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KERR-DEBYE RELAXATION SHOCK PROFILES FOR KERREQUATIONSDENISE AREGBA-DRIOLLET ∗ AND BERNARD HANOUZET †Abstra
t. The ele
tromagneti
 wave propagation in a nonlinear medium 
an be des
ribed bya Kerr model in the 
ase of an instantaneous response of the material, or by a Kerr-Debye model ifthe material exhibits a �nite response time. Both models are quasilinear hyperboli
, and Kerr-Debyemodel is a physi
al relaxation approximation of Kerr model. In this paper we 
hara
terize the sho
ksin the Kerr model for whi
h there exists a Kerr-Debye pro�le. First we 
onsider 1D models for whi
hexpli
it 
al
ulations are performed. Then we determine the plane dis
ontinuities of the full ve
tor3D Kerr system and their admissibility in the sense of Liu and in the sense of Lax. At last we
hara
terize the large amplitude Kerr sho
ks giving rise to the existen
e of Kerr-Debye relaxationpro�les.Key words. Nonlinear hyperboli
 problems, relaxation, sho
k pro�les, Kerr-Debye model.AMS subje
t 
lassi�
ations. 35L67,35L65, 35Q60.1. Introdu
tionIn some 
ontexts the propagation of ele
tromagneti
 waves in nonlinear media
an be modelized by the so-
alled Kerr-Debye model, whi
h writes as a quasilinearhyperboli
 system with relaxation sour
e-terms depending on the response time of thematerial. Su
h hyperboli
 relaxation problems have been investigated for a long timein the mathemati
al litterature, with a parti
ular emphasis on �uid me
hani
s, see[16℄ for a review. In an important arti
le ([5℄), Chen, Levermore and Liu establish atheoriti
al framework linking the properties of a relaxation system and its equilibriummodel. The Kerr-Debye model under 
onsideration enters this general formalism.To derive the models, one writes the tridimensional Maxwell's equations






∂tD−curlH=0,
∂tB+curlE=0,
divD=divB=0with the 
onstitutive relations
{

B = µ0H

D = ǫ0E+Pwhere P is the nonlinear polarization and µ0, ǫ0 are the free spa
e permeability andpermittivity.In nonlinear opti
s, if the medium exhibits an instantaneous response it is 
lassi
alto introdu
e a Kerr model [18℄
P =PK = ǫ0ǫr|E|2E.If the medium exhibits a �nite response time τ >0 one should use the Kerr-Debyemodel for whi
h

P =PKD = ǫ0χE, ∂tχ+
1

τ
χ=

1

τ
ǫr|E|2.
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2 Kerr-Debye relaxation sho
k pro�lesSee for example [24℄ for further details.The Kerr-Debye model is a relaxation approximation of the Kerr model and τis the relaxation parameter. Formally when τ tends to 0, χ 
onverges to ǫr|E|2 and
PKD 
onverges to PK . More pre
isely, as already observed in [8℄, Kerr system is theredu
ed system for the Kerr-Debye one in the sense of [5℄.The 
onvergen
e of smooth solutions of Kerr-Debye system towards a smoothsolution of Kerr system when τ tends to zero is now well understood. For the initialvalue problem, as the stability 
onditions of [22℄ are satis�ed, the result is obtainedin [8℄. For the more physi
ally realisti
 situation of impedan
e boundary 
onditions,in parti
ular the ingoing wave, the result is proved in [4℄.The 
onvergen
e towards a weak solution of Kerr system is far to be 
lear, evenin the one-dimensional setting. Only a few partial results are available in the litter-ature for similar problems, and those results do not apply here, see 
omments andreferen
es following (1.5), (1.6). As a �rst step into the 
omprehension of the in-volved phenomena, we shall 
onstru
t Kerr-Debye pro�les for Kerr sho
ks. These aretravelling waves, smooth solutions of Kerr-Debye equations whi
h 
onverge to a weak(dis
ontinuous) solution of Kerr system.In the following we 
onsider non-dimensionalized models and as usual for relax-ation equations we denote ǫ the response time τ . We therefore write the Kerr-Debyeequations as:











∂tDǫ−curlHǫ =0,
∂tHǫ +curlEǫ =0, Dǫ =(1+χǫ)Eǫ

∂tχǫ =
1

ǫ

(

|Eǫ|
2−χǫ

)

(1.1)with
divDǫ =divBǫ =0.Let us note that if the initial data are divergen
e free, then so are (Dǫ,Hǫ). Moreoverif χǫ is initially positive then so is χǫ for all positive times.On
e non-dimensionalized, the relaxed Kerr system writes

{

∂tD−curlH=0,
∂tH+curl(P(D))=0

(1.2)where P is the re
ipro
al fun
tion of D:
D(E)= (1+ |E|2)E.Denoting

q(e)= e+e3, e∈R, p= q−1, (1.3)we have
E=P(D)= (1+p(|D|)2)−1D. (1.4)The equilibrium manifold for Kerr-Debye model that is

V ={(D,H,χ); (1+χ)−2|D|2−χ=0}
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an be also de�ned as
V ={(D,H,χ); χ=(p(|D|))2 = |E|2}.As proposed in [3℄ we also introdu
e the one dimensional models satis�ed by solutions

D(x,t)= (0,d(x,t),0), H(x,t)= (0,0,h(x,t)) and x=x1∈R. In that framework thesolutions of Kerr-Debye model (1.1) satisfy the following system:






∂tdǫ +∂xhǫ =0,
∂thǫ +∂x

(

(1+χǫ)
−1dǫ

)

=0,
∂tχǫ = 1

ǫ

(

(1+χǫ)
−2d2

ǫ −χǫ

)

(1.5)while the solutions of Kerr model (1.2) satisfy the following one:
{

∂td+∂xh = 0,
∂td+∂xp(d) = 0.

