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KERR-DEBYE RELAXATION SHOCK PROFILES FOR KERREQUATIONSDENISE AREGBA-DRIOLLET ∗ AND BERNARD HANOUZET †Abstrat. The eletromagneti wave propagation in a nonlinear medium an be desribed bya Kerr model in the ase of an instantaneous response of the material, or by a Kerr-Debye model ifthe material exhibits a �nite response time. Both models are quasilinear hyperboli, and Kerr-Debyemodel is a physial relaxation approximation of Kerr model. In this paper we haraterize the shoksin the Kerr model for whih there exists a Kerr-Debye pro�le. First we onsider 1D models for whihexpliit alulations are performed. Then we determine the plane disontinuities of the full vetor3D Kerr system and their admissibility in the sense of Liu and in the sense of Lax. At last weharaterize the large amplitude Kerr shoks giving rise to the existene of Kerr-Debye relaxationpro�les.Key words. Nonlinear hyperboli problems, relaxation, shok pro�les, Kerr-Debye model.AMS subjet lassi�ations. 35L67,35L65, 35Q60.1. IntrodutionIn some ontexts the propagation of eletromagneti waves in nonlinear mediaan be modelized by the so-alled Kerr-Debye model, whih writes as a quasilinearhyperboli system with relaxation soure-terms depending on the response time of thematerial. Suh hyperboli relaxation problems have been investigated for a long timein the mathematial litterature, with a partiular emphasis on �uid mehanis, see[16℄ for a review. In an important artile ([5℄), Chen, Levermore and Liu establish atheoritial framework linking the properties of a relaxation system and its equilibriummodel. The Kerr-Debye model under onsideration enters this general formalism.To derive the models, one writes the tridimensional Maxwell's equations






∂tD−curlH=0,
∂tB+curlE=0,
divD=divB=0with the onstitutive relations
{

B = µ0H

D = ǫ0E+Pwhere P is the nonlinear polarization and µ0, ǫ0 are the free spae permeability andpermittivity.In nonlinear optis, if the medium exhibits an instantaneous response it is lassialto introdue a Kerr model [18℄
P =PK = ǫ0ǫr|E|2E.If the medium exhibits a �nite response time τ >0 one should use the Kerr-Debyemodel for whih

P =PKD = ǫ0χE, ∂tχ+
1

τ
χ=

1

τ
ǫr|E|2.
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2 Kerr-Debye relaxation shok pro�lesSee for example [24℄ for further details.The Kerr-Debye model is a relaxation approximation of the Kerr model and τis the relaxation parameter. Formally when τ tends to 0, χ onverges to ǫr|E|2 and
PKD onverges to PK . More preisely, as already observed in [8℄, Kerr system is theredued system for the Kerr-Debye one in the sense of [5℄.The onvergene of smooth solutions of Kerr-Debye system towards a smoothsolution of Kerr system when τ tends to zero is now well understood. For the initialvalue problem, as the stability onditions of [22℄ are satis�ed, the result is obtainedin [8℄. For the more physially realisti situation of impedane boundary onditions,in partiular the ingoing wave, the result is proved in [4℄.The onvergene towards a weak solution of Kerr system is far to be lear, evenin the one-dimensional setting. Only a few partial results are available in the litter-ature for similar problems, and those results do not apply here, see omments andreferenes following (1.5), (1.6). As a �rst step into the omprehension of the in-volved phenomena, we shall onstrut Kerr-Debye pro�les for Kerr shoks. These aretravelling waves, smooth solutions of Kerr-Debye equations whih onverge to a weak(disontinuous) solution of Kerr system.In the following we onsider non-dimensionalized models and as usual for relax-ation equations we denote ǫ the response time τ . We therefore write the Kerr-Debyeequations as:











∂tDǫ−curlHǫ =0,
∂tHǫ +curlEǫ =0, Dǫ =(1+χǫ)Eǫ

∂tχǫ =
1

ǫ

(

|Eǫ|
2−χǫ

)

(1.1)with
divDǫ =divBǫ =0.Let us note that if the initial data are divergene free, then so are (Dǫ,Hǫ). Moreoverif χǫ is initially positive then so is χǫ for all positive times.One non-dimensionalized, the relaxed Kerr system writes

{

∂tD−curlH=0,
∂tH+curl(P(D))=0

(1.2)where P is the reiproal funtion of D:
D(E)= (1+ |E|2)E.Denoting

q(e)= e+e3, e∈R, p= q−1, (1.3)we have
E=P(D)= (1+p(|D|)2)−1D. (1.4)The equilibrium manifold for Kerr-Debye model that is

V ={(D,H,χ); (1+χ)−2|D|2−χ=0}



D. Aregba-Driollet and B. Hanouzet 3an be also de�ned as
V ={(D,H,χ); χ=(p(|D|))2 = |E|2}.As proposed in [3℄ we also introdue the one dimensional models satis�ed by solutions

D(x,t)= (0,d(x,t),0), H(x,t)= (0,0,h(x,t)) and x=x1∈R. In that framework thesolutions of Kerr-Debye model (1.1) satisfy the following system:






∂tdǫ +∂xhǫ =0,
∂thǫ +∂x

(

(1+χǫ)
−1dǫ

)

=0,
∂tχǫ = 1

ǫ

(

(1+χǫ)
−2d2

ǫ −χǫ

)

(1.5)while the solutions of Kerr model (1.2) satisfy the following one:
{

∂td+∂xh = 0,
∂td+∂xp(d) = 0.

(1.6)It turns out that the 1D Kerr system (1.6) is a so-alled p-system. As p′>0 it is stritlyhyperboli but the properties of the funtion p di�er from the ones whih appear inthe general framework of gas dynamis or visoelastiity. For the last example, someresults onerning the onvergene of Suliiu relaxation approximations towards weaksolutions of the p-system are obtained in [20℄ (see also [9℄, [10℄). For Kerr-Debyerelaxation approximations, the onvergene towards a weak solution of (1.6) is anopen problem.Let us onsider a planar disontinuity for the Kerr system (1.2) that is a weaksolution u(x,t)= (D,H)(x,t) suh that
u(x,t)=

{

u− if x ·ω−σt< 0,
u+ if x ·ω−σt> 0,where u±, σ, ω (|ω|=1) are given and satisfy the Rankine Hugoniot onditions (see(3.19) part 3). A Kerr-Debye pro�le of this disontinuity is a smooth solution

wǫ(x,t)= (Dǫ,Hǫ,χǫ)(x,t)=W (
1

ǫ
(x ·ω−σt))suh that

W (±∞)= (D±,H±,χ±)where (D±,H±,χ±) are in the equilibrium manifold, so that
χ± =(p(|D±|))

2 = |E±|
2.In [13℄ T.-P. Liu onstruts suh pro�les for the 2×2 1D hyperboli systems withrelaxation. In [23℄ W.-A. Yong and K. Zumbrun prove the existene of relaxationpro�les for small amplitude Liu-shoks in a general setting. Their results apply forstritly hyperboli redued systems (see hypothesis (b) in [23℄) whih is not true for the3D Kerr system (1.2), where moreover the eigenvalues have variable multipliities (seeSet. 3.1 herein). In the ase of our 1D models, system (1.6) is stritly hyperboliand the strutural assumptions of [23℄ are satis�ed. In the present paper, withoutsmallness hypothesis, we haraterize all the shoks giving rise to the existene of a



4 Kerr-Debye relaxation shok pro�lesKerr-Debye pro�le. Namely, we prove that a Kerr-Debye relaxation pro�le exists ifand only if the shok under onsideration is entropi in the sense of Lax.Setion 2 of the paper is devoted to the 1D systems (1.6) and (1.5) for whihexpliit alulations are performed. First we haraterize the Liu-admissible shoks,that is the disontinuities satisfying ondition (E) in de�nition 2.1 below. In [12℄T.P. Liu proves that ondition (E) is equivalent to the existene of a visous shokpro�le. Here, it turns out that this ondition is not su�ient to ensure the existene ofrelaxation pro�les. In fat we prove that a pro�le exists if and only if the disontinuitysatis�es the additional assumption d−d+>0 (so p is onvex or onave on the interval
d−, d+). We then observe that the same ondition appears for the existene of avisosity pro�le related to the Chapman-Enskog expansion of the Kerr-Debye system.In setion 3 we onsider the full vetor 3D systems. The Kerr system owns sixreal eigenvalues

