subject, see e.g. [EG, GS, JK, Mu, Sch1,

Sch2, Wed1, Wed2] and references therein. We are not going to discuss this connection

any further since it will not be used in our proofs.
1
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For general one-dimensional Schrödinger operators of the type HV = − d2

dx2 + V the

behavior of both E(HV , λ) and e−itHV is known provided the potential V decays fast

enough at infinity. In particular, if zero is a regular point of HV , (which is the generic

case), then

E(HV , λ) ∼ λ
1
2 , λ→ 0, (1.3)

in a suitable operator topology, see [Go, Mu, Sch2, Wed2]. Accordingly, for such short

range potentials, under certain regularity conditions, Murata [Mu] proved

‖w−1 e−itHV w−1 ‖L2(R)→L2(R) ≤ C t−
3
2 ∀ t > 2, (1.4)

where w is a weight function with a sufficient growth at infinity. The corresponding

L1 → L∞ was established by Schlag

‖ ρ−1 e−itHV ρ−1 ‖L1(R)→L∞(R) ≤ C t−
3
2 ∀ t > 2, (1.5)

with ρ(x) = (1 + |x|), see [Sch2]. It is important to mention that the decay conditions

on V , under which all the above results were obtained, imply that V (x) = o(x−2) as

|x| → ∞.

The goal of the present note is to show that if V is of type αx−2 with α > 0, then the

asymptotic relation (1.3) is no longer valid and has to replaced by a new one, and, on the

other hand, the estimates (1.4) and (1.5) can be improved. In particular E(Hα, λ) decays

faster to zero than in (1.3), see Theorem 2.1. Accordingly the decay in the dispersive

estimate (1.5) can be improved provided the weight function ρ grows fast enough at

infinity, see Theorem 2.4. Although our results regard a family of Schrödinger operators

with explicit potentials, it can be expected that similar results should hold also if Hα is

perturbed by a sufficiently short-range perturbation.

It should be finally mentioned that our main results, i.e. Theorems 2.1 and 2.4, fail

in the case of Schrödinger operators on the whole line due to the presence of the zero

resonance.

2. Main results

2.1. Notation. We set ρ(x) = 1 + x on R
+. For any s ∈ R we denote

L2
s(R

+) = {u : ‖ρ s u‖L2(R+) <∞}, ‖u‖0,s := ‖ρ s u‖L2(R+).

Let B(s, s′) be the space of bounded linear operators from L2
s(R

+) to L2
s′(R

+) and let

‖ · ‖B(s,s′) denote the corresponding operator norm. Finally, we put

ν =
√

1/4 + α. (2.1)

We have

Theorem 2.1. Let α > −1/4. Then for any ε > 0 and any s ≥ ν + 1 + ε it holds

E(Hα, λ) = E0 λ
ν +O(λν+ε) λ→ 0+ (2.2)

in B(s,−s), where E0 is the integral operator in L2(R+) with the kernel

E0(x, y) =
(x y)ν+

1
2

2ν Γ2(ν + 1)
.
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Remark 2.2. Equation (2.2) shows that for positive values of α the density E(Hα, λ)

is of lesser order than in the case of a short-range potential, see equation (1.3).

Remark 2.3. For a throughout discussion of threshold expansion of resolvents of one-

dimensional operators with short-range potentials we refer to [JN]. Asymptotic be-

haviour of Schrödinger groups generated by operators with inverse square decay on con-

ical manifolds was studied in [Wa] in the setting of weighted L2−spaces.

Theorem 2.4. Let α ≥ −1/4. Then for any s ∈ [0, ν + 1/2] there exists a constant

C(α, s) such that

‖ ρ−s e−itHα ρ−s ‖L1(R+)→L∞(R+) ≤ C(α, s) t−
1
2
−s ∀ t > 0. (2.3)

Remark 2.5. For −1/4 < α ≤ 0 the dispersive estimate (2.3) can be derived from

[FFFP, Thm.1.11] by considering the restriction of inequality [FFFP, Eq.(1.29)] to radial

functions. On the other hand, the result for α > 0, namely the faster decay of e−itHα in

t is new. The maximal decay rate t−1−ν , achieved by the choice s = ν + 1/2, should be

compared with the t−
3
2 decay rate in the estimate (1.5).

Remark 2.6. Note also that in the border-line case α = −1/4, which means ν = 0,

Theorem 2.4 with the choice s = 1/2 gives the decay rate t−1, which is the decay rate

of the free evolution eit∆ in dimension two. This is not surprising since the operator

− d2

dx2 − 1
4x2 in L2(R+) with Dirichlet boundary condition at zero is unitarily equivalent,

by means of the unitary mapping f(x) 7→ √
x f(x), to the Laplacian −∆ in L2(R2)

restricted to radial functions.