(1.6)It turns out that the 1D Kerr system (1.6) is a so-
alled p-system. As p′>0 it is stri
tlyhyperboli
 but the properties of the fun
tion p di�er from the ones whi
h appear inthe general framework of gas dynami
s or vis
oelasti
ity. For the last example, someresults 
on
erning the 
onvergen
e of Suli
iu relaxation approximations towards weaksolutions of the p-system are obtained in [20℄ (see also [9℄, [10℄). For Kerr-Debyerelaxation approximations, the 
onvergen
e towards a weak solution of (1.6) is anopen problem.Let us 
onsider a planar dis
ontinuity for the Kerr system (1.2) that is a weaksolution u(x,t)= (D,H)(x,t) su
h that
u(x,t)=

{

u− if x ·ω−σt< 0,
u+ if x ·ω−σt> 0,where u±, σ, ω (|ω|=1) are given and satisfy the Rankine Hugoniot 
onditions (see(3.19) part 3). A Kerr-Debye pro�le of this dis
ontinuity is a smooth solution

wǫ(x,t)= (Dǫ,Hǫ,χǫ)(x,t)=W (
1

ǫ
(x ·ω−σt))su
h that

W (±∞)= (D±,H±,χ±)where (D±,H±,χ±) are in the equilibrium manifold, so that
χ± =(p(|D±|))

2 = |E±|
2.In [13℄ T.-P. Liu 
onstru
ts su
h pro�les for the 2×2 1D hyperboli
 systems withrelaxation. In [23℄ W.-A. Yong and K. Zumbrun prove the existen
e of relaxationpro�les for small amplitude Liu-sho
ks in a general setting. Their results apply forstri
tly hyperboli
 redu
ed systems (see hypothesis (b) in [23℄) whi
h is not true for the3D Kerr system (1.2), where moreover the eigenvalues have variable multipli
ities (seeSe
t. 3.1 herein). In the 
ase of our 1D models, system (1.6) is stri
tly hyperboli
and the stru
tural assumptions of [23℄ are satis�ed. In the present paper, withoutsmallness hypothesis, we 
hara
terize all the sho
ks giving rise to the existen
e of a



4 Kerr-Debye relaxation sho
k pro�lesKerr-Debye pro�le. Namely, we prove that a Kerr-Debye relaxation pro�le exists ifand only if the sho
k under 
onsideration is entropi
 in the sense of Lax.Se
tion 2 of the paper is devoted to the 1D systems (1.6) and (1.5) for whi
hexpli
it 
al
ulations are performed. First we 
hara
terize the Liu-admissible sho
ks,that is the dis
ontinuities satisfying 
ondition (E) in de�nition 2.1 below. In [12℄T.P. Liu proves that 
ondition (E) is equivalent to the existen
e of a vis
ous sho
kpro�le. Here, it turns out that this 
ondition is not su�
ient to ensure the existen
e ofrelaxation pro�les. In fa
t we prove that a pro�le exists if and only if the dis
ontinuitysatis�es the additional assumption d−d+>0 (so p is 
onvex or 
on
ave on the interval
d−, d+). We then observe that the same 
ondition appears for the existen
e of avis
osity pro�le related to the Chapman-Enskog expansion of the Kerr-Debye system.In se
tion 3 we 
onsider the full ve
tor 3D systems. The Kerr system owns sixreal eigenvalues

λ1≤λ2<λ3 =0=λ4<λ5 =−λ2≤λ6 =−λ1 .The 
hara
teristi
 �elds 1, 3, 4, 6 are linearly degenerate. If λ2 6=λ1 the se
ond
hara
teristi
 �eld is genuinely nonlinear. Then we 
hara
terize the Liu sho
ks andthe Lax sho
ks. The main result of this se
tion is that Kerr-Debye relaxation sho
kpro�les only exist for Lax 2-sho
ks and Lax 5-sho
ks.2. Kerr-Debye sho
k pro�les for the 1D Kerr system2.1. Admissible sho
k waves for 1D Kerr system As already mentioned,the system (1.6) is stri
tly hyperboli
, the eigenvalues are
λ1(d)=−

√

p′(d)<0<λ2(d)=
√

p′(d) , (2.1)with the related eigenfun
tions
r1 =

(

−1
√

p′(d)

)

, r2 =

(

1
√

p′(d)

)

. (2.2)We observe that
λ′i(d,h)ri(d,h)=

p′′(d)

2
√

p′(d)
, i=1,2 (2.3)whi
h is zero for d=0. Hen
e the 
hara
teristi
 �elds are genuinely nonlinear only on

{u=(d,h);d 6=0}.If two 
onstant states u+ and u− are 
onne
ted by a sho
k propagating withspeed σ, then the Rankine-Hugoniot 
onditions are satis�ed:
{

h+−h− =σ(d+−d−),
p(d+)−p(d−)=σ(h+−h−).

(2.4)We 
onsider non trivial sho
ks, that is d+ 6=d−. Rankine-Hugoniot 
onditions write














σ(u+,u−)=
h+−h−
d+−d−

(h+−h−)2 =(p(d+)−p(d−))(d+−d−).