λ1≤λ2<λ3 =0=λ4<λ5 =−λ2≤λ6 =−λ1 .The harateristi �elds 1, 3, 4, 6 are linearly degenerate. If λ2 6=λ1 the seondharateristi �eld is genuinely nonlinear. Then we haraterize the Liu shoks andthe Lax shoks. The main result of this setion is that Kerr-Debye relaxation shokpro�les only exist for Lax 2-shoks and Lax 5-shoks.2. Kerr-Debye shok pro�les for the 1D Kerr system2.1. Admissible shok waves for 1D Kerr system As already mentioned,the system (1.6) is stritly hyperboli, the eigenvalues are
λ1(d)=−

√

p′(d)<0<λ2(d)=
√

p′(d) , (2.1)with the related eigenfuntions
r1 =

(

−1
√

p′(d)

)

, r2 =

(

1
√

p′(d)

)

. (2.2)We observe that
λ′i(d,h)ri(d,h)=

p′′(d)

2
√

p′(d)
, i=1,2 (2.3)whih is zero for d=0. Hene the harateristi �elds are genuinely nonlinear only on

{u=(d,h);d 6=0}.If two onstant states u+ and u− are onneted by a shok propagating withspeed σ, then the Rankine-Hugoniot onditions are satis�ed:
{

h+−h− =σ(d+−d−),
p(d+)−p(d−)=σ(h+−h−).

(2.4)We onsider non trivial shoks, that is d+ 6=d−. Rankine-Hugoniot onditions write














σ(u+,u−)=
h+−h−
d+−d−

(h+−h−)2 =(p(d+)−p(d−))(d+−d−).

(2.5)



D. Aregba-Driollet and B. Hanouzet 5For (d−,h−) �xed we denote H(u−) the Hugoniot set of u− =(d−,h−). It is the unionof four sets:
H±

1 (d−,h−)={(d,h), h=h−∓
√

(p(d)−p(d−))(d−d−), d≷d−},and
H±

2 (d−,h−)={(d,h), h=h−±
√

(p(d)−p(d−))(d−d−), d≷d−}.

H1(u−)=H+
1 (u−)∪H−

1 (u−) is the set of states u onneted to u− with σ(u,u−)<
0, while H2(u−)=H+

2 (u−)∪H−

2 (u−) is the set of states u onneted to u− with
σ(u,u−)>0.In [11℄, T.P. Liu gives a generalization of Lax's shok entropy onditions whenthe harateristi �elds are not everywhere genuinely nonlinear: the ondition (E).Definition 2.1. Let u− be a given left state and onsider u+∈H(u−). The dison-tinuity is Liu-admissible if

(E) σ(u+,u−)≤σ(u,u−), ∀u∈H(u−), u between u− and u+ .One-shoks. Liu's one-shoks are the shoks satisfying ondition (E) and suh that
u+ belong to H1(u−). Here we have

σ(u,u−)=σ(d,d−)=−

√

p(d)−p(d−)

d−d−
. (2.6)Lemma 2.2. For all d= q(e)∈R we denote

d∗(d)= q(−
1

2
e)=−

1

8
[d+3p(d)] (2.7)where q is the funtion de�ned by (1.3). As a funtion of d, σ∈C1(R) and σ owns aunique global minimum whih is reahed at the point d∗(d−).Proof. In the following σ′ is the derivative of σ(d,d−) with respet to d:

σ′(d,d−)=
1

2σ(d,d−)(d−d−)

[

p′(d)−
p(d)−p(d−)

d−d−

]

.It is easy to see that as a funtion of d, σ∈C1(R) and that σ′(d−,d−)=
−p′′(d−)

4
√

p′(d−)
.Let us de�ne

K(d)=p′(d)−
p(d)−p(d−)

d−d−and k=K ◦q. We have
k(e)=

−2e2+ee−+e2−
(e2 +ee−+e2−+1)(1+3e2)and the roots are − 1

2e− and e−. This allows us to onlude.As a �rst ase, we study one-shoks with u+∈H+
1 (u−). We observe that if d−≥0ondition (E) annot be satis�ed sine we must have d>d− and p is onave for

d−≥0.



6 Kerr-Debye relaxation shok pro�les
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Fig. 2.1. Admissibility of a shok: d∗ is suh that the seant (u−,u∗) is tangent to the graphof funtion p at u∗.Let us now suppose that d−<0. By lemma 2.2 σ is dereasing on [d−,d
∗(d−)]and inreasing on [d∗(d−),+∞[. Therefore the ondition (E) is satis�ed if and only if

d+ ∈]d−,d
∗(d−)].We turn our attention to u+∈H−

1 (u−). We remark that u∈H−

1 (u−) if andonly if −u∈H+
1 (−u−). On another hand σ(−d,−d−)=σ(d,d−). Therefore, wean dedue that the ondition (E) is satis�ed on H−

1 (u−) if and only if d−>0 and
d+ ∈ [d∗(d−),d−[.Finally denoting S the funtion de�ned by

S(d,d−)=
√

(p(d)−p(d−))(d−d−) (2.8)the following proposition summarizes the results.Proposition 2.3. For a Liu one-shok
σ=−

√

p(d+)−p(d−)

d+−d−
.Let u− be a given left state.If d−>0, u+ is a right state onneted to u− by a Liu one-shok if and only if

d+ ∈ [d∗(d−),d−[, h+ =h−+S(d+,d−).If d−<0, u+ is a right state onneted to u− by a Liu one-shok if and only if
d+ ∈]d−,d

∗(d−)], h+ =h−−S(d+,d−).If d− =0 there does not exist any right state onneted to u− by a Liu one-shok.Two-shoks. Similar onsiderations lead toProposition 2.4. For a Liu two-shok
σ=

√

p(d+)−p(d−)

d+−d−
.Let u− be a given left state.



D. Aregba-Driollet and B. Hanouzet 7If d−>0, u+ is a right state onneted to u− by a Liu two-shok if and only if
d+>d− , h+ =h−+S(d+,d−).If d−<0, u+ is a right state onneted to u− by a Liu two-shok if and only if
d+<d− , h+ =h−−S(d+,d−).If d− =0, u+ is a right state onneted to u− by a Liu two-shok if and only if

d+ 6=0, h+ =h−+sgn(d+)S(d+,d−).2.2. Shok pro�les In this setion we onstrut Kerr-Debye relaxation shokpro�les, that are smooth solutions of Kerr-Debye system (1.5) under the form
wǫ(x,t)=W

(

x−σt

ǫ

)

, W =(D,H,X ),and suh that
W (±∞)=w±=(d±,h±,χ±).We suppose that

w− 6=w+ . (2.9)It is wellknown that σ, (d±,h±) must satisfy the Rankine-Hugoniot onditions andthat w± belong to the equilibrium manifold, so we have (2.4), d+ 6=d−, σ 6=0 and
χ± =(p(d±))2 = e2±. (2.10)The problem is to �nd W (ξ)∈C1(R,R3) suh that







−σD′+H ′ =0,

−σH ′+
(

(1+X )−1D
)′

=0,
−σX ′ =(1+X )−2D2−X

(2.11)and
(D(±∞),H(±∞),X (±∞))= (d±,h±,(p(d±))2). (2.12)Denoting E=(1+X )−1D, system (2.11) also reads as







−σD+H=C1 =−σd±+h± ,
−σH+E=C2 =−σh±+e± ,
−σX ′ =E2−X .

(2.13)Let us also remark that by the last equation in (2.11) we have neessarily
∀ξ∈R, X (ξ)≥0. (2.14)Let us determine some neessary onditions for the existene of smooth shok pro�les.



