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KERR-DEBYE RELAXATION SHOCK PROFILES FOR KERR
EQUATIONS

DENISE AREGBA-DRIOLLET * AND BERNARD HANOUZET '

Abstract. The electromagnetic wave propagation in a nonlinear medium can be described by
a Kerr model in the case of an instantaneous response of the material, or by a Kerr-Debye model if
the material exhibits a finite response time. Both models are quasilinear hyperbolic, and Kerr-Debye
model is a physical relaxation approximation of Kerr model. In this paper we characterize the shocks
in the Kerr model for which there exists a Kerr-Debye profile. First we consider 1D models for which
explicit calculations are performed. Then we determine the plane discontinuities of the full vector
3D Kerr system and their admissibility in the sense of Liu and in the sense of Lax. At last we
characterize the large amplitude Kerr shocks giving rise to the existence of Kerr-Debye relaxation
profiles.
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1. Introduction

In some contexts the propagation of electromagnetic waves in nonlinear media
can be modelized by the so-called Kerr-Debye model, which writes as a quasilinear
hyperbolic system with relaxation source-terms depending on the response time of the
material. Such hyperbolic relaxation problems have been investigated for a long time
in the mathematical litterature, with a particular emphasis on fluid mechanics, see
[16] for a review. In an important article ([5]), Chen, Levermore and Liu establish a
theoritical framework linking the properties of a relaxation system and its equilibrium
model. The Kerr-Debye model under consideration enters this general formalism.

To derive the models, one writes the tridimensional Maxwell’s equations

0D —curlH =0,
0y B+ curlE =0,
divD =divB=0

with the constitutive relations

BZ/J()H
D =eE+P

where P is the nonlinear polarization and pg, €y are the free space permeability and
permittivity.

In nonlinear optics, if the medium exhibits an instantaneous response it is classical
to introduce a Kerr model [18§]

P =Py =cpe, |E|*E.

If the medium exhibits a finite response time 7 >0 one should use the Kerr-Debye
model for which

1 1
P=Pgp=¢coxE, Ox+ ;X=;€T|E|2.
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2 Kerr-Debye relaxation shock profiles

See for example [24] for further details.

The Kerr-Debye model is a relaxation approximation of the Kerr model and 7
is the relaxation parameter. Formally when 7 tends to 0, x converges to ¢.|E|? and
Pxp converges to Px. More precisely, as already observed in [8], Kerr system is the
reduced system for the Kerr-Debye one in the sense of [5].

The convergence of smooth solutions of Kerr-Debye system towards a smooth
solution of Kerr system when 7 tends to zero is now well understood. For the initial
value problem, as the stability conditions of [22] are satisfied, the result is obtained
in [8]. For the more physically realistic situation of impedance boundary conditions,
in particular the ingoing wave, the result is proved in [4].

The convergence towards a weak solution of Kerr system is far to be clear, even
in the one-dimensional setting. Only a few partial results are available in the litter-
ature for similar problems, and those results do not apply here, see comments and
references following (1.5), (1.6). As a first step into the comprehension of the in-
volved phenomena, we shall construct Kerr-Debye profiles for Kerr shocks. These are
travelling waves, smooth solutions of Kerr-Debye equations which converge to a weak
(discontinuous) solution of Kerr system.

In the following we consider non-dimensionalized models and as usual for relax-
ation equations we denote € the response time 7. We therefore write the Kerr-Debye
equations as:

0¢D.—curlH, =0,
O H +curlE, =0, D.=(1+x.)E. (1.1)

1
8tXe = E (|Ee|2 _Xe)
with
divD.=divB. =0.

Let us note that if the initial data are divergence free, then so are (D., H.). Moreover
if x. is initially positive then so is x. for all positive times.
Once non-dimensionalized, the relaxed Kerr system writes

0¢D —curlH =0,
{atH+cur1(P(D)):o (1.2)
where P is the reciprocal function of D:
D(E)=(1+|E*E.
Denoting
qle)=e+e?, e€R, p=q ', (1.3)
we have
E=P(D)=(1+p(|D|)*)"'D. (1.4)

The equilibrium manifold for Kerr-Debye model that is

V={(D,H,x); (1+x)"?|D* —x =0}
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can be also defined as

V={(D,H,x); x=p(D]))*=|E*}.

As proposed in [3] we also introduce the one dimensional models satisfied by solutions
D(x,t)=(0,d(x,t),0), H(x,t)=(0,0,h(x,t)) and z=x1 €R. In that framework the
solutions of Kerr-Debye model (1.1) satisfy the following system:

8td6+8mhe:0,
8the+ax ((1+Xe)71de) :07 (15)
OrXe= % ((1 +XE)72dg - Xe)

while the solutions of Kerr model (1.2) satisfy the following one:

{8td+8mh =0, (1.6)

It turns out that the 1D Kerr system (1.6) is a so-called p-system. Asp’ > 0 it is strictly
hyperbolic but the properties of the function p differ from the ones which appear in
the general framework of gas dynamics or viscoelasticity. For the last example, some
results concerning the convergence of Suliciu relaxation approximations towards weak
solutions of the p-system are obtained in [20] (see also [9], [10]). For Kerr-Debye
relaxation approximations, the convergence towards a weak solution of (1.6) is an
open problem.

Let us consider a planar discontinuity for the Kerr system (1.2) that is a weak
solution u(x,t)= (D, H)(x,t) such that

Ju—ifrw—0t<O,
u(x’t)_{qu if v-w—ot>0,

where uy, o, w (Jw|=1) are given and satisfy the Rankine Hugoniot conditions (see
(3.19) part 3). A Kerr-Debye profile of this discontinuity is a smooth solution

we,8) = (Do, Ho, o) ,1) = W (L (-0 — 1))
such that
W(to0)=(D+,Hx, x+)
where (D+,Hy,x+) are in the equilibrium manifold, so that

Xt = (p(ID=))? = |Ex].

In [13] T.-P. Liu constructs such profiles for the 2x2 1D hyperbolic systems with
relaxation. In [23] W.-A. Yong and K. Zumbrun prove the existence of relaxation
profiles for small amplitude Liu-shocks in a general setting. Their results apply for
strictly hyperbolic reduced systems (see hypothesis (b) in [23]) which is not true for the
3D Kerr system (1.2), where moreover the eigenvalues have variable multiplicities (see
Sect. 3.1 herein). In the case of our 1D models, system (1.6) is strictly hyperbolic
and the structural assumptions of [23] are satisfied. In the present paper, without
smallness hypothesis, we characterize all the shocks giving rise to the existence of a
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Kerr-Debye profile. Namely, we prove that a Kerr-Debye relaxation profile exists if
and only if the shock under consideration is entropic in the sense of Lax.

Section 2 of the paper is devoted to the 1D systems (1.6) and (1.5) for which
explicit calculations are performed. First we characterize the Liu-admissible shocks,
that is the discontinuities satisfying condition (E) in definition 2.1 below. In [12]
T.P. Liu proves that condition (E) is equivalent to the existence of a viscous shock
profile. Here, it turns out that this condition is not sufficient to ensure the existence of
relaxation profiles. In fact we prove that a profile exists if and only if the discontinuity
satisfies the additional assumption d_dy >0 (so p is convex or concave on the interval
d_, di). We then observe that the same condition appears for the existence of a
viscosity profile related to the Chapman-Enskog expansion of the Kerr-Debye system.