(2.5)



D. Aregba-Driollet and B. Hanouzet 5For (d−,h−) �xed we denote H(u−) the Hugoniot set of u− =(d−,h−). It is the unionof four sets:
H±

1 (d−,h−)={(d,h), h=h−∓
√

(p(d)−p(d−))(d−d−), d≷d−},and
H±

2 (d−,h−)={(d,h), h=h−±
√

(p(d)−p(d−))(d−d−), d≷d−}.

H1(u−)=H+
1 (u−)∪H−

1 (u−) is the set of states u 
onne
ted to u− with σ(u,u−)<
0, while H2(u−)=H+

2 (u−)∪H−

2 (u−) is the set of states u 
onne
ted to u− with
σ(u,u−)>0.In [11℄, T.P. Liu gives a generalization of Lax's sho
k entropy 
onditions whenthe 
hara
teristi
 �elds are not everywhere genuinely nonlinear: the 
ondition (E).Definition 2.1. Let u− be a given left state and 
onsider u+∈H(u−). The dis
on-tinuity is Liu-admissible if

(E) σ(u+,u−)≤σ(u,u−), ∀u∈H(u−), u between u− and u+ .One-sho
ks. Liu's one-sho
ks are the sho
ks satisfying 
ondition (E) and su
h that
u+ belong to H1(u−). Here we have

σ(u,u−)=σ(d,d−)=−

√

p(d)−p(d−)

d−d−
. (2.6)Lemma 2.2. For all d= q(e)∈R we denote

d∗(d)= q(−
1

2
e)=−

1

8
[d+3p(d)] (2.7)where q is the fun
tion de�ned by (1.3). As a fun
tion of d, σ∈C1(R) and σ owns aunique global minimum whi
h is rea
hed at the point d∗(d−).Proof. In the following σ′ is the derivative of σ(d,d−) with respe
t to d:

σ′(d,d−)=
1

2σ(d,d−)(d−d−)

[

p′(d)−
p(d)−p(d−)

d−d−

]

.It is easy to see that as a fun
tion of d, σ∈C1(R) and that σ′(d−,d−)=
−p′′(d−)

4
√

p′(d−)
.Let us de�ne

K(d)=p′(d)−
p(d)−p(d−)

d−d−and k=K ◦q. We have
k(e)=

−2e2+ee−+e2−
(e2 +ee−+e2−+1)(1+3e2)and the roots are − 1

2e− and e−. This allows us to 
on
lude.As a �rst 
ase, we study one-sho
ks with u+∈H+
1 (u−). We observe that if d−≥0
ondition (E) 
annot be satis�ed sin
e we must have d>d− and p is 
on
ave for

d−≥0.



6 Kerr-Debye relaxation sho
k pro�les
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Fig. 2.1. Admissibility of a sho
k: d∗ is su
h that the se
ant (u−,u∗) is tangent to the graphof fun
tion p at u∗.Let us now suppose that d−<0. By lemma 2.2 σ is de
reasing on [d−,d
∗(d−)]and in
reasing on [d∗(d−),+∞[. Therefore the 
ondition (E) is satis�ed if and only if

d+ ∈]d−,d
∗(d−)].We turn our attention to u+∈H−

1 (u−). We remark that u∈H−

1 (u−) if andonly if −u∈H+
1 (−u−). On another hand σ(−d,−d−)=σ(d,d−). Therefore, we
an dedu
e that the 
ondition (E) is satis�ed on H−

1 (u−) if and only if d−>0 and
d+ ∈ [d∗(d−),d−[.Finally denoting S the fun
tion de�ned by

S(d,d−)=
√

(p(d)−p(d−))(d−d−) (2.8)the following proposition summarizes the results.Proposition 2.3. For a Liu one-sho
k
σ=−

√

p(d+)−p(d−)

d+−d−
.Let u− be a given left state.If d−>0, u+ is a right state 
onne
ted to u− by a Liu one-sho
k if and only if

d+ ∈ [d∗(d−),d−[, h+ =h−+S(d+,d−).If d−<0, u+ is a right state 
onne
ted to u− by a Liu one-sho
k if and only if
d+ ∈]d−,d

∗(d−)], h+ =h−−S(d+,d−).If d− =0 there does not exist any right state 
onne
ted to u− by a Liu one-sho
k.Two-sho
ks. Similar 
onsiderations lead toProposition 2.4. For a Liu two-sho
k
σ=

√

p(d+)−p(d−)

d+−d−
.Let u− be a given left state.



D. Aregba-Driollet and B. Hanouzet 7If d−>0, u+ is a right state 
onne
ted to u− by a Liu two-sho
k if and only if
d+>d− , h+ =h−+S(d+,d−).If d−<0, u+ is a right state 
onne
ted to u− by a Liu two-sho
k if and only if
d+<d− , h+ =h−−S(d+,d−).If d− =0, u+ is a right state 
onne
ted to u− by a Liu two-sho
k if and only if

d+ 6=0, h+ =h−+sgn(d+)S(d+,d−).2.2. Sho
k pro�les In this se
tion we 
onstru
t Kerr-Debye relaxation sho
kpro�les, that are smooth solutions of Kerr-Debye system (1.5) under the form
wǫ(x,t)=W

(

x−σt

ǫ

)

, W =(D,H,X ),and su
h that
W (±∞)=w±=(d±,h±,χ±).We suppose that

w− 6=w+ . (2.9)It is wellknown that σ, (d±,h±) must satisfy the Rankine-Hugoniot 
onditions andthat w± belong to the equilibrium manifold, so we have (2.4), d+ 6=d−, σ 6=0 and
χ± =(p(d±))2 = e2±. (2.10)The problem is to �nd W (ξ)∈C1(R,R3) su
h that







−σD′+H ′ =0,

−σH ′+
(

(1+X )−1D
)′

=0,
−σX ′ =(1+X )−2D2−X

(2.11)and
(D(±∞),H(±∞),X (±∞))= (d±,h±,(p(d±))2). (2.12)Denoting E=(1+X )−1D, system (2.11) also reads as







−σD+H=C1 =−σd±+h± ,
−σH+E=C2 =−σh±+e± ,
−σX ′ =E2−X .