8 Kerr-Debye relaxation shok pro�lesFirst, eliminating H from the two �rst equations of (2.13) we have
−σ2D+E=σC1 +C2 =−σ2d±+e± . (2.15)Lemma 2.5. If W ∈C1(R,R3) is solution of (2.11)(2.12) with (2.9) then

σC1 +C2 6=0. (2.16)Proof. Suppose that σC1 +C2 =0. As d− 6=d+, one of them is not zero. Supposefor instane that d− 6=0. There exists a non empty maximal interval ]−∞,ξ1[ where
D 6=0. By (2.15), on this interval we have

(

−σ2 +(1+X )−1
)

D=0so that X is a onstant. By the last equation of (2.13), D=d− on this interval. If ξ1is �nite, then D(ξ1)=0, otherwise the limit of D at +∞ is d+ 6=d−. In eah ase it isa ontradition. The same an be done if d− =0 and d+ 6=0.As a onsequene we have
∀ξ∈R,

[

1−σ2(1+X (ξ))
] D(ξ)

1+X (ξ)
=σC1 +C2 6=0. (2.17)Denoting

θ(X )= [1−σ2(1+X )]2we remark also that
(σC1 +C2)

2 =χ−θ(χ−)=χ+θ(χ+). (2.18)Proposition 2.6. If W ∈C1(R,R3) is solution of (2.11) (2.12) with (2.9) and (2.4)then
d+d−>0 and ∀ξ∈R D(ξ) 6=0. (2.19)Moreover

∀ξ∈R θ(X (ξ)) 6=0, (2.20)
X is solution of the ordinary di�erential problem

X ′ =
1

σ

X θ(X )−χ±θ(χ±)

θ(X )
, (2.21)

X (±∞)=χ± =(p(d±))2 (2.22)and D and H are given by






D=
(σC1 +C2)(1+X )

1−σ2(1+X )
H=C1+σD.

(2.23)



D. Aregba-Driollet and B. Hanouzet 9Proof. Using (2.14), (2.17) and taking into aount the ontinuity of D and theequalities
σC1 +C2 =−σ2d±+p(d±)we obtain (2.19).The property (2.20) is an immediate onsequene of (2.17).Hene D is given by the �rst equation of (2.23) and we obtain the ODE (2.21) bythe third equation of (2.11).Reiproally, aording to the above results we onsider data suh that

{

d− 6=d+ , d−d+>0,
Rankine−Hugoniot conditions (2.4)are satisfied.

(2.24)Suh data satisfy the relation
χ−θ(χ−)=χ+θ(χ+).Let us study the problem (2.21)(2.22). We point out the fat that if X (ξ) is a solutionof this problem then X (ξ−τ) is one also for all τ ∈R. Hene uniqueness does not holdfor (2.21)(2.22).Proposition 2.7. Let us suppose that the data satisfy onditions (2.24). A solutionof problem (2.21)(2.22) exists if and only if one of the two following onditions holds:(i) σ< 0 and 0< |d+|< |d−|,(ii) σ> 0 and 0< |d−|< |d+|.Any solution X is monotone, positive and X ∈C∞(R).Proof. We denote by ψ the funtion de�ned by

ψ(X )=X θ(X )−χ−θ(χ−)=X θ(X )−χ+θ(χ+).As d− 6=d+ and d+d−>0, χ− and χ+ are two distint real roots of ψ. Hene thereexists a third real root χ0. We have
χ0 +χ−+χ+ =2(σ−2−1) (2.25)so using

σ−2 =
q(e+)−q(e−)

e+−e−
=1+e2++e+e−+e2−we obtain

χ0 =(p(d+)+p(d−))2.Denoting χm =min(χ−,χ+) and χM =max(χ−,χ+) we thus have
0<χm<χM <χ0 . (2.26)Equation (2.21) reads as

X ′ =σ3 (X −χm)(X −χM )(X −χ0)

θ(X )
.



10 Kerr-Debye relaxation shok pro�lesWe have
θ(y)=σ4[σ−2−1−y]2and

σ−2−1= e2++e2−+e−e+∈]χM ,χ0[ (2.27)so that θ is positive on [χm,χM ].By the general theory of ODEs, for all y0∈]χm,χM [, this equation has a uniquesolution X ∈C1(R) suh that X (0)= y0. It remains to study the behaviour of thissolution at in�nity.We remark that as X (ξ)∈]χm,χM [ for all ξ∈R:
sgn(X ′)= sgn(σ).If σ< 0 then

lim
ξ→−∞

X (ξ)=χM , lim
ξ→+∞

X (ξ)=χmTherefore a solution of (2.21)(2.22) exists if 0<χ+<χ− whih is equivalent to
either 0<d+<d− ord−<d+<0.With similar onsiderations, we prove that if σ> 0 then a solution of (2.21)(2.22)exists if
either 0<d−<d+ ord+<d−<0.Reiproally, if neither (i) nor (ii) hold, by the general theory of ODEs the desiredsolution does not exist.We are now in position to prove the main result of this setion.Theorem 2.8. There exists a Kerr-Debye relaxation shok pro�le W ∈C1(R;R3)solution of (2.11)(2.12) with (2.9) if and only if the onditions (2.24) are ful�lled andthe suh de�ned shok is Liu-admissible. In that ase eah omponent of the pro�le ismonotone.Proof. Suppose that a shok pro�le exists. By proposition 2.6 onditions (2.24)are satis�ed and X is solution of (2.21) with (2.22). Therefore by proposition 2.7either ondition (i) or ondition (ii) is satis�ed. In view of propositions 2.3 and 2.4,the shok is Liu-admissible.Reiproally suppose that onditions (2.24) are satis�ed and that the shok isentropi. Then either ondition (i) or ondition (ii) is satis�ed in proposition 2.7 sothat there exists a solution X ∈C∞(R) of (2.21) with (2.22) and X is positive.We take

C1 =−σd−+h− =−σd+ +h+, C2 =−σh−+p(d−)=−σh++p(d+).A straightforward omputation gives relations (2.18). We de�ne D and H by (2.23).Then we have
(

D

1+X

)2

=
χ+θ(χ+)

θ(X )
.



D. Aregba-Driollet and B. Hanouzet 11Consequently the last equation of (2.13) is satis�ed. It is easy to verify that so arethe two �rst equations of (2.13).It remains to verify the limits at in�nity:
lim

ξ→+∞

D(ξ)=
(−σ2d+ +p(d+))(1+p(d+)2)

1−σ2(1+p(d+)2)
=d+and similarly

lim
ξ→−∞

D(ξ)=d− .The limits for H are then immediate by the seond equation of (2.11).The monotoniity of the shok pro�les is a diret onsequene of the above on-siderations.Let us detail theorem 2.8 for a Liu-admissible shok σ, (u+,u−).If σ< 0 and d−>0 then the pro�le exists if d+ ∈]0,d−[, does not exist if d+ ∈
[d∗(d−),0].If σ< 0 and d−<0 then the pro�le exists if d+ ∈]d−,0[, does not exist if d+ ∈
[0,d∗(d−)].If σ> 0 and d− 6=0 then the pro�le always exists, if d− =0 it does not exist.Let us point out that the ondition d− 6=0 is also required to apply the results of[23℄ for the weak shoks. We note that if d− 6=0 the Shizuta-Kawashima [19℄ onditionis satis�ed. This ondition is also ruial to study the stability of relaxation shokpro�les, see [14℄ and referenes therein. In a reent paper [7℄ the existene of pro�lesfor weak shoks under a weaker (Kawashima-like) assumption is proved.Remark 2.9. By (2.17) we have

(1−σ2(1+X ))E=σC1 +C2 6=0.We an diretly show that E is neessarily a solution of the following ODE:
E′ =−

σ

σC1 +C2
E(E−e+)(E−e−)(E+e+ +e−) (2.28)whih of ourse leads to the same onlusions. This is made possible by the fat thathere E is a salar quantity. That will not be true in the full vetor 3D system.Remark 2.10. If d+ =0 or d− =0 we an onstrut disontinuous shok pro�les. Inthe ase of an entropi one-shok with d+ =0 and d−∈R the following solution anbe written:







D(ξ)=d− if ξ<0, 0 else,
H(ξ)=h− if ξ <0, h+ else,

X (ξ)=χ− if ξ<0, χ− eξ/σ else.A similar solution exists for an entropi two-shok with d− =0 and d+ ∈R.We an prove the following asymptoti behavior of the shok pro�les.Theorem 2.11. Let W be a shok pro�le with (2.12) and (2.9). We de�ne
R+ =

e−+2e+
e−+e+

1

σ

(

1−
e+

e−

)

, R− =
2e−+e+
e−+e+

1

σ

(

1−
e−

e+

)

.