In section 3 we consider the full vector 3D systems. The Kerr system owns six
real eigenvalues

)\1S)\Q</\3=0:)\4</\5=—)\2§)\6:—/\1.

The characteristic fields 1, 3, 4, 6 are linearly degenerate. If Ay # Ay the second
characteristic field is genuinely nonlinear. Then we characterize the Liu shocks and
the Lax shocks. The main result of this section is that Kerr-Debye relaxation shock
profiles only exist for Lax 2-shocks and Lax 5-shocks.

2. Kerr-Debye shock profiles for the 1D Kerr system

2.1. Admissible shock waves for 1D Kerr system As already mentioned,
the system (1.6) is strictly hyperbolic, the eigenvalues are

M (d)=—+/p'(d) <0< Ao(d)=+/D'(d), (2.1)

with the related eigenfunctions

(i) )

/!
Nyt =LA = (2.3)

We observe that

which is zero for d=0. Hence the characteristic fields are genuinely nonlinear only on

{u= (d,h);d#0}.
If two constant states w4 and u_ are connected by a shock propagating with
speed o, then the Rankine-Hugoniot conditions are satisfied:

h —h,:(j(d _d*)a
{P&h)—PM%iaw+—h) (2.4)

We consider non trivial shocks, that is dy # d_. Rankine-Hugoniot conditions write

Chy—h
T —d

(hy —ho)2 = (plds) —p(d-)) (ds —d_).

U(U‘Jrau*)
(2.5)
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For (d_,h_) fixed we denote H(u—) the Hugoniot set of u_ = (d_,h_). It is the union
of four sets:

HiE(do o) = {(d,h), h=h_F/(p(d) —pd))(d—d_), d=d_},

and

My (d—h)={(d,h),h=h_+~/(p(d)—p(d_))(d—d_),d=d_}.

Hi(u_)=H{(u_)UH] (u_) is the set of states u connected to u_ with o(u,u_)<
0, while Ha(u_)=H4 (u_)UH; (u_) is the set of states u connected to u_ with
o(u,u_)>0.

In [11], T.P. Liu gives a generalization of Lax’s shock entropy conditions when
the characteristic fields are not everywhere genuinely nonlinear: the condition (E).
DEFINITION 2.1. Let u_ be a given left state and consider uy € H(u—). The discon-
tinuity is Liu-admissible if

(E) o(ug,u_) <o(u,u_), Vu e H(u_), u between u_ and u .

One-shocks. Liu’s one-shocks are the shocks satisfying condition (E) and such that
u4 belong to Hiy(u—). Here we have

olu,u_)=o(d,d_)=— % (2.6)
LEMMA 2.2. For all d=q(e) €R we denote
@*(d) =a(~ 56) =~ 5 [d+3p(d)] (27)

where q is the function defined by (1.3). As a function of d, o € C*(R) and o owns a
unique global minimum which is reached at the point d*(d_).
Proof. In the following ¢’ is the derivative of o(d,d_) with respect to d:

1 p(d) —p(d-)

"(d,d_) = '(d) —
o) = = [PV s a
. . —p’'(d-)
It is easy to see that as a function of d, o € C'(R) and that o’(d_,d_)= IO
P _
Let us define
d)—p(d-)
K(d) =2 p(
(@)=p/(d) - LOI
and k=K oq. We have
() = —2e?4ee_+e2

(e2+ee_+e2 +1)(1+3e2)

and the roots are —%e_ and e_. This allows us to conclude. O

As a first case, we study one-shocks with uy € H{ (u_). We observe that if d_ >0
condition (E) cannot be satisfied since we must have d>d_ and p is concave for
d_>0.
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Fia. 2.1. Admissibility of a shock: d* is such that the secant (u—,u*) is tangent to the graph
of function p at u*.

Let us now suppose that d_ <0. By lemma 2.2 ¢ is decreasing on [d_,d*(d_)]
and increasing on [d*(d_),+oo[. Therefore the condition (E) is satisfied if and only if
dy €]d_,d*(d-)].

We turn our attention to uy € Hj (u—). We remark that ueH; (u_) if and
only if —u€H{(—u_). On another hand o(—d,—d_)=0(d,d_). Therefore, we
can deduce that the condition (E) is satisfied on H; (u_) if and only if d_ >0 and
dyeld*(d-),d_].

Finally denoting .S the function defined by

S(d,d-)=+/(p(d) —p(d-))(d—d-) (2.8)

the following proposition summarizes the results.
PRrROPOSITION 2.3. For a Liu one-shock

p(dy) —p(d-)
d,—d__

Let u_ be a given left state.
If d_ >0, uy is a right state connected to u_ by a Liu one-shock if and only if

dyeld"(d-),d_], hy=h_+5(dy,d-).

If d_ <0, uy is a right state connected to u_ by a Liu one-shock if and only if
dy €)d_,d*(d-)], hy=h_—5S(ds,d-).

If d_ =0 there does not ezist any right state connected to u_ by a Liu one-shock.

Two-shocks. Similar considerations lead to
PROPOSITION 2.4. For a Liu two-shock

Let u_ be a given left state.
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If d_ >0, uy is a right state connected to u_ by a Liu two-shock if and only if
dy>d_, hy=h_+5(dy,d-).

If d_ <0, uy is a right state connected to u_ by a Liu two-shock if and only if
dy <d_, hy=h_—S(ds,d-).

If d_ =0, uy is a right state connected to u_ by a Liu two-shock if and only if

d4 #0, hi=h_+sgn(dy)S(d+,d-).

2.2. Shock profiles In this section we construct Kerr-Debye relaxation shock
profiles, that are smooth solutions of Kerr-Debye system (1.5) under the form

r—ot

we(x,t):W( ) W=(D,H,X),

€

and such that
W(too) =ws = (dt,h+,Xx+).
We suppose that
w_ Fwy . (2.9)

It is wellknown that o, (di,hs) must satisfy the Rankine-Hugoniot conditions and
that w4 belong to the equilibrium manifold, so we have (2.4), dy #d_, 0 #0 and

X+ = (p(de))* =et. (2.10)
The problem is to find W (&) € C1(R,R?) such that
—oD'+H' =0,
—oH'+((1+X)'D) =0, (2.11)
—oX'=(1+X)2D?— X
and
(D(d00), H(£00), X (£00)) = (du, e (p(d))?). (2.12)
Denoting £ = (1+X)~1D, system (2.11) also reads as
—oD+H=Cy=—0d4++h+,
—0cH+E=Cy=—0hy+eq, (2.13)
—oX'=E?-X.
Let us also remark that by the last equation in (2.11) we have necessarily

VEER,  X(£)>0. (2.14)

Let us determine some necessary conditions for the existence of smooth shock profiles.
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First, eliminating H from the two first equations of (2.13) we have
—0’D+E=0C14+Cy=—0%ds +ey. (2.15)
LEMMA 2.5. If W € CH(R,R3) is solution of (2.11)(2.12) with (2.9) then

oC1+Cy#0. (2.16)