An immediate consequence of Theorem 2.4 is the following

Corollary 2.7. Let α ≥ −1/4. Then for any s ∈ [0, ν +1/2] and any β > s+1/2 there

exists a constant C2, depending only on α, β and s, such that

‖ ρ−β e−itHα ρ−β ‖L2(R+)→L2(R+) ≤ C2 t
−

1
2
−s ∀ t > 0. (2.4)

Proof. Let u ∈ L2
β(R

+) and let f = ρs u. Then by the Cauchy-Schwarz inequality

f ∈ L1(R+) and

‖f‖2L1(R+) =

(
∫

∞

0
ρs ρ−β ρβ u dx

)2

≤ C1 ‖ ρβ u‖2L2(R+), (2.5)

where we have used the fact that β > s + 1/2. Hence from Theorem 2.4 and (2.5) we

obtain

‖ ρ−β e−itHα u ‖2L2(R+) =

∫

∞

0
ρ(x)2s−2β | ρ−s e−itHα ρ−s f |2 dx

≤ C2(α, s) t−1−2s ‖ f‖2L1(R+)

≤ C2(α, s)C1 t
−1−2s ‖ ρβ u‖2L2(R+).

This proves (2.4). �

Inequality (2.4) should be compared with the estimate (1.4) valid for short-range poten-

tials.
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3. Proofs

3.1. Proof of Theorem 2.1. For simplicity we shall drop the index α in the sequel and

write E(λ) instead of E(α, λ). We also use the notation

R(λ, x, y) = lim
ε→0+

(Hα − λ− iε)−1(x, y).

We first study the solutions u ∈ L2(R+) of the generalized eigenvalue equation

−u′′ − α

x2
= λu. (3.1)

After setting u(x) =
√
xψ(

√
λx), equation (3.1) writes

z2ψ′′ − x+ z ψ′ + (z2 − ν2)ψ = 0 , (3.2)

with z =
√
λx. The latter is a Bessel equation of the first kind, see [AS, Sec.9.1]. We

now find two solutions u1, u2 of (3.1) which satisfy u1(0) = 0 and u2 ∈ L2(1,∞) for

Imλ > 0. Since

| Jν(z) + i Yν(z) | ∼
√

2

zπ
| e iz | , |z| → ∞, Im z > 0,

see [AS, Eqs.9.1.3, 9.2.3], and

Jν(z) =
(z/2)ν

Γ(ν + 1)
+ o(zν) z → 0. (3.3)

by [AS, Eq.9.1.7], the sought solutions u1 and u2 take the form

u1(x) =
√
x Jν(

√
λx) (3.4)

u2(x) =
√
x (Jν(

√
λx) + i Yν(

√
λx)) . (3.5)

Hence by the theory of Sturm-Liouville problems we obtain the resolvent kernel

R(λ, x, y) =
iπ

2

√
xy Jν(

√
λx) (Jν(

√
λ y) + i Yν(

√
λ y)) (x ≤ y) (3.6)

R(λ, x, y) =
iπ

2

√
xy Jν(

√
λ y) (Jν(

√
λx) + i Yν(

√
λx)) (x ≥ y) (3.7)

The Stone formula (1.2) then implies that

E(λ, x, y) =
1

π
ImR(λ, x, y) =

1

2

√
xy Jν(

√
λx) Jν(

√
λ y) . (3.8)

From (3.3) we now easily verify that

lim
λ→0+

λ−ν E(λ, x, y) =
(x y)ν+

1
2

2ν Γ2(ν + 1)
= E0(x, y). (3.9)

Let us define the rest term E1(λ) as the integral operator in L2(R+) with the kernel

given by

E1(λ, x, y) = E(λ, x, y)− E0(x, y)λ
ν . (3.10)

To prove Theorem 2.1 we need the following

Lemma 3.1. For any ε > 0 and any s > ν + 1 + ε we have

‖E1(λ) ‖B(s,−s) = O(λν+ε) λ→ 0 + . (3.11)

Proof.–
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We will use the fact that

‖E1(λ) ‖B(s,−s) = ‖ρ−sE1(λ)ρ
−s‖L2(R+)→L2(R+). (3.12)

From (3.10) we get that

ρ−sλ−νE(λ) ρ−s = ρ−sE0 ρ
−s + ρ−sλ−νE1(λ) ρ

−s. (3.13)

Note that the operator E0 is Hilbert-Schmidt in B(s,−s). This follows

from the identity (3.12) applied to E0. Hence by applying the Taylor

formula to the operator ρ−sλ−νE(λ) ρ−s at λ = 0 we find that the claim

of the Lemma will follow if we show that

‖ ρ−s ∂λ(λ
−νE(λ)) ρ−s‖HS(R+) = ‖ ρ−s ∂λ(λ

−νE1(λ)) ρ
−s‖HS(R+)

= O(λ−1+ε) λ→ 0, (3.14)

where ‖ · ‖HS(R+) denotes the Hilbert-Schmidt norm in L2(R+). Using

the recurrence relations for the derivatives of Jν :

J ′

ν(z) = −Jν+1(z) +
ν

z
Jν(z)

J ′

ν(z) = Jν+1(z)−
ν

z
Jν(z),

see [AS, Eq.9.1.27], we get from (3.8)

∂λ(λ
−νE(λ, x, y)) = −λ

−ν−1/2

4

√
x y

[

(xJν+1(
√
λx) Jν(

√
λ y)