R− is positive, R+ is negative and there exists a positive onstant K suh that
∀ξ∈R |W (ξ)−w+|≤KeξR+ , |W (ξ)−w−|≤KeξR−. (2.29)



12 Kerr-Debye relaxation shok pro�lesProof. We take data suh that onditions (2.24) are ful�lled and the suh de�nedshok is entropi, so that shok pro�les exist. By theorem 2.8, a shok pro�le isdetermined by a solution X of problem (2.21)(2.22), D and H being given by (2.23)with ad ho C1 and C2. Suppose that
|X (ξ)−χ+|≤CeξR+ . (2.30)Then

|D(ξ)−d+|= |σC1 +C2|

∣

∣

∣

∣

1

(1+X )−1−σ2
−

1

(1+χ+)−1−σ2

∣

∣

∣

∣

= |σC1 +C2|
|χ+−X|

(1−σ2(1+χ+))(1−σ2(1+X ))
.By (2.27) we know that

1−σ2(1+X )≥1−σ2(1+χM )>0.Therefore
|D(ξ)−d+|≤

|X −χ+|

θ(χM )
, |H(ξ)−h+|≤ |σ| |D(ξ)−d+|.Finally, it remains to prove inequality (2.30) to obtain the behavior at +∞.Therefore we onsider a solution X of problem (2.21)(2.22) suh that X (0)= y0∈

]χm,χM [. Then X (ξ)∈]χm,χM [. Equation (2.21) reads as
X ′ = f(X )and for all y∈]χm,χM [:

1

f(y)
=

1

f ′(χ−)(y−χ−)
+

1

f ′(χ+)(y−χ+)
+

1

f ′(χ0)(y−χ0)
.We already proved that sgn(f(X ))= sgn(X ′)= sgn(σ).If σ< 0 then χ+<χ− so f ′(χ+)<0 and f ′(χ−)>0.If σ> 0 then χ−<χ+ so f ′(χ+)<0 and f ′(χ−)>0.Hene in all ases we have f ′(χ+)<0 and f ′(χ−)>0. Moreover by a straighfor-ward omputation one �nds

R+ = f ′(χ+), R− = f ′(χ−)whih proves that R+<0 and R−>0.To end the proof of the theorem, we remark that the solution of (2.21) satis�esthe following equality:
ξ=ln

∣

∣

∣

∣

X (ξ)−χ−

y0−χ−

∣

∣

∣

∣

1/R−

+ln

∣

∣

∣

∣

X (ξ)−χ+

y0−χ+

∣

∣

∣

∣

1/R+

+ln

∣

∣

∣

∣

X (ξ)−χ0

y0−χ0

∣

∣

∣

∣

1/f ′(χ0)

.This an also be written as
e−ξR+ |X (ξ)−χ+|= |y0−χ+|

∣

∣

∣

∣

X (ξ)−χ−

y0−χ−

∣

∣

∣

∣

−R+/R−
∣

∣

∣

∣

X (ξ)−χ0

y0−χ0

∣

∣

∣

∣

−R+/f ′(χ0)from whih we dedue the �rst inequality in (2.29). The seond one is proved similarly.



D. Aregba-Driollet and B. Hanouzet 132.3. Chapman-Enskog expansion In the above paragraph we saw that if aKerr-Debye shok pro�le exists then the interval ]d−,d+[ (or ]d+,d−[) annot ontainzero. As proposed in [5℄ it is lassial to perform the Chapman-Enskog expansion ofa relaxation system. In that way one obtains a visous approximation of the Kerrsystem. We shall observe that this approximation is degenerate for d=0, so if theassoiated visous shok pro�le exists then the interval ]d−,d+[ (or ]d+,d−[) annotontain zero.Let us �rst establish the Chapman-Enskog expansion for Kerr-Debye system.Proposition 2.12. The Chapman-Enskog expansion of the system (1.5) leads to thefollowing visous approximation system:
{

∂td
ǫ +∂xh

ǫ =0
∂th

ǫ +∂xp(d
ǫ)= ǫ∂x(B(dǫ)∂xh

ǫ)
(2.31)where the di�usion oe�ient is

B(d)=
2(p(d))2

(1+3(p(d))2)2
. (2.32)Proof. We rewrite the Kerr-Debye system:







∂td+∂xh=0,
∂th+∂x((1+χ)−1d)=0,
∂tχ= 1

ǫG(d,χ)= 1
ǫ

(

(1+χ)−2d2−χ
)

(2.33)Following [5℄ we expand w=(d,h,χ) in the neighborhood of the equilibrium point
(d,h,(p(d))2), we hoose

χ=(p(d))2 +ǫm1(d,h)+O(ǫ2).Using (iii) and (i) in (2.33) we �nd
m1(d,h)=

−2p(d)p′(d)

∂χG(d,(p(d))2)
∂xh=

2d

(1+3(p(d))2)2
∂xh.Then we report in (ii) in (2.33) and we obtain the visous approximation (2.31).Let us now seek visous shok pro�les of the Chapman-Enskog expansion. Weare looking for solutions of (2.31) under the form

dǫ(x,t)=d(
x−σt

ǫ
), hǫ(x,t)=h(

x−σt

ǫ
) (2.34)suh that

dǫ(±∞)=d± , hǫ(±∞)=h± . (2.35)If suh a pro�le exists then d is a regular solution of the ODE
d′ =

1

σB(d)

(

−σ2(d−d±)+p(d)−p(d±)
)

.Denoting e=p(d) we obtain the following result.



14 Kerr-Debye relaxation shok pro�lesProposition 2.13. If a visous shok pro�le of the Chapman-Enskog expansion existsthen the interval ]d−,d+[ (or ]d+,d−[) annot ontain zero and e=p(d) is a solutionof the ODE
e′ =−

σ

2
(1+3e2)e−2(e−e−)(e−e+)(e+e−+e+). (2.36)We observe that the existene ondition of a relaxation pro�le is the same as theone of a visosity pro�le for (2.31), however in equation (2.28) E=0 is a root, whilein equation (2.36) e=0 is a singularity.We an also onsider the non degenerate visous approximation:

{

∂td+∂xh= ǫ∂xxd,

∂td+∂xp(d)= ǫ∂xxhand onsider a Liu-admissible one-shok (so we have ondition (E)) with d− > 0,
d+ ∈]d∗(d−),d−[. Then by [12℄ there exists a visous pro�le for this shok. Notethat for d+ ∈]d∗(d−),0] Kerr-Debye relaxation pro�les and Chapman-Enskog visouspro�les do no exist.3. Kerr-Debye shok pro�les for the full vetor 3D Kerr systemIn this part we fous our attention on the three spae dimensions ases. In orderto exhibit the admissible shoks of the 3D Kerr system, we have to study �rst theproperties of its harateristi �elds. Then we prove our main result: there exists aKerr-Debye pro�le for a shok if and only if it is a Lax 2-shok or 5-shok.3.1. Charateristi �elds of Kerr system Let us reall that Kerr system ishyperboli symmetrisable [8℄, [4℄. For the sake of ompleteness we atually alulatethe eigenmodes (see also [6℄). It appears that four harateristi �elds are linearlydegenerate while the two others are partially genuinely nonlinear.3.1.1. Eigenmodes System (1.2) is a 6×6 system of onservation laws whih,denoting u=(D,H), an be synthetized as

∂tu+

3
∑

j=1

∂xj
Fj(u)=0We denote Aj(u) the jaobian matrix of Fj and for all ξ∈R

3, ξ 6=0:
A(u,ξ)=

3
∑

j=1

ξjAj(u).In order to obtain the eigenvalues of the system (1.2), we introdue the followingnotation:
∀v∈R

3 Rξ v :=





0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0



 v= ξ×v.With the above notation it is easy to see that for all u=(D,H)∈R
6, ξ∈R

3:
A(u,ξ)=

(

0 −Rξ

RξP
′(D) 0

)

.