Proof. Suppose that cC1+Cs=0. As d_ #d, one of them is not zero. Suppose
for instance that d_ #0. There exists a non empty maximal interval | —o0o,&; [ where
D #0. By (2.15), on this interval we have

(=o?+(1+Xx)"") D=0

so that X is a constant. By the last equation of (2.13), D =d_ on this interval. If &
is finite, then D(&;) =0, otherwise the limit of D at +o0o is d+ #d_. In each case it is
a contradiction. The same can be done if d_ =0 and d #0. 0

As a consequence we have

VECR, [1-0%(1+X(¢))] %za()ﬁcﬁéo. (2.17)
Denoting
0(X)=[1-c*(1+&))?
we remark also that
(0C1+Ca)? =x—0(x-) = x+0(x+)- (2.18)

PROPOSITION 2.6. If W € CH(R,R?) is solution of (2.11) (2.12) with (2.9) and (2.4)
then

dyd_>0 and vEeR D(&)#0. (2.19)
Moreover
VEeR (X (£))#0, (2.20)

X is solution of the ordinary differential problem

,_ 1 XOX) —x+0(x)

X'= . 30X , (2.21)
X(+00) = x4 = (p(dx))” (2.22)
and D and H are given by
po (@C1+Cy)(1+ )
 1-02(1+4X) (2.23)

H201+0'D.



D. Aregba-Driollet and B. Hanouzet 9

Proof. Using (2.14), (2.17) and taking into account the continuity of D and the
equalities

0Cy+Cy=—0%ds +p(ds)

we obtain (2.19).

The property (2.20) is an immediate consequence of (2.17).

Hence D is given by the first equation of (2.23) and we obtain the ODE (2.21) by
the third equation of (2.11). O

Reciprocally, according to the above results we consider data such that

{d;«éd+, d_d, >0,

Rankine — Hugoniot conditions (2.4) are satisfied. (2:24)

Such data satisfy the relation

X-0(x-)=x+0(x+)-

Let us study the problem (2.21)(2.22). We point out the fact that if X'(§) is a solution
of this problem then X' (£ —7) is one also for all 7 € R. Hence uniqueness does not hold
for (2.21)(2.22).
PROPOSITION 2.7. Let us suppose that the data satisfy conditions (2.24). A solution
of problem (2.21)(2.22) ezists if and only if one of the two following conditions holds:
(i) 0 <0 and 0<|d4|<|d_]|,
(i) 0>0 and 0<|d_| <|dy|.
Any solution X is monotone, positive and X € C*(R).
Proof. We denote by 1 the function defined by

() = XO(X) —x_0(x_) = XO(X) — x46(x2).

As d_#dy and dyd_ >0, x— and x4 are two distinct real roots of ¢). Hence there
exists a third real root yo. We have

Xo+x-+x+=2(c""=1) (2.25)
SO using
,—2_ der) —ale-) —14e tese téd
€y —€_
we obtain

Xo= (p(d+)+p(d-))*.
Denoting x,, =min(x—,x+) and xy =max(x—,x+) we thus have
0<xm<xMm<Xo- (2.26)
Equation (2.21) reads as

(X —xm) (X = xa) (X —x0) .

/7 __ 3
v=o 6(X)
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We have
O(y)=o'lo™? —1—y]?
and
o ?—1=¢el +e> +e_es €]xXnXo| (2.27)

so that 6 is positive on [xm,Xn]-

By the general theory of ODEs, for all yo €]xm, x|, this equation has a unique
solution X € C'(R) such that X'(0)=yo. It remains to study the behaviour of this
solution at infinity.

We remark that as X(£) €]xm, x| for all £ €R:

sgn(X’) =sgn(o).

If 0 <0 then

lim X (&)= xu, lim X(§)=xm

R €—+oo
Therefore a solution of (2.21)(2.22) exists if 0 < x4 < x— which is equivalent to
either0 <dy <d_ord_ <d4 <O0.

With similar considerations, we prove that if ¢ >0 then a solution of (2.21)(2.22)
exists if

either0 <d_ <djords <d_ <0.

Reciprocally, if neither (i) nor (ii) hold, by the general theory of ODEs the desired
solution does not exist. 0

We are now in position to prove the main result of this section.

THEOREM 2.8. There exists a Kerr-Debye relazation shock profile W € C1(R;R?)
solution of (2.11)(2.12) with (2.9) if and only if the conditions (2.24) are fulfilled and
the such defined shock is Liu-admissible. In that case each component of the profile is
monotone.

Proof. Suppose that a shock profile exists. By proposition 2.6 conditions (2.24)
are satisfied and X is solution of (2.21) with (2.22). Therefore by proposition 2.7
either condition (%) or condition (i) is satisfied. In view of propositions 2.3 and 2.4,
the shock is Liu-admissible.

Reciprocally suppose that conditions (2.24) are satisfied and that the shock is
entropic. Then either condition (i) or condition (i) is satisfied in proposition 2.7 so
that there exists a solution X € C*°(R) of (2.21) with (2.22) and X is positive.

We take

Cl = —O'df +h, = —O'd++h+, CQ = —O'h7+p(d,) = —O'h+ +p(d+)

A straightforward computation gives relations (2.18). We define D and H by (2.23).
Then we have

() =i
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Consequently the last equation of (2.13) is satisfied. It is easy to verify that so are
the two first equations of (2.13).
It remains to verify the limits at infinity:

: _ (=0®dy +p(dy)) (1 +p(d+)?)
EETOOD@_ 1—02(14p(d4)?)

:d+

and similarly

lim D(§)=d-_.
§——o0

The limits for H are then immediate by the second equation of (2.11).

The monotonicity of the shock profiles is a direct consequence of the above con-
siderations. O

Let us detail theorem 2.8 for a Liu-admissible shock o, (uy,u_).

If 0<0 and d_ >0 then the profile exists if d €]0,d_[, does not exist if dy €
[d*(d-),0].

If <0 and d_ <0 then the profile exists if d €]d_,0], does not exist if dy €
[0,d"(d-)].

If 0 >0 and d_ #0 then the profile always exists, if d_ =0 it does not exist.

Let us point out that the condition d_ #0 is also required to apply the results of
[23] for the weak shocks. We note that if d_ # 0 the Shizuta-Kawashima [19] condition
is satisfied. This condition is also crucial to study the stability of relaxation shock
profiles, see [14] and references therein. In a recent paper [7] the existence of profiles
for weak shocks under a weaker (Kawashima-like) assumption is proved.
REMARK 2.9. By (2.17) we have

(1—0%(1+X))E=0C,+Cy#0.

We can directly show that E is necessarily a solution of the following ODE:

’ g

__mE(E_eJr)(E—@f)(E—FeJr—i—e,) (2.28)

which of course leads to the same conclusions. This is made possible by the fact that
here E is a scalar quantity. That will not be true in the full vector 3D system.
REMARK 2.10. Ifdy =0 or d_ =0 we can construct discontinuous shock profiles. In
the case of an entropic one-shock with d; =0 and d_ €R the following solution can
be written:

D(¢)=d_ if £<0, 0 else,
H(&)=h_if £<0, hy else,
X(6)=x_if £<0, xy_e/7 else.