(2.13)Let us also remark that by the last equation in (2.11) we have ne
essarily
∀ξ∈R, X (ξ)≥0. (2.14)Let us determine some ne
essary 
onditions for the existen
e of smooth sho
k pro�les.



8 Kerr-Debye relaxation sho
k pro�lesFirst, eliminating H from the two �rst equations of (2.13) we have
−σ2D+E=σC1 +C2 =−σ2d±+e± . (2.15)Lemma 2.5. If W ∈C1(R,R3) is solution of (2.11)(2.12) with (2.9) then

σC1 +C2 6=0. (2.16)Proof. Suppose that σC1 +C2 =0. As d− 6=d+, one of them is not zero. Supposefor instan
e that d− 6=0. There exists a non empty maximal interval ]−∞,ξ1[ where
D 6=0. By (2.15), on this interval we have

(

−σ2 +(1+X )−1
)

D=0so that X is a 
onstant. By the last equation of (2.13), D=d− on this interval. If ξ1is �nite, then D(ξ1)=0, otherwise the limit of D at +∞ is d+ 6=d−. In ea
h 
ase it isa 
ontradi
tion. The same 
an be done if d− =0 and d+ 6=0.As a 
onsequen
e we have
∀ξ∈R,

[

1−σ2(1+X (ξ))
] D(ξ)

1+X (ξ)
=σC1 +C2 6=0. (2.17)Denoting

θ(X )= [1−σ2(1+X )]2we remark also that
(σC1 +C2)

2 =χ−θ(χ−)=χ+θ(χ+). (2.18)Proposition 2.6. If W ∈C1(R,R3) is solution of (2.11) (2.12) with (2.9) and (2.4)then
d+d−>0 and ∀ξ∈R D(ξ) 6=0. (2.19)Moreover

∀ξ∈R θ(X (ξ)) 6=0, (2.20)
X is solution of the ordinary di�erential problem

X ′ =
1

σ

X θ(X )−χ±θ(χ±)

θ(X )
, (2.21)

X (±∞)=χ± =(p(d±))2 (2.22)and D and H are given by






D=
(σC1 +C2)(1+X )

1−σ2(1+X )
H=C1+σD.

(2.23)



D. Aregba-Driollet and B. Hanouzet 9Proof. Using (2.14), (2.17) and taking into a

ount the 
ontinuity of D and theequalities
σC1 +C2 =−σ2d±+p(d±)we obtain (2.19).The property (2.20) is an immediate 
onsequen
e of (2.17).Hen
e D is given by the �rst equation of (2.23) and we obtain the ODE (2.21) bythe third equation of (2.11).Re
ipro
ally, a

ording to the above results we 
onsider data su
h that

{

d− 6=d+ , d−d+>0,
Rankine−Hugoniot conditions (2.4)are satisfied.

(2.24)Su
h data satisfy the relation
χ−θ(χ−)=χ+θ(χ+).Let us study the problem (2.21)(2.22). We point out the fa
t that if X (ξ) is a solutionof this problem then X (ξ−τ) is one also for all τ ∈R. Hen
e uniqueness does not holdfor (2.21)(2.22).Proposition 2.7. Let us suppose that the data satisfy 
onditions (2.24). A solutionof problem (2.21)(2.22) exists if and only if one of the two following 
onditions holds:(i) σ< 0 and 0< |d+|< |d−|,(ii) σ> 0 and 0< |d−|< |d+|.Any solution X is monotone, positive and X ∈C∞(R).Proof. We denote by ψ the fun
tion de�ned by

ψ(X )=X θ(X )−χ−θ(χ−)=X θ(X )−χ+θ(χ+).As d− 6=d+ and d+d−>0, χ− and χ+ are two distin
t real roots of ψ. Hen
e thereexists a third real root χ0. We have
χ0 +χ−+χ+ =2(σ−2−1) (2.25)so using

σ−2 =
q(e+)−q(e−)

e+−e−
=1+e2++e+e−+e2−we obtain

χ0 =(p(d+)+p(d−))2.Denoting χm =min(χ−,χ+) and χM =max(χ−,χ+) we thus have
0<χm<χM <χ0 . (2.26)Equation (2.21) reads as

X ′ =σ3 (X −χm)(X −χM )(X −χ0)

θ(X )
.