D. Aregba-Driollet and B. Hanouzet 15where P is de�ned in (1.4). The matrix P
′(D) is regular for all D∈R

3, we have
P

′(D) = −2(1+ |E|2)−1(1+3|E|2)−1EET +(1+ |E|2)−1I3 ,

P
′(D)−1 = 2EET +(1+ |E|2)I3.As we know that the system is hyperboli we are looking for λ∈R and a non zerovetor r=(X,Y )∈R

3×R
3 suh that







−λX−RξY =0,

Rξ P
′(D)X−λY =0.

(3.1)One an see that λ=0 is a double eigenvalue with the eigenvetors
(0,ξ)T , (P′(D)−1ξ,0)T .A real λ 6=0 is an eigenvalue if and only if there exists a nonzero vetor X ∈R

3 suhthat
(

λ2I3 +R2
ξ P

′(D)
)

X=0. (3.2)In that ase, the Y omponent of the eigenvetor is
Y =λ−1Rξ P

′(D)X. (3.3)Let us �rst ompute R2
ξ P

′(D). We have
R2

ξEE
T =(ξ×(ξ×E))ETand

R2
ξ = ξξT −|ξ|2I3so that

R2
ξ P

′(D)=−2(1+ |E|2)−1(1+3|E|2)−1(ξ×(ξ×E))ET + (1+ |E|2)−1(ξξT −|ξ|2I3).We therefore look for λ 6=0 and X suh that
(

λ2−
|ξ|2

1+ |E|2

)

X−
2ET X

(1+ |E|2)(1+3|E|2)
ξ×(ξ×E)+

ξTX

1+ |E|2
ξ=0. (3.4)We remark that if X is orthogonal to E and to ξ we have the solution

λ2 =
|ξ|2

1+ |E|2
.If ξ×E 6=0 we have the eigenvetors

(|ξ|2ξ×E,λξ×(ξ×E))T .Another notable vetor is X= ξ×(ξ×E). This vetor is equal to zero if and only if
ξ×E=0. Let us �rst suppose that it is not the ase. Let us take X= ξ×(ξ×E).Then ξT X=0 and

λ2 =
|ξ|2

1+ |E|2
+

2ET X

(1+ |E|2)(1+3|E|2)



16 Kerr-Debye relaxation shok pro�lesMoreover by using
ET X=ET

(

−E|ξ|2 +(ET ξ)ξ
)

=−|E|2|ξ|2 +(ET ξ)2we obtain
λ2 =

|ξ|2(1+ |E|2)+2(ET ξ)2

(1+ |E|2)(1+3|E|2)and
RξP

′(D)X=−λ2ξ×Eso
Y =−λξ×E.Finally we have six real eigenvalues:

λ1≤λ2<λ3 =λ4 =0<λ5 =−λ2≤λ6 =−λ1 (3.5)where
λ2

1 =
|ξ|2

1+ |E|2
, λ2

2 =
|ξ|2(1+ |E|2)+2(ET ξ)2

(1+ |E|2)(1+3|E|2)
. (3.6)The eigenvalues λ1, λ2, λ5, λ6 are simple exept in the ase ξ×E=0. More preiselyProperty 3.1. The nonzero eigenvalues are double if and only if ξ×E=0. In thatase the dimension of the eigenspae for λ1 or λ6 is 2.Proof. We have λ1 =λ2 if and only if |E| |ξ|= |ET ξ|, whih is equivalent to ξ×E=

0. If ξ×E=0 then the equation (3.4) writes
(

λ2−
|ξ|2

1+ |E|2

)

X+
ξ

1+ |E|2
(ξTX)=0.For all vetor X orthogonal to ξ, we �nd an eigenvetor (X,Y ) to the eigenvalue λ1so the property holds.We sum up the above fats in the following proposition:Proposition 3.2. The 3D Kerr system (1.2) is hyperboli diagonalizable. The eigen-values are given by (3.5), (3.6) and the inequalities in (3.5) are strit if and only if

ξ×E 6=0.The eigenvetors to the eigenvalue 0 are
r3(u,ξ)=

(

0
ξ

)

, r4(u,ξ)=

(

P
′(D)−1ξ

0

)

. (3.7)If ξ×E 6=0 the others eigenvetors are:
ri(u,ξ)=

(

|ξ|2ξ×E
λiξ×(ξ×E)

)

, i=1,6, (3.8)and
ri(u,ξ)=

(

ξ×(ξ×E)
−λiξ×E

)

, i=2,5. (3.9)If ξ×E=0, the others eigenvetors are:
ri(u,ξ)=

(

|ξ|2Xk

λiξ×Xk

)

, i=1,2,5,6, k=1,2. (3.10)where X1 and X2 are two nonzero independant vetors orthogonal to ξ.



D. Aregba-Driollet and B. Hanouzet 173.1.2. Charateristi �elds properties Clearly the harateristi �eld re-lated to the zero eigenvalue is linearly degenerate. Let us onsider the others eigen-values.Proposition 3.3. The harateristi �elds related to the eigenvalues λ suh that
λ2 = |ξ|2(1+ |E|2)−1 are linearly degenerate.Proof. A harateristi �eld is linearly degenerate if for all ξ 6=0 and for all
u=(D,H): λ′(u,ξ)r(u,ξ)=0. As the eigenvalue only depends on E=P(D), it isenough to verify that

∂(λ2)

∂E
P

′(D)X=0where X is orthogonal to E and to ξ. We have
∂(λ2)

∂E
=−|ξ|2(1+ |E|2)−22ET (3.11)and as X is orthogonal to E

P
′(D)X=(1+ |E|2)−1Xso
λ′(u,ξ)r(u,ξ)=0.Proposition 3.4. Let us take ξ 6=0. The harateristi �elds 2 and 5 are genuinelynonlinear in the diretion ξ in the open set

Ω(ξ)={(D,H)∈R
6 ; ξ×D 6=0}that is for all u∈Ω(ξ) and i=2,5

λ′i(u,ξ)ri(u,ξ) 6=0. (3.12)Proof. We note �rst that u∈Ω(ξ) if only if ξ×E 6=0 or also ξ×(ξ×E) 6=0. Alongthis proof we denote
δ=(1+ |E|2)(1+3|E|2), λ2 =λ2

2 =λ2
5.The ondition (3.12) is satis�ed if and only if

∂(λ2)

∂E
P

′(D)(ξ×(ξ×E)) 6=0.First we ompute ∂(λ2)
∂E .

∂(λ2)

∂E
=2δ−1

(

[|ξ|2−2λ2(2+3|E|2)]ET +2(ET ξ)ξT
)

. (3.13)By using the identity
|ξ|2ET =(ET ξ)ξT −(ξ×(ξ×E))T (3.14)
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∂(λ2)

∂E
=2δ−1

(

α(ET ξ)ξT + β (ξ×(ξ×E))T
) (3.15)with

α=3−2λ2|ξ|−2(2+3|E|2), β=−1+2λ2|ξ|−2(2+3|E|2)>1.We use again (3.14) to obtain
P

′(D)(ξ×(ξ×E))= δ−1
(

a(ET ξ)ξ+bξ×(ξ×E)
) (3.16)with

a=
2|ξ×(ξ×E)|2

|ξ|4
>0, b=

|ξ|4 +3(ET ξ)2|ξ|2 + |ξ×(ξ×E)|2

|ξ|4
>0.Consequently we obtain

∂(λ2)

∂E
P

′(D)(ξ×(ξ×E))=2δ−2
(

aα(ET ξ)2|ξ|2 +bβ|ξ×(ξ×E)|2
)whih writes as

∂(λ2)

∂E
P

′(D)(ξ×(ξ×E))=
2|ξ×(ξ×E)|2

δ2|ξ|4
[

(2α+3β)|ξ|2(ET ξ)2 +β(|ξ×(ξ×E)|2 + |ξ|4)
]whih is stritly positive beause

2α+3β=3+2λ2 2+3|E|2

|ξ|2
>0.3.2. Admissible plane disontinuities In this paragraph we study Kerr pla-nar shoks and planar ontat disontinuities. These are travelling waves propagatingin a �xed diretion ω, |ω|=1, with veloity σ:

u(x,t)=u(ω ·x−σt), (3.17)whih are weak pieewise onstant solutions of Kerr system (1.2) suh that
u(ω ·x−σt)=