A similar solution exists for an entropic two-shock with d_ =0 and dy €R.
We can prove the following asymptotic behavior of the shock profiles.
THEOREM 2.11. Let W be a shock profile with (2.12) and (2.9). We define

R+:7e+26+1<1—e—*>, R:L—F&rl(l—e—).
e_+er o e_ e_+er o e

R_ is positive, Ry is negative and there exists a positive constant K such that

VEER  [W(€) —wy| < Ketftr [W(€) —w_| < KeSF-, (2.29)
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Proof. We take data such that conditions (2.24) are fulfilled and the such defined
shock is entropic, so that shock profiles exist. By theorem 2.8, a shock profile is
determined by a solution X of problem (2.21)(2.22), D and H being given by (2.23)
with ad hoc C7 and Cs. Suppose that

X(E) — xa | < CeSr. (2.30)
Then
ID(€) —dy | =[0Cy +C| R
M+ 2) -0 (Tny) -0
X4 — 4

=|oCy +Cs|

(1=0?(1+x4))(1—0?(14+ X))
By (2.27) we know that
1-0?(1+X)>1—0*(1+xa)>0.

Therefore
|H (&) —hy| <|o][D(§) —dy].

Finally, it remains to prove inequality (2.30) to obtain the behavior at +oo.
Therefore we consider a solution X of problem (2.21)(2.22) such that X' (0) =y, €
IXm,xar[- Then X (&) €]xm,xnm[- Equation (2.21) reads as

X'=f(x)
and for all y €]xm, xnm|:
1 1 1 1

W) FOOw—x)  Fom—xs) P xo)
We already proved that sgn(f(X))=sgn(X’)=sgn(o).
If 0 <0 then x4+ <x— so f'(x+)<0and f'(x—)>0.
If 0> 0 then xy_ <x4 so f/(x+)<0and f'(x-)>0.
Hence in all cases we have f/(x4)<0 and f/(x—)>0. Moreover by a straighfor-
ward computation one finds

Ry =f'(x+), R_=f"(x-)

which proves that Ry <0 and R_ >0.
To end the proof of the theorem, we remark that the solution of (2.21) satisfies
the following equality:

X(§)—x-
Yo — X-

1/R- 1/Ry 1/f (xo0)

X —x+
Yo — X+

X©)—xo
Yo — Xo

f:ln‘

—|—ln‘

—|—1n‘

This can also be written as

B X&) —x_ —R+/R— » £ —x —Ry/f (x0)
e €R+|X(5)—)<+|=|y0—X+|‘ﬁ ) -x

Yo —Xo

from which we deduce the first inequality in (2.29). The second one is proved similarly.
a
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2.3. Chapman-Enskog expansion In the above paragraph we saw that if a
Kerr-Debye shock profile exists then the interval |d_,d[ (or ]d4,d_[) cannot contain
zero. As proposed in [5] it is classical to perform the Chapman-Enskog expansion of
a relaxation system. In that way one obtains a viscous approximation of the Kerr
system. We shall observe that this approximation is degenerate for d=0, so if the
associated viscous shock profile exists then the interval |d_,d[ (or |d4,d_[) cannot
contain zero.

Let us first establish the Chapman-Enskog expansion for Kerr-Debye system.
PROPOSITION 2.12. The Chapman-Enskog expansion of the system (1.5) leads to the
following viscous approxzimation system:

{ gﬁei?}iﬁ(d:)o: €0, (B(d*)9,he) (2.31)
where the diffusion coefficient is
B(d) = % (2.32)
Proof. We rewrite the Kerr-Debye system:
O0yd+0,h=0,
Oth+ 0, ((1+X) 1d)= (2.33)

dhx=1G(d,x)= %(1+x “2d?—x)

Following [5] we expand w=(d,h,x) in the neighborhood of the equilibrium point
(d,h,(p(d))?), we choose

x=(p(d))* +emi(d,h) +O(e?).
Using (iii) and (i) in (2.33) we find

o d)p(d) o, 2
O\G(d,(p(d)?) ™ (1+3(p(d))?)?
Then we report in (ii) in (2.33) and we obtain the viscous approximation (2.31). O

Let us now seek viscous shock profiles of the Chapman-Enskog expansion. We
are looking for solutions of (2.31) under the form

Oxzh.

ml(d,h) =

T2 ey =h(E=

€ €

d<(x,t) = d( ) (2.34)

such that
df(£o0)=dy, he(£o0)=hy. (2.35)

If such a profile exists then d is a regular solution of the ODE

1
~oB(d) (-

U

o*(d—ds)+p(d)—p(ds)).

Denoting e =p(d) we obtain the following result.
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PROPOSITION 2.13. If a viscous shock profile of the Chapman-Enskog expansion exists
then the interval |d_,d[ (or ]dy,d_[) cannot contain zero and e=p(d) is a solution
of the ODE

2

e 2(1—|—362)e*2(e—e,)(e—eJr)(e—i—e,—|—e+). (2.36)

We observe that the existence condition of a relaxation profile is the same as the
one of a viscosity profile for (2.31), however in equation (2.28) F'=0 is a root, while
in equation (2.36) e=0 is a singularity.

We can also consider the non degenerate viscous approximation:

8td+ 8’1‘h = Ga"cl'd7
Ord+ 0y p(d) = €0pih

and consider a Liu-admissible one-shock (so we have condition (E)) with d_ > 0,
di €]d*(d-),d—_[. Then by [12] there exists a viscous profile for this shock. Note
that for dy €]d*(d-),0] Kerr-Debye relaxation profiles and Chapman-Enskog viscous
profiles do no exist.

3. Kerr-Debye shock profiles for the full vector 3D Kerr system

In this part we focus our attention on the three space dimensions cases. In order
to exhibit the admissible shocks of the 3D Kerr system, we have to study first the
properties of its characteristic fields. Then we prove our main result: there exists a
Kerr-Debye profile for a shock if and only if it is a Lax 2-shock or 5-shock.

3.1. Characteristic fields of Kerr system Let us recall that Kerr system is
hyperbolic symmetrisable [8], [4]. For the sake of completeness we actually calculate
the eigenmodes (see also [6]). It appears that four characteristic fields are linearly
degenerate while the two others are partially genuinely nonlinear.

3.1.1. Eigenmodes System (1.2) is a 6 x 6 system of conservation laws which,
denoting w= (D, H), can be synthetized as
3
Oru+ Y 0, Fj(u)=0
j=1
We denote A;(u) the jacobian matrix of F; and for all £ €R3, ££0:

3
A(U,E)ZZ@‘AJ‘(U)-

In order to obtain the eigenvalues of the system (1.2), we introduce the following
notation:

0 —& &
YWweR? Revi=| & 0 =& |v=¢&xw.
& & 0

With the above notation it is easy to see that for all u=(D,H)€RS, ¢ € R3:

Alw,8) = <R5I9’(D) _gz&) '
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where P is defined in (1.4). The matrix P’(D) is regular for all D € R3, we have

P/ (D) = —2(1+|EP)'(1+3|E]?)'EET + (1+|E[?)"'I3,
P/(D)"! = 2EET +(1+|E|?)Is.

As we know that the system is hyperbolic we are looking for A€ R and a non zero
vector 7= (X,Y) € R3 x R3 such that

“AX —ReY =0,
(3.1)
ReP/ (D)X — \Y =0.