10 Kerr-Debye relaxation sho
k pro�lesWe have
θ(y)=σ4[σ−2−1−y]2and

σ−2−1= e2++e2−+e−e+∈]χM ,χ0[ (2.27)so that θ is positive on [χm,χM ].By the general theory of ODEs, for all y0∈]χm,χM [, this equation has a uniquesolution X ∈C1(R) su
h that X (0)= y0. It remains to study the behaviour of thissolution at in�nity.We remark that as X (ξ)∈]χm,χM [ for all ξ∈R:
sgn(X ′)= sgn(σ).If σ< 0 then

lim
ξ→−∞

X (ξ)=χM , lim
ξ→+∞

X (ξ)=χmTherefore a solution of (2.21)(2.22) exists if 0<χ+<χ− whi
h is equivalent to
either 0<d+<d− ord−<d+<0.With similar 
onsiderations, we prove that if σ> 0 then a solution of (2.21)(2.22)exists if
either 0<d−<d+ ord+<d−<0.Re
ipro
ally, if neither (i) nor (ii) hold, by the general theory of ODEs the desiredsolution does not exist.We are now in position to prove the main result of this se
tion.Theorem 2.8. There exists a Kerr-Debye relaxation sho
k pro�le W ∈C1(R;R3)solution of (2.11)(2.12) with (2.9) if and only if the 
onditions (2.24) are ful�lled andthe su
h de�ned sho
k is Liu-admissible. In that 
ase ea
h 
omponent of the pro�le ismonotone.Proof. Suppose that a sho
k pro�le exists. By proposition 2.6 
onditions (2.24)are satis�ed and X is solution of (2.21) with (2.22). Therefore by proposition 2.7either 
ondition (i) or 
ondition (ii) is satis�ed. In view of propositions 2.3 and 2.4,the sho
k is Liu-admissible.Re
ipro
ally suppose that 
onditions (2.24) are satis�ed and that the sho
k isentropi
. Then either 
ondition (i) or 
ondition (ii) is satis�ed in proposition 2.7 sothat there exists a solution X ∈C∞(R) of (2.21) with (2.22) and X is positive.We take

C1 =−σd−+h− =−σd+ +h+, C2 =−σh−+p(d−)=−σh++p(d+).A straightforward 
omputation gives relations (2.18). We de�ne D and H by (2.23).Then we have
(

D

1+X

)2

=
χ+θ(χ+)

θ(X )
.



D. Aregba-Driollet and B. Hanouzet 11Consequently the last equation of (2.13) is satis�ed. It is easy to verify that so arethe two �rst equations of (2.13).It remains to verify the limits at in�nity:
lim

ξ→+∞

D(ξ)=
(−σ2d+ +p(d+))(1+p(d+)2)

1−σ2(1+p(d+)2)
=d+and similarly

lim
ξ→−∞

D(ξ)=d− .The limits for H are then immediate by the se
ond equation of (2.11).The monotoni
ity of the sho
k pro�les is a dire
t 
onsequen
e of the above 
on-siderations.Let us detail theorem 2.8 for a Liu-admissible sho
k σ, (u+,u−).If σ< 0 and d−>0 then the pro�le exists if d+ ∈]0,d−[, does not exist if d+ ∈
[d∗(d−),0].If σ< 0 and d−<0 then the pro�le exists if d+ ∈]d−,0[, does not exist if d+ ∈
[0,d∗(d−)].If σ> 0 and d− 6=0 then the pro�le always exists, if d− =0 it does not exist.Let us point out that the 
ondition d− 6=0 is also required to apply the results of[23℄ for the weak sho
ks. We note that if d− 6=0 the Shizuta-Kawashima [19℄ 
onditionis satis�ed. This 
ondition is also 
ru
ial to study the stability of relaxation sho
kpro�les, see [14℄ and referen
es therein. In a re
ent paper [7℄ the existen
e of pro�lesfor weak sho
ks under a weaker (Kawashima-like) assumption is proved.Remark 2.9. By (2.17) we have

(1−σ2(1+X ))E=σC1 +C2 6=0.We 
an dire
tly show that E is ne
essarily a solution of the following ODE:
E′ =−

σ

σC1 +C2
E(E−e+)(E−e−)(E+e+ +e−) (2.28)whi
h of 
ourse leads to the same 
on
lusions. This is made possible by the fa
t thathere E is a s
alar quantity. That will not be true in the full ve
tor 3D system.Remark 2.10. If d+ =0 or d− =0 we 
an 
onstru
t dis
ontinuous sho
k pro�les. Inthe 
ase of an entropi
 one-sho
k with d+ =0 and d−∈R the following solution 
anbe written:







D(ξ)=d− if ξ<0, 0 else,
H(ξ)=h− if ξ <0, h+ else,

X (ξ)=χ− if ξ<0, χ− eξ/σ else.A similar solution exists for an entropi
 two-sho
k with d− =0 and d+ ∈R.We 
an prove the following asymptoti
 behavior of the sho
k pro�les.Theorem 2.11. Let W be a sho
k pro�le with (2.12) and (2.9). We de�ne
R+ =

e−+2e+
e−+e+

1

σ

(

1−
e+

e−

)

, R− =
2e−+e+
e−+e+

1

σ

(

1−
e−

e+

)

.

R− is positive, R+ is negative and there exists a positive 
onstant K su
h that
∀ξ∈R |W (ξ)−w+|≤KeξR+ , |W (ξ)−w−|≤KeξR−. (2.29)



12 Kerr-Debye relaxation sho
k pro�lesProof. We take data su
h that 
onditions (2.24) are ful�lled and the su
h de�nedsho
k is entropi
, so that sho
k pro�les exist. By theorem 2.8, a sho
k pro�le isdetermined by a solution X of problem (2.21)(2.22), D and H being given by (2.23)with ad ho
 C1 and C2. Suppose that
|X (ξ)−χ+|≤CeξR+ . (2.30)Then

|D(ξ)−d+|= |σC1 +C2|

∣

∣

∣

∣

1

(1+X )−1−σ2
−

1

(1+χ+)−1−σ2

∣

∣

∣

∣

= |σC1 +C2|
|χ+−X|

(1−σ2(1+χ+))(1−σ2(1+X ))
.By (2.27) we know that

1−σ2(1+X )≥1−σ2(1+χM )>0.Therefore
|D(ξ)−d+|≤

|X −χ+|

θ(χM )
, |H(ξ)−h+|≤ |σ| |D(ξ)−d+|.Finally, it remains to prove inequality (2.30) to obtain the behavior at +∞.Therefore we 
onsider a solution X of problem (2.21)(2.22) su
h that X (0)= y0∈