{

u− if ω ·x−σt< 0,
u+ if ω ·x−σt> 0,

(3.18)where u− =(D−,H−) and u+ =(D+,H+) are two onstant vetors of R
6.3.2.1. Rankine-Hugoniot onditions As usually the jump of X is denoted

[X ]=X+−X− .The Rankine-Hugoniot onditions for (1.2) write






σ[D]=−ω× [H ],

σ[H ]=ω× [E]
(3.19)



D. Aregba-Driollet and B. Hanouzet 19where [E]=E+−E− =P(D+)−P(D−).The divergene free onditions write
ωT [D]=ωT [H ]=0. (3.20)If σ 6=0, this ondition is ful�lled as soon as (3.19) is satis�ed.If the harateristi �eld for an eigenvalue λ=λ(u,ω) is linearly degenerate, on-tat disontinuities exist, that is plane disontinuities satisfying (3.19) and suh that

σ(u+,u−)=λ(u+)=λ(u−). (3.21)It is the ase of λ=0 for whih we have stationary ontat disontinuities (σ=0):Proposition 3.5. Stationary ontat disontinuities are haraterized by
{

ω× [H ]=0,
ω× [E]=0.The only divergene free ones are onstant.Let us now study the situations where σ 6=0. In what follows we onsider nontrivial disontinuities satisfying (3.19) : [u] 6=0, whih is equivalent to
[D] 6=0. (3.22)We �rst establish a preliminary result:Lemma 3.6. Let D+ and D− be two distint vetors of R

3. Then
0<

[D]T [E]

|[D]|2
< 1 . (3.23)Proof. The appliation P being one-to-one, the jump of D is zero if and only ifthe one of E is.

[D]T [E]={(1+ |E+|
2)E+−(1+ |E−|

2)E−}
T (E+−E−)

≥|E+−E−|
2 +

1

2
(|E+|

2−|E−|
2)2>0.Furthermore

|[D]|2− [D]T [E]≥
1

2

(

|E+|
2−|E−|

2
)2

+
∣

∣|E+|
2E+−|E−|

2E−

∣

∣

2
.Moreover |E+|

2E+ = |E−|
2E− if and only if E+ =E− and we obtain the result.Proposition 3.7. Consider u− 6=u+ and σ 6=0. The Rankine-Hugoniot onditions(3.19) are satis�ed if and only if the following properties hold.(i) The �eld D is divergene free, ie

ωT [D]=0, (3.24)(ii) The jump of H is given by
[H ]=σω× [D]. (3.25)(iii) The three vetors ω, [D] and [E] are oplanar.(iv) The propagation speed σ satis�es
σ2 =

[D]T [E]

|[D]|2
. (3.26)



20 Kerr-Debye relaxation shok pro�lesHene by lemma 3.6, σ2∈]0,1[.Proof. Neessary onditions. It is obvious that ωT [D]=ωT [H ]=0 and
[D]T [H ]=0, [E]T [H ]=0. (3.27)We obtain (3.25) by using (3.19-1) and (3.20) in

[H ]= ([H ]T ω)ω−ω×(ω× [H ]).By (3.25) and (3.27) we have
[E]T (ω× [D])=0whih means that ω, [D] and [E] are oplanar. By (3.19) we have

σ2[D]=−ω×(ω× [E])hene
σ2[D]= [E]−(ωT [E])ω.By salar produt of the previous expression with [D] one �nds (3.26).Su�ient onditions. On the one hand
σ[D]=−σω×(ω× [D])beause ωT [D]=0. We dedue (3.19-1). On the other hand, by (iii), there exist tworeal numbers α and β suh that

[E]=α[D]+βωhene
[E]T [D]=α|[D]|2, ωT [E]=β.By (3.26) α=σ2 and so

[E]=σ2[D]+([E]T ω)ωwhih implies
σ[H ]=σ2ω× [D]=ω× [E]hene (3.19-2) and the result.Remark 3.8. It is easy to verify that

ωT ([E]× [D])=ωT (E+×E−)(|E+|
2−|E−|

2)so ω, [D] and [E] are oplanar if and only if
ωT (E+×E−)(|E+|

2−|E−|
2)=0. (3.28)The �elds related to the eigenvalues λ suh that λ2 =(1+ |E|2)−1 are linearly degen-erate. The assoiated ontat disontinuities are haraterized as follows:



D. Aregba-Driollet and B. Hanouzet 21Proposition 3.9. A disontinuity σ, u+, u− is a ontat disontinuity assoiated toan eigenvalue λ suh that λ2 =(1+ |E|2)−1 if and only if
{

|E+|= |E−|
σ2 =(1+ |E+|

2)−1 =(1+ |E−|
2)−1 (3.29)and

{

ωT [E]=0
[H ]=σω× [D].

(3.30)Moreover the only disontinuities satisfying Rankine-Hugoniot onditions (3.19) andsuh that |E−|= |E+| are the above ontat disontinuities.Proof. Condition (3.29) is equivalent to ondition (3.21), so the �rst part is aonsequene of proposition 3.7.Finally if a disontinuity satis�es (3.19) and |E−|= |E+| then the expression (3.26)implies (3.29) and therefore it is a ontat disontinuity assoiated to an eigenvalue
λ suh that λ2 =(1+ |E|2)−1.At this point, it remains to study the disontinuities whih are neither stationnarynor ontat disontinuities related to an eigenvalue λ suh that λ2 =(1+ |E|2)−1, thatis all those for whih the jump of |E| is not zero. By (3.28) suh disontinuities aresuh that E+, E− and ω are oplanar (hene also are D+, D− and ω). Modifyingonly the property (iii) in proposition 3.7 we obtain the following haraterization:Proposition 3.10. The non trivial disontinuities satisfying (3.19) with a non zerojump of |E| (|E+| 6= |E−|) are the σ, u+, u−, (D+ 6=D−) suh that formulae (3.24),(3.25), (3.26) hold and the three vetors ω, D+, D− are oplanar ie

ωT (D+×D−) = 0. (3.31)In the following the disontinuities satisfying the previous onditions are alledshoks.Let us reall that for a �xed left state u− the Hugoniot set of u−, denoted H(u−),is the set of the right states u+ suh that there exists a shok onneting u− and u+.We denote then σ=σ(u+,u−) the shok veloity. One an give a similar de�nition by�xing the right state.In proposition 3.10 the oplanarity ondition is trivial if D−×ω=0 orD+×ω=0.Two ases are under onsideration.Proposition 3.11. Case D−×ω 6=0.Let u− =(D−,H−) be a �xed left state suh that D−×ω 6=0. Let ζ be a unitaryvetor orthogonal to ω in the plane de�ned by (ω,D−) .The set H(u−) of the right states u+ onneted to u− by a shok is the union oftwo urves H±(u−) parametrized by d∈R and onstruted as follows: H+(u−) (resp
H−(u−)) is the set of (D+,H+)∈R

6 suh that
D+ =(ωT D−)ω+ dζ, d∈R,

σ satis�es (3.26), σ> 0 (resp σ< 0) and H+ satis�es (3.25).One an desribe similarly the set of left states onneted by a shok to u+ suhthat D+×ω 6=0.The proof is immediate. Let us remark that if
D− =(ωT D−)ω+d− ζ



22 Kerr-Debye relaxation shok pro�lesthen [D]=0 if and only if d+ =d−, and |E+|= |E−| if and only if d+ =±d−.Proposition 3.12. Case D−×ω=0.Let u− =(D−,H−) be a �xed left state suh that D−×ω=0. Then the set H(u−)of the right states onneted to u− by a shok is the set of u+ =(D+,H+) satisfying(3.24) and suh that
σ2 =λ2

1(u+)= (1+ |E+|
2)−1 (3.32)and H+ satis�es (3.25).One an similarly desribe the set of left states onneted by a shok to u+ suhthat D+×ω=0.Proof. We have D+ =(ωT D−)ω+d+ζ (d+ 6=0) where ζ is an arbitrary unitaryvetor orthogonal to ω, whih gives (3.32).Remark 3.13. As d+ 6=0 we have

|D+|> |D−|so
|E+|> |E−|and

σ2 =λ2
1(u+)<λ2

1(u−). (3.33)We have a semi ontat disontinuity: the propagation speed of a ontat disontinuityoinide with both the eigenvalues assoiated to the right state and the left state, see(3.29). Here we have only the equality with the eigenvalue related to the right state.3.2.2. Admissible shoks We fous our attention on the admissibility ofshoks in the sense of Liu or in the sense of Lax.Definition 3.14. Let u− be a left state whih the Hugoniot set is a union of urves,and onsider u+∈H(u−). The disontinuity is Liu-admissible if
(E) σ(u+,u−)≤σ(u,u−), ∀u∈H(u−), u between u− and u+ .Definition 3.15. A disontinuity σ, u−, u+ is a Lax k-shok if

{

λk(u+)<σ<λk+1(u+)
λk−1(u−)<σ<λk(u−).