One can see that A=0 is a double eigenvalue with the eigenvectors
(0,97, (P/(D)~¢,0)".

A real A\#0 is an eigenvalue if and only if there exists a nonzero vector X € R? such
that

(NIs+RZP'(D)) X =0. (3.2)
In that case, the Y component of the eigenvector is
Y =\"'R:P'(D)X. (3.3)
Let us first compute Rz P’(D). We have
RZEET=({x (ExE) ET
and
Ri=£ET €15
so that
REP'(D)=—2(1+|EP) T A+3[EP) TN Ex (Ex ) ET + (1+|E*) 7 (667 — ¢ Is).
We therefore look for A#0 and X such that

2 2ET X Tx
A2 — <] )X— X(ExE)+—=—"+—¢€=0. 3.4
(5 X T P e (34
We remark that if X is orthogonal to £ and to £ we have the solution
)\2: |£|2
1+|E|?

If £ x E#0 we have the eigenvectors
(I€7€x B XE x (6 x B))T.

Another notable vector is X =¢ x ({ x E)). This vector is equal to zero if and only if
Ex E=0. Let us first suppose that it is not the case. Let us take X =¢x (( X E).
Then ¢ X =0 and

oo P, 2mTx
TTHIER (D) +IIER)
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Moreover by using

ETX =ET (—E|¢]* +(ET€)¢) = —|E[*|¢]* + (BT ¢)?

we obtain
\2 EPA+[EP) +2(ET¢)
(1+[EP)(1+3[E[]?)
and
ReP/ (D)X =—-N¢x E
SO

Y=-XXE.
Finally we have six real eigenvalues:
M <= =0< =< s=—\; (3.5)
where
o 62 o EPO+HIEP)+2(ETE)?
POLHIER TP (+[BR)(1+3|EP)
The eigenvalues Aj, A2, A5, A\g are simple except in the case £ x E=0. More precisely

PROPERTY 3.1. The nonzero eigenvalues are double if and only if ¢ x E=0. In that

case the dimension of the eigenspace for \1 or \g is 2.
Proof. We have \; = )\, if and only if |E||¢| = | ET €|, which is equivalent to & x F =

(3.6)

0.
If € x E=0 then the equation (3.4) writes

/\2_ |€|2 X+ f (fTX)_O
1+|E? 1+ |E? -

For all vector X orthogonal to &, we find an eigenvector (X,Y) to the eigenvalue \;
so the property holds. O

We sum up the above facts in the following proposition:
PROPOSITION 3.2. The 38D Kerr system (1.2) is hyperbolic diagonalizable. The eigen-
values are given by (3.5), (3.6) and the inequalities in (3.5) are strict if and only if
EXE Q.

The eigenvectors to the eigenvalue O are

()= (¢). ratwe) = (T, (3.7
If€x E+0 the others eigenvectors are:
ri(u, €)= (AEE%XEEQ, i=1,6, (3.8)
and
ri(u,€) = (%;g?) i=2,5. (3.9)
If€x E=0, the others eigenvectors are:
ri(u,&) = </\|f£|2><X)?k) ,i=1,2,5,6, k=1,2. (3.10)

where X1 and Xs are two nonzero independant vectors orthogonal to &.
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3.1.2. Characteristic fields properties Clearly the characteristic field re-
lated to the zero eigenvalue is linearly degenerate. Let us consider the others eigen-
values.

ProrosiTION 3.3. The characteristic fields related to the eigenvalues A such that
N =|¢2(1+|E>)~! are linearly degenerate.

Proof. A characteristic field is linearly degenerate if for all £#£0 and for all
u=(D,H): XN(u,)r(u,§)=0. As the eigenvalue only depends on E=P(D), it is
enough to verify that

where X is orthogonal to F and to £&. We have

a(\?)
)

— g1+ |E?)22ET (3.11)
and as X is orthogonal to F
PD)X=(1+|E})'X
S0
N (u,&)r(u,&)=0.

d
PROPOSITION 3.4. Let us take £#0. The characteristic fields 2 and 5 are genuinely
nonlinear in the direction & in the open set

U ={(D,H)eR®; x D#0}
that is for all ue Q&) and i=2,5
i (w, &) ri(u,€) #0. (3.12)

Proof. We note first that u € Q(&) if only if £ x E#0 or also £ x ({ X E) #0. Along
this proof we denote

§=(1+|E>)1+3|E?), X2 =)2=)\2.

The condition (3.12) is satisfied if and only if

0N o)
Z2P(D) (¢ x (6 B)) 0.
First we compute %’\Ez)_
859;32) =261 ([|€2 —2X2(2+ 3| B[ ET +2(ET¢)¢T). (3.13)

By using the identity

€ ET =(BTE)E" —(€x (ExB))T (3.14)
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we obtain

A(N2)
oF

=26~ (a(BTEET +B(Ex (Ex E)T) (3.15)
with
a=3-2)\2|¢|72(2+3|E|?), B=—1+2)2¢|2(243|E>) > 1.
We use again (3.14) to obtain
P/(D)(¢x (Ex E))=6"" (a(ET§)E+bE x (€ x E)) (3.16)
with

_20ex (Ex B)?
]t

Consequently we obtain

A(N2)
OF

_ e+ 3(ETE2EP +IEx (Ex E)?

>0, b
€l

> 0.

P/(D)(€x (€ x E)) =257 (aa( BT €)*[€]* +0BI€ x (¢ x E)[?)

which writes as

0(X?) _2ex (ExB)P

ap b (D)Ex(ExE))= TR [(2a+3B)I€*(ET€)* + B¢ x (€ x B)* +[¢]*)]

which is strictly positive because

2+3|EJ?

> 0.

3.2. Admissible plane discontinuities In this paragraph we study Kerr pla-
nar shocks and planar contact discontinuities. These are travelling waves propagating
in a fixed direction w, |w| =1, with velocity o:

u(z,t) =u(w-z—ot), (3.17)
which are weak piecewise constant solutions of Kerr system (1.2) such that

u_if w-x—0ot<O,

uy if w-z—0ot>0, (3.18)

Mww—aﬂ:{

where u_ = (D_,H_) and uy = (D, ,H,) are two constant vectors of RS.
3.2.1. Rankine-Hugoniot conditions As usually the jump of X is denoted
X]=X,—X_.
The Rankine-Hugoniot conditions for (1.2) write

o[D]=—w x [H],
(3.19)
o[H]=wx [E]
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where [E]=E,—FE_=P(D,)—P(D_).
The divergence free conditions write
wl' D] =w" [H]=0. (3.20)

If 0 #0, this condition is fulfilled as soon as (3.19) is satisfied.
If the characteristic field for an eigenvalue A = A(u,w) is linearly degenerate, con-
tact discontinuities exist, that is plane discontinuities satisfying (3.19) and such that

o(uy,u)=MNus)=Au_). (3.21)

It is the case of A=0 for which we have stationary contact discontinuities (¢ =0):
PROPOSITION 3.5. Stationary contact discontinuities are characterized by

{oE o

The only divergence free ones are constant.
Let us now study the situations where o #0. In what follows we consider non
trivial discontinuities satisfying (3.19) : [u] #0, which is equivalent to

(D] #0. (3-22)

We first establish a preliminary result:
LEMMA 3.6. Let Dy and D_ be two distinct vectors of R3. Then

<1. (3.23)

Proof. The application P being one-to-one, the jump of D is zero if and only if
the one of E is.