]χm,χM [. Then X (ξ)∈]χm,χM [. Equation (2.21) reads as
X ′ = f(X )and for all y∈]χm,χM [:

1

f(y)
=

1

f ′(χ−)(y−χ−)
+

1

f ′(χ+)(y−χ+)
+

1

f ′(χ0)(y−χ0)
.We already proved that sgn(f(X ))= sgn(X ′)= sgn(σ).If σ< 0 then χ+<χ− so f ′(χ+)<0 and f ′(χ−)>0.If σ> 0 then χ−<χ+ so f ′(χ+)<0 and f ′(χ−)>0.Hen
e in all 
ases we have f ′(χ+)<0 and f ′(χ−)>0. Moreover by a straighfor-ward 
omputation one �nds

R+ = f ′(χ+), R− = f ′(χ−)whi
h proves that R+<0 and R−>0.To end the proof of the theorem, we remark that the solution of (2.21) satis�esthe following equality:
ξ=ln

∣

∣

∣

∣

X (ξ)−χ−

y0−χ−

∣

∣

∣

∣

1/R−

+ln

∣

∣

∣

∣

X (ξ)−χ+

y0−χ+

∣

∣

∣

∣

1/R+

+ln

∣

∣

∣

∣

X (ξ)−χ0

y0−χ0

∣

∣

∣

∣

1/f ′(χ0)

.This 
an also be written as
e−ξR+ |X (ξ)−χ+|= |y0−χ+|

∣

∣

∣

∣

X (ξ)−χ−

y0−χ−

∣

∣

∣

∣

−R+/R−
∣

∣

∣

∣

X (ξ)−χ0

y0−χ0

∣

∣

∣

∣

−R+/f ′(χ0)from whi
h we dedu
e the �rst inequality in (2.29). The se
ond one is proved similarly.



D. Aregba-Driollet and B. Hanouzet 132.3. Chapman-Enskog expansion In the above paragraph we saw that if aKerr-Debye sho
k pro�le exists then the interval ]d−,d+[ (or ]d+,d−[) 
annot 
ontainzero. As proposed in [5℄ it is 
lassi
al to perform the Chapman-Enskog expansion ofa relaxation system. In that way one obtains a vis
ous approximation of the Kerrsystem. We shall observe that this approximation is degenerate for d=0, so if theasso
iated vis
ous sho
k pro�le exists then the interval ]d−,d+[ (or ]d+,d−[) 
annot
ontain zero.Let us �rst establish the Chapman-Enskog expansion for Kerr-Debye system.Proposition 2.12. The Chapman-Enskog expansion of the system (1.5) leads to thefollowing vis
ous approximation system:
{

∂td
ǫ +∂xh

ǫ =0
∂th

ǫ +∂xp(d
ǫ)= ǫ∂x(B(dǫ)∂xh

ǫ)
(2.31)where the di�usion 
oe�
ient is

B(d)=
2(p(d))2

(1+3(p(d))2)2
. (2.32)Proof. We rewrite the Kerr-Debye system:







∂td+∂xh=0,
∂th+∂x((1+χ)−1d)=0,
∂tχ= 1

ǫG(d,χ)= 1
ǫ

(

(1+χ)−2d2−χ
)

(2.33)Following [5℄ we expand w=(d,h,χ) in the neighborhood of the equilibrium point
(d,h,(p(d))2), we 
hoose

χ=(p(d))2 +ǫm1(d,h)+O(ǫ2).Using (iii) and (i) in (2.33) we �nd
m1(d,h)=

−2p(d)p′(d)

∂χG(d,(p(d))2)
∂xh=

2d

(1+3(p(d))2)2
∂xh.Then we report in (ii) in (2.33) and we obtain the vis
ous approximation (2.31).Let us now seek vis
ous sho
k pro�les of the Chapman-Enskog expansion. Weare looking for solutions of (2.31) under the form

dǫ(x,t)=d(
x−σt

ǫ
), hǫ(x,t)=h(

x−σt

ǫ
) (2.34)su
h that

dǫ(±∞)=d± , hǫ(±∞)=h± . (2.35)If su
h a pro�le exists then d is a regular solution of the ODE
d′ =

1

σB(d)

(

−σ2(d−d±)+p(d)−p(d±)
)

.Denoting e=p(d) we obtain the following result.
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k pro�lesProposition 2.13. If a vis
ous sho
k pro�le of the Chapman-Enskog expansion existsthen the interval ]d−,d+[ (or ]d+,d−[) 
annot 
ontain zero and e=p(d) is a solutionof the ODE
e′ =−

σ

2
(1+3e2)e−2(e−e−)(e−e+)(e+e−+e+). (2.36)We observe that the existen
e 
ondition of a relaxation pro�le is the same as theone of a vis
osity pro�le for (2.31), however in equation (2.28) E=0 is a root, whilein equation (2.36) e=0 is a singularity.We 
an also 
onsider the non degenerate vis
ous approximation:

{

∂td+∂xh= ǫ∂xxd,

∂td+∂xp(d)= ǫ∂xxhand 
onsider a Liu-admissible one-sho
k (so we have 
ondition (E)) with d− > 0,
d+ ∈]d∗(d−),d−[. Then by [12℄ there exists a vis
ous pro�le for this sho
k. Notethat for d+ ∈]d∗(d−),0] Kerr-Debye relaxation pro�les and Chapman-Enskog vis
ouspro�les do no exist.3. Kerr-Debye sho
k pro�les for the full ve
tor 3D Kerr systemIn this part we fo
us our attention on the three spa
e dimensions 
ases. In orderto exhibit the admissible sho
ks of the 3D Kerr system, we have to study �rst theproperties of its 
hara
teristi
 �elds. Then we prove our main result: there exists aKerr-Debye pro�le for a sho
k if and only if it is a Lax 2-sho
k or 5-sho
k.3.1. Chara
teristi
 �elds of Kerr system Let us re
all that Kerr system ishyperboli
 symmetrisable [8℄, [4℄. For the sake of 
ompleteness we a
tually 
al
ulatethe eigenmodes (see also [6℄). It appears that four 
hara
teristi
 �elds are linearlydegenerate while the two others are partially genuinely nonlinear.3.1.1. Eigenmodes System (1.2) is a 6×6 system of 
onservation laws whi
h,denoting u=(D,H), 
an be synthetized as

∂tu+

3
∑

j=1

∂xj
Fj(u)=0We denote Aj(u) the ja
obian matrix of Fj and for all ξ∈R

3, ξ 6=0:
A(u,ξ)=

3
∑

j=1

ξjAj(u).In order to obtain the eigenvalues of the system (1.2), we introdu
e the followingnotation:
∀v∈R

3 Rξ v :=





0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0



 v= ξ×v.With the above notation it is easy to see that for all u=(D,H)∈R
6, ξ∈R

3:
A(u,ξ)=

(

0 −Rξ

RξP
′(D) 0

)

.



D. Aregba-Driollet and B. Hanouzet 15where P is de�ned in (1.4). The matrix P
′(D) is regular for all D∈R

3, we have
P

′(D) = −2(1+ |E|2)−1(1+3|E|2)−1EET +(1+ |E|2)−1I3 ,

P
′(D)−1 = 2EET +(1+ |E|2)I3.As we know that the system is hyperboli
 we are looking for λ∈R and a non zerove
tor r=(X,Y )∈R

3×R
3 su
h that







−λX−RξY =0,

Rξ P
′(D)X−λY =0.

(3.1)One 
an see that λ=0 is a double eigenvalue with the eigenve
tors
(0,ξ)T , (P′(D)−1ξ,0)T .A real λ 6=0 is an eigenvalue if and only if there exists a nonzero ve
tor X ∈R

3 su
hthat
(

λ2I3 +R2
ξ P

′(D)
)

X=0. (3.2)In that 
ase, the Y 
omponent of the eigenve
tor is
Y =λ−1Rξ P

′(D)X. (3.3)Let us �rst 
ompute R2
ξ P

′(D). We have
R2

ξEE
T =(ξ×(ξ×E))ETand

R2
ξ = ξξT −|ξ|2I3so that

R2
ξ P

′(D)=−2(1+ |E|2)−1(1+3|E|2)−1(ξ×(ξ×E))ET + (1+ |E|2)−1(ξξT −|ξ|2I3).We therefore look for λ 6=0 and X su
h that
(

λ2−
|ξ|2

1+ |E|2

)

X−
2ET X

(1+ |E|2)(1+3|E|2)
ξ×(ξ×E)+

ξTX

1+ |E|2
ξ=0. (3.4)We remark that if X is orthogonal to E and to ξ we have the solution

λ2 =
|ξ|2

1+ |E|2
.If ξ×E 6=0 we have the eigenve
tors

(|ξ|2ξ×E,λξ×(ξ×E))T .Another notable ve
tor is X= ξ×(ξ×E). This ve
tor is equal to zero if and only if
ξ×E=0. Let us �rst suppose that it is not the 
ase. Let us take X= ξ×(ξ×E).Then ξT X=0 and

λ2 =
|ξ|2

1+ |E|2
+

2ET X

(1+ |E|2)(1+3|E|2)
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k pro�lesMoreover by using
ET X=ET

(

−E|ξ|2 +(ET ξ)ξ
)

=−|E|2|ξ|2 +(ET ξ)2we obtain
λ2 =

|ξ|2(1+ |E|2)+2(ET ξ)2

(1+ |E|2)(1+3|E|2)and
RξP

′(D)X=−λ2ξ×Eso
Y =−λξ×E.Finally we have six real eigenvalues:

λ1≤λ2<λ3 =λ4 =0<λ5 =−λ2≤λ6 =−λ1 (3.5)where
λ2

1 =
|ξ|2

1+ |E|2
, λ2

2 =
|ξ|2(1+ |E|2)+2(ET ξ)2

(1+ |E|2)(1+3|E|2)
. (3.6)The eigenvalues λ1, λ2, λ5, λ6 are simple ex
ept in the 
ase ξ×E=0. More pre
iselyProperty 3.1. The nonzero eigenvalues are double if and only if ξ×E=0. In that
ase the dimension of the eigenspa
e for λ1 or λ6 is 2.Proof. We have λ1 =λ2 if and only if |E| |ξ|= |ET ξ|, whi
h is equivalent to ξ×E=

0. If ξ×E=0 then the equation (3.4) writes
(

λ2−
|ξ|2

1+ |E|2

)