(3.34)Liu's ondition may be applied only in the presene of a shok urve. Here suh aurve exists only if D−×ω 6=0.Proposition 3.16. Let u− =(D−,H−) be a �xed left state suh that D−×ω=0.Consider u+∈H(u−). If σ< 0 the shok is not a Lax shok. If σ> 0 the shok satis�esthe 5-shok onditions with large inequalities:
{

λ5(u+)<σ=λ6(u+)
λ4(u−)<σ<λ5(u−).Proof. For σ< 0, a one-shok annot hold beause σ=λ1(u+)>λ1(u−). A 2-shokannot hold beause λ2(u+)>σ.



D. Aregba-Driollet and B. Hanouzet 23For σ> 0: the �rst inequality is true beause D+×ω 6=0. Moreover λ4 =0 and
λ5(u−)=λ6(u−) hene following (3.33) we obtain the desired inequalities.Remark 3.17. One obtains a similar result with σ< 0 by onsidering the Hugoniotset of a �xed right state suh thatD+×ω=0.If the shok satis�es the onditions of proposition 3.11 then we may study Liu'sondition. With the same notations as in this proposition, let u− be suh that D−×
ω 6=0:

D− =d1ω+ d− ζ , d1 =ωTD− , d− 6=0.Consider u∈H(u−):
D=d1ω+ dζ . (3.35)In order to haraterize the admissibility onditions (E) or (3.34) we �rst express σas a funtion of parameter d in (3.35). We have

P(D)=E= e1ω+ eζwith
e=

d

1+ |E|2
=

d

1+p(
√

d2
1 +d2)2

:= f(d).As [D]= [d]ζ, σ2 =
[e]

[d]
and hene

σ2(u,u−)=
f(d)−f(d−)

d−d−
. (3.36)Let us remark that if d1 =0 we have p(d)= f(d) so (3.36) redues to (2.6). In fatwe show in the following lemma that the funtions f and p have the same qualitativeproperties.Lemma 3.18. The funtion f owns the following properties:(i) f(0)=0, f ′(0)= (1+e21)

−1, f ′′(0)=0,(ii) f is an odd inreasing funtion,(iii)f is stritly onvex on ]−∞,0], stritly onave on [0,+∞[.Proof. We have
f ′(d)=

1

1+ |E|2
−

2ed

(1+3|E|2)(1+ |E|2)2
=λ2

2(D,ω). (3.37)and using (3.11)
f ′′(d)=−

2(e1ω
T +eζT )

(1+ |E|2)2

[

−
2ee1

(1+ |E|2)(1+3|E|2)
ω+

1+3e21+e2

(1+ |E|2)(1+3|E|2)
ζ

]

=−
2e

(1+ |E|2)2(1+3|E|2)
.As a onsequene we have the following lemma.Lemma 3.19. For all d− 6=0 there exists an unique d∗(d−) 6=d− suh that

f ′(d∗)=
f(d∗)−f(d−)

d∗−d−
.



24 Kerr-Debye relaxation shok pro�lesMoreover d∗(d−)d−<0 and |d∗(d−)|< |d−|.We now give the haraterization of Liu-admissible shoks:Proposition 3.20. The Liu-admissible shoks are 2-shoks or 5-shoks.For the 2-shoks (σ< 0), onsider u− with D−×ω 6=0 and u+∈H−(u−). The dison-tinuity is Liu-admissible if and only if d+ belongs to the interval with extremities d−,
d∗(d−).For the 5-shoks (σ> 0), onsider u− with D−×ω 6=0 and u+ ∈H+(u−). The dison-tinuity u−, u+, σ is Liu-admissible if and only if |d+|> |d−| and d+d−>0.Proof. Using formulas (3.36) and (3.37) we observe that

lim
u→u−

σ2(u,u−)=λ2
2(D−,ω)=λ2

5(D−,ω)and
2σσ′(d)=

1

d−d−

(

f ′(d)−
f(d)−f(d−)

d−d−

)

.Let us remark that these shok onditions are analogous to the ones found in part2 for the 2×2 ase.We onlude this setion by the following proposition.Proposition 3.21. The Lax-admissible shoks are 2-shoks or 5-shoks.For the 2-shoks (σ< 0), onsider u− with D−×ω 6=0 and u+∈H−(u−). The dison-tinuity is Lax-admissible if and only if |d+|< |d−| and d+d−>0.For the 5-shoks (σ> 0), onsider u− with D−×ω 6=0 and u+ ∈H+(u−). The dison-tinuity u−, u+, σ is Lax-admissible if and only if |d+|> |d−| and d+d−>0.Proof. We prove the ase σ< 0 only, the other one is similar. For a Lax-admissibleshok we need the ondition
λ2(u+)<λ2(u−)(<0).By (3.37) it is equivalent to

f ′(d+)>f ′(d−)so |d+|< |d−|. The ondition λ1(u−)<σ<λ3(u+) writes
1

1+ |E−|2
>

d+(1+ |E−|
2)−d−(1+ |E+|

2)

(d+−d−)(1+ |E−|2)(1+ |E+|2)
. (3.38)If d−<0, d+ ∈]d−,−d−[ and the above inequality is equivalent to

d+(|E+|
2−|E−|

2)>0.Moreover |E+|
2< |E−|

2 beause p is an inreasing funtion and |d+|< |d−|. So theLax ondition is satis�ed if d+<0 only.If d−>0, d+ ∈]−d−,d−[ so (3.38) writes
d+(|E+|

2−|E−|
2)<0,So the Lax ondition is satis�ed if d+>0 only.Reiproally let us suppose that |d+|< |d−| and d−d+>0. The ondition (3.34)follows from (3.36).Remark 3.22. The Lax shoks are the Liu shoks suh that d+d−>0, for the 5-shoks Lax and Liu shoks oinide.



D. Aregba-Driollet and B. Hanouzet 253.3. Shok pro�les In this part, we onsider a plane Kerr disontinuity whihis not a ontat disontinuity, in partiular σ 6=0. By proposition 3.9 we suppose that
|E+| 6= |E−|. (3.39)By proposition 3.10 we have (3.24), D+, D−, E+, E− et ω are oplanar, σ satis�es(3.26) and H satis�es (3.25).Our goal is to onstrut a Kerr-Debye relaxation shok pro�le. We therefore lookfor a smooth funtion W suh that

(D,H,X )(x,t)=W

(

1

ǫ
(x.ω−σt)

)

=W (ξ) (3.40)is a solution of (1.1) and satis�es
W (±∞)= (D±,H±,χ±) (3.41)where (D±,χ±) is in the equilibrium manifold

{(D,χ); (1+χ)−2|D|2−χ=0},so that
χ± = |E±|

2 (3.42)and by (3.39)
χ+ 6=χ− . (3.43)Hene the pro�le we look for is a smooth solution of the ordinary di�erential system







(−σD−ω×H)′ =0
(−σH+ω×(1+X )−1D)′ =0
−σX ′ =(1+X )−2|D|2−X ,

(3.44)de�ned on R and satisfying (3.41). Let us remark that as σ 6=0, those pro�les aredivergene free, whih reads as
ωT D′ =ωT H ′ =0. (3.45)Proposition 3.23. If there exists a shok pro�le then the solution omponent X (ξ)is a solution of the ordinary di�erential equation

σX ′ = X −
|ωT D±|

2

(1+X )2
−
θ(χ±)(1+χ±)−2|ω×(ω×D±)|2

θ(X )
(3.46)where θ(X )= (T (X ))2 =(σ2(1+X )−1)2 as long as X 6=−1 and X 6= 1−σ2