[DI"[El={(1+|E4|))Ey — (1 +|E_))E_} (B} —E_)
1
> |B— B[P+ (B P - |B_ >0,
Furthermore
1 2 2
[D]|*—[D)" [E] > 3 (IBL? = |E-1?)"+||E+PEy — |[E_PE_|".

Moreover |Ey|>?Ey =|E_|?E_ if and only if E, = E_ and we obtain the result. O
ProprosITION 3.7. Consider u— #u4 and 0 #0. The Rankine-Hugoniot conditions
(8.19) are satisfied if and only if the following properties hold.

(i) The field D is divergence free, ie

wT'[D]=0, (3.24)
(ii) The jump of H is given by
[H]=0owx [D]. (3.25)
(iii) The three vectors w, [D] and [E] are coplanar.
(iv) The propagation speed o satisfies

0" = —=. (3.26)
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Hence by lemma 3.6, 0% €]0,1].
Proof. Necessary conditions. It is obvious that w’ [D]=wT[H]=0 and

(DT [H]=0, [E]T[H]=0. (3.27)
We obtain (3.25) by using (3.19-1) and (3.20) in
[H] = ([H]"w)w—wx (wx [H]).
By (3.25) and (3.27) we have
[E]" (wx[D])=0
which means that w, [D] and [E] are coplanar. By (3.19) we have
0?[D]=~wx (wx [E])

hence

By scalar product of the previous expression with [D] one finds (3.26).
Sufficient conditions. On the one hand

o|D]=—ow x (w x [D])

because w? [D]=0. We deduce (3.19-1). On the other hand, by (iii), there exist two
real numbers a and 3 such that

[E] = a[D]+ fw

hence

By (3.26) a=0? and so

which implies
o[H])=0%wx [D]=w x [E]

hence (3.19-2) and the result. O
REMARK 3.8. It is easy to verify that

W (E)x (D)) =" (By x B)(Bs P~ |B_?)
so w, [D] and [E] are coplanar if and only if
W (By % B_)(| B2~ [B_P) =0, (3.28)

The fields related to the eigenvalues A such that A2 = (1+|E|?)~! are linearly degen-
erate. The associated contact discontinuities are characterized as follows:
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PROPOSITION 3.9. A discontinuity o, uy, u_ is a contact discontinuity associated to
an eigenvalue \ such that \> = (1+|E|?>)~1 if and only if

Bol= 15|
{02—; (1+|E ) ' =1+ |E_|?)? (3.29)

and

wT[E]=0
{ [H][:]Uw x [D]. (3.30)

Moreover the only discontinuities satisfying Rankine-Hugoniot conditions (3.19) and
such that |E_|=|EL| are the above contact discontinuities.

Proof. Condition (3.29) is equivalent to condition (3.21), so the first part is a
consequence of proposition 3.7.

Finally if a discontinuity satisfies (3.19) and |E_| = |E| then the expression (3.26)
implies (3.29) and therefore it is a contact discontinuity associated to an eigenvalue
A such that \2=(1+|E|?)~L. O

At this point, it remains to study the discontinuities which are neither stationnary
nor contact discontinuities related to an eigenvalue A such that A\* = (1+|E|?)~!, that
is all those for which the jump of |E| is not zero. By (3.28) such discontinuities are
such that F;, E_ and w are coplanar (hence also are Dy, D_ and w). Modifying
only the property (i) in proposition 3.7 we obtain the following characterization:
PROPOSITION 3.10. The non trivial discontinuities satisfying (3.19) with a non zero
gump of |E| (|[E4|#|E_|) are the o, uy, u_, (Di# D_) such that formulae (3.24),
(8.25), (3.26) hold and the three vectors w, Dy, D_ are coplanar ie

wl'(Dy xD_)=0. (3.31)

In the following the discontinuities satisfying the previous conditions are called

shocks.

Let us recall that for a fixed left state u_ the Hugoniot set of u_, denoted H(u—),
is the set of the right states u such that there exists a shock connecting v_ and u. .
We denote then 0 =o(u4,u_) the shock velocity. One can give a similar definition by
fixing the right state.

In proposition 3.10 the coplanarity condition is trivial if D_ xw=0o0r D x w=0.
Two cases are under consideration.
ProposITION 3.11. Case D_ xw#0.

Let u_=(D_,H_) be a fized left state such that D_ xw#0. Let ¢ be a unitary
vector orthogonal to w in the plane defined by (w,D_) .

The set H(u_) of the right states uy connected to u_ by a shock is the union of
two curves H* (u_) parametrized by d€R and constructed as follows: H*(u_) (resp
H~(u_)) is the set of (Dy,H,)€ER® such that

Dy =(wI'D_)w+dc, dER,

o satisfies (3.26), >0 (resp 0 <0) and H. satisfies (3.25).

One can describe similarly the set of left states connected by a shock to uy such
that D4y X w#0.

The proof is immediate. Let us remark that if

D_=wI'D_Y)w+d_¢
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then [D]=0 if and only if d =d_, and |E;|=|E_| if and only if dy =+d_.
ProprosITION 3.12. Case D_ xw=0.

Let u_=(D_,H_) be a fized left state such that D_ xw=0. Then the set H(u_)
of the right states connected to u_ by a shock is the set of uy = (Dy,Hy) satisfying
(8.24) and such that

0? =X (uy) = (1+|E4 )" (3.32)

and H_ satisfies (3.25).

One can similarly describe the set of left states connected by a shock to uy such
that Dy xw=0.

Proof. We have D, = (w" D_)w+d, ¢ (dy #0) where ¢ is an arbitrary unitary
vector orthogonal to w, which gives (3.32). O
REMARK 3.13. As d+ #0 we have

|D4|>|D_|
S0
|Ey|>|E-|
and
o2 =M (ug) < A2 (u_). (3.33)

We have a semi contact discontinuity: the propagation speed of a contact discontinuity
coincide with both the eigenvalues associated to the right state and the left state, see
(8.29). Here we have only the equality with the eigenvalue related to the right state.

3.2.2. Admissible shocks  We focus our attention on the admissibility of
shocks in the sense of Liu or in the sense of Lax.
DEFINITION 3.14. Let u_ be a left state which the Hugoniot set is a union of curves,
and consider uy € H(u_). The discontinuity is Liu-admissible if

(E) o(ug,u_) <o(u,u_), Vu e H(u—), u between u_ and u .

DEFINITION 3.15. A discontinuity o, u—, uy is a Lax k-shock if

A (U )<O'<)\ 1(U )
{rtsos il 30

Liu’s condition may be applied only in the presence of a shock curve. Here such a
curve exists only if D_ xw#0.

PROPOSITION 3.16. Let u_=(D_,H_) be a fized left state such that D_ xw=0.
Consider uy € H(u_). If 0 <0 the shock is not a Lax shock. If 0 >0 the shock satisfies
the 5-shock conditions with large inequalities:

{/\5(U+) <o =Ns(u+)
M(u)<o<As(u—).