+ y Jν+1(
√
λ y) Jν(

√
λx)

]

. (3.15)

Hence by the Cauchy-Schwarz inequality

‖ρ−s ∂λ(λ
−νE(λ)) ρ−s‖2HS(R+) =

=

∫

∞

0

∫

∞

0
|∂λ(λ−νE(λ, x, y))|2 ρ(x)−2sρ(y)−2s dxdy

≤ C λ−1−2ν I(λ)J (λ) (3.16)

where

I(λ) =
∫

∞

0
x3 J2

ν+1(
√
λx) (1 + x)−2sdx

J (λ) =

∫

∞

0
y J2

ν (
√
λ y) (1 + y)−2sdy

and C is a constant independent of λ. To estimate the last two integrals

we will need a point-wise estimate on the Bessel function Jν . From the

integral representation

Jν(z) =
2 ( z2)

ν

√
π Γ(ν + 1

2)

∫ 1

0
(1− t2)ν−

1
2 cos(zt) dt,

see [AS, Eq.9.1.20], it follows that |Jν(z)| ≤ Cν z
ν for all z > 0 and ν > 0.

On the other hand, by [AS, Eq.9.1.20] we have |Jν(z)| ≤ 1 for all z > 0
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and ν ≥ 0. A combination of these two upper bounds then implies that

for any −1/2 ≤ µ ≤ ν there exists a constant C(µ, ν) such that

|Jν(z)| ≤ C(µ, ν) zµ ∀ z > 0, ∀ µ ∈
[

−1

2
, ν

]

. (3.17)

Using (3.17) with µ = ν−1+2ε in I(λ) and with µ = ν in J (λ) together

with the fact that s ≥ ν + 1 + ε, we find

I(λ) = O(λν−1+2ε), J (λ) = O(λν) λ→ 0.

In view of (3.16) this implies (3.14) and therefore completes the proof.

�

Theorem 2.1 now follows from (3.10) and (3.11).

3.2. Proof of Theorem 2.4. We will prove Theorem 2.4 by estimating the integral

kernel of the operator e−itHα . To provide a formula for the integral kernel, we will follow

[Ko, Sec.5], where the formula for the integral of the heat semi-group e−tHα was estab-

lished, see also [GK]. Equation (3.8) in combination with the Weyl-Titchmarsh-Kodaira

Theorem, cf. [DSch, Chap.13], shows that the operator Hα is unitarily equivalent to a

multiplication operator, namely we have

Uν Hα U−1
ν f(p) = p f(p), f ∈ Uν(D(Hα)), (3.18)

where D(Hα) denotes the operator domain of Hα and the mappings Uν , U−1
ν : L2(R+) →

L2(R+) are given by

(Uν g)(p) =

∫

∞

0
g(x)

√
xJν(x

√
p) dx

(U−1
ν f)(x) =

1

2

∫

∞

0
f(p)

√
xJν(x

√
p) dp

(3.19)

The mapping Uν and U−1
ν define unitary operators on L2(R+). Let g ∈ C∞

0 (R+). By [T,

Thm.3.1]

e−itHα g = lim
ε→0+

e−(ε+it)Hα g. (3.20)

In view of (3.18) we thus get

lim
ε→0+

(

e−(ε+it)Hα g
)

(r) = lim
ε→0+

(

U−1
ν e−(ε+it) p Uν g

)

(x)

= lim
ε→0+

1

2

∫

∞

0

√
xy

∫

∞

0
e−(ε+it) pJν(x

√
p)Jν(y

√
p) dp g(y) dy

= lim
ε→0+

1

2(ε+ it)

∫

∞

0

√
xy Iν

(

xy

2(ε+ it)

)

e
−

x2+y2

4(ε+it) g(y) dy. (3.21)

where we have used [Erd, Eq.4.14(39)] to calculate the integral with respect to p. More-

over, from [AS, Eq.9.6.18] it follows that the function

Iν

( xy

2(ε+ it)

)

e
−

x2+y2

4(ε+it) (3.22)
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is bounded on every compact interval uniformly with respect to ε > 0. Since the support

of g is compact, we can use the dominated theorem and interchange the limit and inte-

gration in (3.21). Taking the limit ε → 0 and using the identity Iν(iz) = e−iνπ/2Jν(z),

see [AS, Eq.9.6.3], we obtain

(

e−itHα g
)

(x) =
1

2it

∫

∞

0

√
xy Jν

(xy

2t

)

e−
x2+y2

4it e−
iνπ
2 g(y) dy. (3.23)

Now we apply the upper bound (3.17) with µ = s − 1/2 ∈ [−1/2, ν] and z = xy
2t . This

yields

sup
x,y∈R+

∣

∣

∣
ρ(x)−s√xy Jν

(xy

2t

)

ρ(y)−s
∣

∣

∣
< C(α, s) t

1
2
−s. (3.24)

The last equations now imply that

‖ ρ−s e−itHα ρ−s f ‖L∞(R+) ≤ C(α, s) t−
1
2
−s ‖f‖L1(R+)

for all f ∈ L1(R+). This proves inequality (2.3).
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