σ2 .Proof. Eliminating H between (3.44-1) and (3.44-2) we have
(σ2D+(1+X )−1ω×(ω×D))′ =0.Hene

σ2D+(1+X )−1ω×(ω×D)=σ2D±+(1+χ±)−1ω×(ω×D±), (3.47)



26 Kerr-Debye relaxation shok pro�lesthe ompatibility between right and left values being insured by Rankine-Hugoniotonditions and by (3.42). On another hand, using the fat that D=(ωT D)ω−ω×
(ω×D) along with (3.45) and (3.47) we have

σ2D+(1+X )−1ω×(ω×D)=σ2(ωTD±)ω−T (χ±)(1+χ±)−1ω×(ω×D±).Therefore
θ(X )(1+X )−2|ω×(ω×D)|2 = θ(χ±)(1+χ±)−2|ω×(ω×D±)|2.It follows that as long as X 6=−1 and X 6= 1−σ2

σ2

(1+X )−2|D|2 =
|ωT D±|

2

(1+X )2
+
θ(X±)(1+χ±)−2|ω×(ω×D±)|2

θ(X )and (3.46) follows by (3.44-3).Let us now study the right hand side of (3.46), whih we denote ψ. If the pro�leexists then there exists a smooth solution of (3.46) with X (±∞)=χ± , χ+ and χ−must be two onseutive zeros of ψ and ψ must keep a onstant sign between thosetwo values. Therefore ψ is a monotone non onstant funtion on this interval, whihimplies that
χ+ 6=χ− .This is true by (3.39), due to the fat that we do not onsider ontat disontinuities.The funtion ψ writes

ψ(X )=X −ϕ(X ), ϕ(X )=
a

(1+X )2
+

b

θ(X )
(3.48)with

a= |ωTD±|
2, b= θ(χ±)(1+χ±)−2|ω×(ω×D±)|2.These two oe�ients are non negative. In (3.48) we annot have b=0 and a>0beause otherwise

ψ(X )=X −
a

(1+X )2has only one zero. As a onsequene we have
{

D−×ω 6=0,
D+×ω 6=0.

(3.49)The only zero of T (X ) is χ= 1−σ2

σ2 and by lemma 3.6
χ>0. (3.50)Furthermore let us remark that

T (χ+) =
1

1+χ−

(χ−−χ+)
DT

− (D+−D−)

|D+−D−|2
,

T (χ−) =
1

1+χ+
(χ−−χ+)

DT
+ (D+−D−)

|D+−D−|2
.

(3.51)
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-1.5 -1 -0.5  0  0.5  1  1.5  2Fig. 3.1. Representation of the funtion ϕ in (3.48). Left: a=0 (χ− =1.74, χ+ =0.18, χ=
1.36). Right: a 6=0 (χ− =1.74, χ+ =0.23, χ=1.38).If b=0 and (3.49) holds, then θ(χ±)=0. If θ(χ+)=0, then

DT
− (D+−D−)=0and so D−×ω=0, whih is in ontradition with (3.49-1). The same holds with

θ(χ−)=0. Consequently
θ(χ−) 6=0, θ(χ+) 6=0 (3.52)whih is also equivalent to
χ− 6=χ, χ+ 6=χ. (3.53)As a onsequene ψ(χ±) is well de�ned and we obtain
ψ(χ−)=ψ(χ+)=0. (3.54)As b>0, χ is a singularity for ψ. If a=0 then the funtion ϕ is onvex on ]−∞,χ[ andon ]χ,+∞[, ϕ(±∞)=0, ϕ(χ±0)=+∞, see Fig. 3.1 (left). If a>0, the funtion ϕ isonvex on the intervals ]−∞,−1[, ]−1,χ[ and ]χ,+∞[, ϕ(±∞)=0, ϕ(χ±0)=+∞,and ϕ(χ±0)=+∞, see Fig. 3.1 (right).In both ases, if the pro�le exists, the zeros χ− and χ+ of ψ are neessarily in theinterval ]0,χ[, whih we may haraterize by

T (χ+)<0, and T (χ−)<0or, using (3.51), by






(χ−−χ+)DT
− (D+−D−)<0,

(χ−−χ+)DT
+ (D+−D−)<0.

(3.55)Let us denote χm =min(χ−,χ+), χM =max(χ−,χ+). Then, [χm,χM ]⊂]0,χ[ and ψ ispositive on ]χm,χM [, so σ> 0 implies χ− =χm and χ+ =χM , σ< 0 implies χ− =χMand χ+ =χm. In order to expliit ondition (3.55) we use the notations of proposition3.11.
{

D+ =d1ω+ d+ ζ,

D− =d1ω+ d− ζ.
(3.56)



28 Kerr-Debye relaxation shok pro�leswith d+ 6=d− and, by (3.49) d+ 6=0 and d− 6=0. Then (3.55) reads as
{

d− (χ+−χ−)(d+−d−)>0,
d+ (χ+−χ−)(d+−d−)>0

(3.57)whih impose that
d−d+ >0. (3.58)Moreover χ+ =(p(

√

d2
1 +d2

±))2 so that χ−<χ+ if and only if d2
−<d

2
+.If d−>0 and d+>0 then χ−<χ+ if and only if 0<d−<d+, and so we have(3.57).If d−<0 and d+<0 then χ−<χ+ if and only if d+<d−<0, and so we have(3.57) again.As a onlusion, χ− and χ+ belong to the interval ]0,χ[ if and only if inequality(3.58) holds in (3.56).If σ> 0 it is a 5-shok, X is an inreasing funtion from χ− to χ+, so |d−|< |d+|and d+d−>0 so the shok is admissible in the sense of Lax (and Liu).If σ< 0 it is a 2-shok, X is a dereasing funtion from χ− to χ+, so |d−|> |d+|and aording to proposition 3.21 ondition (3.58) impose that the shok is admissiblein the sense of Lax.Reiproally, let us onsider a shok as de�ned in proposition 3.10 and supposethat ondition (3.58) is satis�ed (so we have also (3.49)). Then χ− and χ+ are in theinterval ]0,χ[ and ψ is positive on ]χm,χM [.If σ> 0, χ−<χ+ there exists a solution X of (3.46) with X (±∞)=χ± and X isan inreasing funtion.If σ< 0, χ+<χ− there exists a solution X of (3.46) with X (±∞)=χ± and X isa dereasing funtion.We ompute D by using the fat that

D=(ωTD)ω−ω×(ω×D), ωT D=ωT D±and
ω×(ω×D)=T (X )−1(1+X )T (χ±)(1+χ±)−1ω×(ω×D±)and the expression of H is obtained by using (3.44-2).Theorem 3.24. Consider a shok as de�ned in proposition 3.10. There exists aKerr-Debye pro�le for it if and only if it is a Lax 2-shok or a Lax 5-shok.3.4. Revisited one-dimensional ases The plane disontinuities of Kerrsystem (1.2) are weak solutions of a 6×6 one-dimensional system. Without loss ofgenerality we an assume that ω=(1,0,0) and then if we denote x=x1 this systemwrites































∂tD1 =0
∂tD2 +∂xH3 =0
∂tD3−∂xH2 =0
∂tH1 =0
∂tH2−∂xP3(D)=0
∂tH3 +∂xP2(D)=0

(3.59)



D. Aregba-Driollet and B. Hanouzet 29The divergene free onditions write
∂xD1 =0, ∂xH1 =0 (3.60)so that D1 and H1 are onstant. Let us look for disontinuities suh that

D− =(0,d− 6=0,0), H− =(H1,0,h−)
D+ =(0,d+,D3,+), H+ =(H1,H2,+,h+).

(3.61)A ontat disontinuity (for the 1 or 6 harateristi �elds) satis�es onditions (3.29)and (3.30), so we have
d2
+ +D2

3,+ =d2
− .If moreover D3,+ =0, then H2,+ =0 and (d,h)= (D2,H3) is a weak solution of the

2×2, one dimensional system (1.6). In this ase d+ =−d− and this weak solution isnot a Liu admissible solution of (1.6).If a ontat disontinuity does not hold then d2
+ +D2

3,+ 6=d2
− and by (3.31) D3,+ =
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