Proof. For o <0, a one-shock cannot hold because 0 = \1 (uy) > A1 (u—). A 2-shock
cannot hold because \g(u4) > 0.
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For o >0: the first inequality is true because Dy xw#0. Moreover Ay =0 and
As(u—)=A¢(u—) hence following (3.33) we obtain the desired inequalities. O
REMARK 3.17. One obtains a similar result with o <0 by considering the Hugoniot
set of a fized right state such thatDi xw=0.

If the shock satisfies the conditions of proposition 3.11 then we may study Liu’s
condition. With the same notations as in this proposition, let u_ be such that D_ x

w#0:
D_=dw+d_¢, di=w'D_,  d_#0.
Consider u e H(u—_):
D=dyw+dC. (3.35)

In order to characterize the admissibility conditions (E) or (3.34) we first express o
as a function of parameter d in (3.35). We have

P(D)=FE=ecjw+e(
with
—_— d —_— d .
L+[EP 14p(\/dF+d?)?

As [D]=[d|¢, o :% and hence

€

= f(d).

J(d)=1(d)

o ) ===

(3.36)
Let us remark that if d; =0 we have p(d) = f(d) so (3.36) reduces to (2.6). In fact
we show in the following lemma that the functions f and p have the same qualitative
properties.
LEMMA 3.18. The function f owns the following properties:
(i) f(0)=0, f'(0)=(1+e)~", f"(0)=0,
(ii) f is an odd increasing function,
(ii1)f is strictly convex on | —o0,0], strictly concave on [0,+00].

Proof. We have

, 1 2ed 9
= — = D . .
FO=18r ~ araEmareme ~ 2P (350
and using (3.11)
2(eqwT +e¢T 2ee 1+3e?+¢?
f/l(d):_ (1 E2C2) - E|2 - E2w+ E|2 - EZ<
(1+[E]) (I+[EP)A+3[E?) (1+[E]?)(1+3[E?)
2e

(1+[E[2)?(1+3|EP)

a
As a consequence we have the following lemma.
LEMMA 3.19. For all d_ #0 there exists an unique d*(d—)#d_ such that

Jd) = f(d-).

fid) =R =
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Moreover d*(d_)d_ <0 and |d*(d_)| < |d_|.

We now give the characterization of Liu-admissible shocks:
PROPOSITION 3.20. The Liu-admissible shocks are 2-shocks or 5-shocks.
For the 2-shocks (o0 <0), consider u_ with D_ xw#0 and uy € H™ (u—). The discon-
tinuity is Liu-admissible if and only if dy belongs to the interval with extremities d_,
d*(d-).
For the 5-shocks (o >0), consider u_ with D_ X w0 and uy € H(u_). The discon-
tinuity u—, uy, o is Liu-admissible if and only if |d4|>|d_| and dyd_>0.

Proof. Using formulas (3.36) and (3.37) we observe that

lim o%(u,u_)=M3(D_,w)=M(D_,w)

U—uU—

and

200/ (d) = ——— _1 i <f'(d) _fd-Hd) (dc)z: gf‘”) .

d

Let us remark that these shock conditions are analogous to the ones found in part
2 for the 2 x 2 case.

We conclude this section by the following proposition.
ProrosiTioN 3.21. The Laxz-admissible shocks are 2-shocks or 5-shocks.
For the 2-shocks (0 <0), consider u_ with D_ xw#0 and uy € H™ (u_). The discon-
tinuity is Lax-admissible if and only if |d4| <|d_| and d+d_ > 0.
For the 5-shocks (o >0), consider u_ with D_ xw#0 and uy € H(u_). The discon-
tinuity u—, uy, o is Laz-admissible if and only if |d|>|d_| and dyd_ > 0.

Proof. We prove the case o <0 only, the other one is similar. For a Lax-admissible
shock we need the condition

A2 (us) < A2(u-)(<0).
By (3.37) it is equivalent to
f'ldy)> f'(d-)
so |d4| <|d—|. The condition A\;(u_) <o < Ag(u4) writes

L (B P)—d_(1+]E )

. 3.38
B (dy—d )0+ B P)(I+1E ) (3.38)
If d_ <0, dy €]d_,—d_[ and the above inequality is equivalent to
A4 (|4 = [E-[?) >0.
Moreover |E, |2 <|E_|? because p is an increasing function and |dy|<|d_|. So the

Lax condition is satisfied if d4 <0 only.
Ifd_>0,dy€]l—d_,d_[so (3.38) writes

di (B4 P —|E_P) <0,

So the Lax condition is satisfied if d4 >0 only.

Reciprocally let us suppose that |dy|<|d_| and d_dy >0. The condition (3.34)
follows from (3.36). O
REMARK 3.22. The Laz shocks are the Liu shocks such that dyd_ >0, for the 5-
shocks Lax and Liu shocks coincide.
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3.3. Shock profiles In this part, we consider a plane Kerr discontinuity which
is not a contact discontinuity, in particular o # 0. By proposition 3.9 we suppose that

B |#|E_|. (3.39)

By proposition 3.10 we have (3.24), Dy, D_, E., E_ et w are coplanar, o satisfies
(3.26) and H satisfies (3.25).

Our goal is to construct a Kerr-Debye relaxation shock profile. We therefore look
for a smooth function W such that

(D, H,X)(2,8) =W <l(w —ms)> —W(e) (3.40)

€
is a solution of (1.1) and satisfies
W(to0) = (D+,Hy, x+) (3.41)
where (D4,x+) is in the equilibrium manifold
{(D.x): (1+x) %D = x =0},
so that
X+ =Bl (3.42)
and by (3.39)
X+ 7 X~ (3.43)
Hence the profile we look for is a smooth solution of the ordinary differential system
(—oD—wx H) =0
(—oH+wx (1+X)"1D) =0 (3.44)
—oX'=(1+X)2|D]>-X,

defined on R and satisfying (3.41). Let us remark that as o#0, those profiles are
divergence free, which reads as

wI'D'=wT H'=0. (3.45)

PROPOSITION 3.23. If there exists a shock profile then the solution component X ()
is a solution of the ordinary differential equation

CWTDLP 0(x) (At xa) Plwx (wx D)
(1+X)2 0(X)

oX =X (3.46)

where 0(X) = (T(X))?> = (c?(1+X)—1)? as long as X # —1 and X # 1;2"2.
Proof. Eliminating H between (3.44-1) and (3.44-2) we have

(0?D+(1+X)'wx (wx D)) =0.
Hence

D+ (1+X) wx(wxD)=0?Di+(1+x+) 'wx (wx D), (3.47)
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the compatibility between right and left values being insured by Rankine-Hugoniot
conditions and by (3.42). On another hand, using the fact that D= (w? D)w —w x
(wx D) along with (3.45) and (3.47) we have

o?D+(14+X) 'wx (wxD)=0*(w' Dy)w—T(x+)(1+x+) 'wx (wx D).
Therefore

X)) (1+X) 2|lwx (wx D)P=0(x+)(1+x+) ?|lwx (wx D)

It follows that as long as X # —1 and X # 1;32
W Dy|* | O(Xe)(1+xs) Pwx (wx Dy)|?
(14+X)2 0(X)

and (3.46) follows by (3.44-3). O

Let us now study the right hand side of (3.46), which we denote 1. If the profile
exists then there exists a smooth solution of (3.46) with X' (+o00)=x4+, x+ and x_
must be two consecutive zeros of ) and ¢ must keep a constant sign between those
two values. Therefore v is a monotone non constant function on this interval, which
implies that

(1+X) %D =

X+ 7 X~

This is true by (3.39), due to the fact that we do not consider contact discontinuities.
The function ¥ writes

P(X) =X —p(X), W“:ﬁ+wi) (3.48)

with
a=|wl Di|?, b=0(x+)(14x+) ?|lwx (wx D)

These two coefficients are non negative. In (3.48) we cannot have b=0 and a>0
because otherwise

a
X)=X——
() (14+X)2
has only one zero. As a consequence we have
D_ xw#0,
{D+ X w#£0. (3.49)
The only zero of T'(X) is x= 1;5’2 and by lemma 3.6
X >0. (3.50)
Furthermore let us remark that
1 DT (Dy—D_)
T = —(x—— —_,
(X+) 1+X— (X X+) |D+—D_|2
(3.51)
1 DT (D, —-D_)
T(y_) = R e ol S s
(x-) T (X=—x+) DD



D. Aregba-Driollet and B. Hanouzet 27

2 T T T T - 2

0 T . i L L L 0 L L L L
15 1 05 ) 05 1 15 2 15 1 05 0 05 1 15 2

Fia. 3.1. Representation of the function ¢ in (3.48). Left: a=0 (x— =1.74, x+=0.18, X=
1.36). Right: a#0 (x— =1.74, x4 =0.23, X=1.38).

If =0 and (3.49) holds, then 6(x+)=0. If 8(x+)=0, then
DT (Dy—D_)=0

and so D_ xw=0, which is in contradiction with (3.49-1). The same holds with
6(x—)=0. Consequently

O(x-)#0,  0(x+)#0 (3.52)
which is also equivalent to
X-#X, X+ FX- (3.53)
As a consequence ¢ (x+) is well defined and we obtain
Y(x-)=v(x+)=0. (3.54)

As b>0, Y is a singularity for ¢). If a=0 then the function ¢ is convex on | — oo, x| and
on |y, +ool, p(£00) =0, ¢(x £0) =+o0, see Fig. 3.1 (left). If a >0, the function ¢ is
convex on the intervals | —oo,—1[, | —1,X[ and |x,+o0[, p(£o0)=0, p(}x£0)=+o0,
and p(Y£0) =400, see Fig. 3.1 (right).

In both cases, if the profile exists, the zeros x_ and x4 of ¢ are necessarily in the
interval ]0,%[, which we may characterize by

T(x+)<0, and T(x-)<0
or, using (3.51), by

(X*_XJr)D,Z:(DJr_D*) <0,
(3.55)
(x- =x+)DL (D4 —D-)<0.

Let us denote X, =min(x—,x+), xar =max(x—,x+). Then, [xmm,xn] CJ0,X[ and 1) is
positive on |xm,xas[, s0 0> 0 implies x— =y, and x4+ =xa, 0 <0 implies x— =xn
and x4+ = X In order to explicit condition (3.55) we use the notations of proposition
3.11.

(3.56)

D+:d1w+d+C7
D_Zdlw—f—d_c.
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with dy #d_ and, by (3.49) d+ #0 and d_ #0. Then (3.55) reads as

d-(x+—x-)(ds —d-)>0,
{d+ &i—;)(di—d,bo (3.57)

which impose that

d_d, >0. (3.58)

Moreover x4 = (p(1/di+d3))? so that x_ < x4 if and only if d? <dZ.

If d->0 and dy >0 then y_ < x4 if and only if 0<d_ <d,, and so we have
(3.57).

If d_ <0 and dy <0 then y_ < x4 if and only if dy <d_ <0, and so we have
(3.57) again.

As a conclusion, y_ and x4 belong to the interval |0,x][ if and only if inequality
(3.58) holds in (3.56).

If 0 >0 it is a 5-shock, X is an increasing function from y_ to x4, so |d—|<|d4]
and dy d_ >0 so the shock is admissible in the sense of Lax (and Liu).

If 0 <0 it is a 2-shock, X is a decreasing function from xy_ to x4, so |d—|>|d4]
and according to proposition 3.21 condition (3.58) impose that the shock is admissible
in the sense of Lax.

Reciprocally, let us consider a shock as defined in proposition 3.10 and suppose
that condition (3.58) is satisfied (so we have also (3.49)). Then y_ and x4 are in the
interval ]0,%[ and ) is positive on |xm,Xxar|-

If >0, x— < x4 there exists a solution X of (3.46) with X' (+o0)= x4 and X is
an increasing function.

If 0 <0, x4+ < x— there exists a solution X of (3.46) with X(+o00)=x+ and X is
a decreasing function.

We compute D by using the fact that

D= (w'D)w—wx (wxD), wI'D=w"Dy
and
WX (wxD)=T(X) ' A+ X)T(x+)(1+xx) 'wx (wx Dy)

and the expression of H is obtained by using (3.44-2).
THEOREM 3.24. Consider a shock as defined in proposition 3.10. There exists a
Kerr-Debye profile for it if and only if it is a Lax 2-shock or a Laz 5-shock.

3.4. Revisited one-dimensional cases The plane discontinuities of Kerr
system (1.2) are weak solutions of a 6 x 6 one-dimensional system. Without loss of
generality we can assume that w=(1,0,0) and then if we denote x=x; this system
writes

0:D1=0

0; Do+ 0,H3=0

0yD3— 0, Hy=0

9,Hy =0 (3.59)

81‘,H2 _8’EP3(D) =
OiHs+0,Po(D) =
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The divergence free conditions write
0.,D1=0, 0, H1=0 (3.60)
so that Dy and H; are constant. Let us look for discontinuities such that

D_=(0,d_#0,0), H_.=(H;,0,h_) (3.61)

Dy=(0,d+,Ds ), Hy =(Hy, Ha 1 by ). '
A contact discontinuity (for the 1 or 6 characteristic fields) satisfies conditions (3.29)
and (3.30), so we have

di+D3 =d>.

If moreover D3 =0, then Hy y =0 and (d,h)=(D2,Hs) is a weak solution of the
2 x 2, one dimensional system (1.6). In this case d4 =—d_ and this weak solution is
not a Liu admissible solution of (1.6).

If a contact discontinuity does not hold then dj + D3 , #d? and by (3.31) D3 4 =
0, hence by (3.59) Hy + =0. Such a weak solution is necessarily a 2-shock or a 5-shock,
the condition D_ xw #0 reads as d_ #0, propositions 3.20, 3.21 directly apply. As
before, (d,h)= (D2, Hs) is a weak solution of the 2 x 2 one-dimensional system (1.6).
This weak solution is a 1-Liu shock (resp 2- Liu shock) of system (1.6) if and only if
it is a 2-Liu shock (resp 5-Liu shock) of system (3.59).

Let us remark that for the 2 x 2 system (1.6), Liu and Lax admissibility of shock
coincide but this is not the case for the 6 x 6 system (3.59) where the Lax condition
must be more restrictive, cf remark 10. As a conclusion we can see that for the system
(3.59) the Lax-admissibility of a shock is characterized by the existence of a related
Kerr-Debye relaxation profile.
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