X+
ξ

1+ |E|2
(ξTX)=0.For all ve
tor X orthogonal to ξ, we �nd an eigenve
tor (X,Y ) to the eigenvalue λ1so the property holds.We sum up the above fa
ts in the following proposition:Proposition 3.2. The 3D Kerr system (1.2) is hyperboli
 diagonalizable. The eigen-values are given by (3.5), (3.6) and the inequalities in (3.5) are stri
t if and only if

ξ×E 6=0.The eigenve
tors to the eigenvalue 0 are
r3(u,ξ)=

(

0
ξ

)

, r4(u,ξ)=

(

P
′(D)−1ξ

0

)

. (3.7)If ξ×E 6=0 the others eigenve
tors are:
ri(u,ξ)=

(

|ξ|2ξ×E
λiξ×(ξ×E)

)

, i=1,6, (3.8)and
ri(u,ξ)=

(

ξ×(ξ×E)
−λiξ×E

)

, i=2,5. (3.9)If ξ×E=0, the others eigenve
tors are:
ri(u,ξ)=

(

|ξ|2Xk

λiξ×Xk

)

, i=1,2,5,6, k=1,2. (3.10)where X1 and X2 are two nonzero independant ve
tors orthogonal to ξ.
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teristi
 �elds properties Clearly the 
hara
teristi
 �eld re-lated to the zero eigenvalue is linearly degenerate. Let us 
onsider the others eigen-values.Proposition 3.3. The 
hara
teristi
 �elds related to the eigenvalues λ su
h that
λ2 = |ξ|2(1+ |E|2)−1 are linearly degenerate.Proof. A 
hara
teristi
 �eld is linearly degenerate if for all ξ 6=0 and for all
u=(D,H): λ′(u,ξ)r(u,ξ)=0. As the eigenvalue only depends on E=P(D), it isenough to verify that

∂(λ2)

∂E
P

′(D)X=0where X is orthogonal to E and to ξ. We have
∂(λ2)

∂E
=−|ξ|2(1+ |E|2)−22ET (3.11)and as X is orthogonal to E

P
′(D)X=(1+ |E|2)−1Xso
λ′(u,ξ)r(u,ξ)=0.Proposition 3.4. Let us take ξ 6=0. The 
hara
teristi
 �elds 2 and 5 are genuinelynonlinear in the dire
tion ξ in the open set

Ω(ξ)={(D,H)∈R
6 ; ξ×D 6=0}that is for all u∈Ω(ξ) and i=2,5

λ′i(u,ξ)ri(u,ξ) 6=0. (3.12)Proof. We note �rst that u∈Ω(ξ) if only if ξ×E 6=0 or also ξ×(ξ×E) 6=0. Alongthis proof we denote
δ=(1+ |E|2)(1+3|E|2), λ2 =λ2

2 =λ2
5.The 
ondition (3.12) is satis�ed if and only if

∂(λ2)

∂E
P

′(D)(ξ×(ξ×E)) 6=0.First we 
ompute ∂(λ2)
∂E .

∂(λ2)

∂E
=2δ−1

(

[|ξ|2−2λ2(2+3|E|2)]ET +2(ET ξ)ξT
)

. (3.13)By using the identity
|ξ|2ET =(ET ξ)ξT −(ξ×(ξ×E))T (3.14)
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k pro�leswe obtain
∂(λ2)

∂E
=2δ−1

(

α(ET ξ)ξT + β (ξ×(ξ×E))T
) (3.15)with

α=3−2λ2|ξ|−2(2+3|E|2), β=−1+2λ2|ξ|−2(2+3|E|2)>1.We use again (3.14) to obtain
P

′(D)(ξ×(ξ×E))= δ−1
(

a(ET ξ)ξ+bξ×(ξ×E)
) (3.16)with

a=
2|ξ×(ξ×E)|2

|ξ|4
>0, b=

|ξ|4 +3(ET ξ)2|ξ|2 + |ξ×(ξ×E)|2

|ξ|4
>0.Consequently we obtain

∂(λ2)

∂E
P

′(D)(ξ×(ξ×E))=2δ−2
(

aα(ET ξ)2|ξ|2 +bβ|ξ×(ξ×E)|2
)whi
h writes as

∂(λ2)

∂E
P

′(D)(ξ×(ξ×E))=
2|ξ×(ξ×E)|2

δ2|ξ|4
[

(2α+3β)|ξ|2(ET ξ)2 +β(|ξ×(ξ×E)|2 + |ξ|4)
]whi
h is stri
tly positive be
ause

2α+3β=3+2λ2 2+3|E|2

|ξ|2
>0.3.2. Admissible plane dis
ontinuities In this paragraph we study Kerr pla-nar sho
ks and planar 
onta
t dis
ontinuities. These are travelling waves propagatingin a �xed dire
tion ω, |ω|=1, with velo
ity σ:

u(x,t)=u(ω ·x−σt), (3.17)whi
h are weak pie
ewise 
onstant solutions of Kerr system (1.2) su
h that
u(ω ·x−σt)=

{

u− if ω ·x−σt< 0,
u+ if ω ·x−σt> 0,

(3.18)where u− =(D−,H−) and u+ =(D+,H+) are two 
onstant ve
tors of R
6.3.2.1. Rankine-Hugoniot 
onditions As usually the jump of X is denoted

[X ]=X+−X− .The Rankine-Hugoniot 
onditions for (1.2) write






σ[D]=−ω× [H ],

σ[H ]=ω× [E]
(3.19)



D. Aregba-Driollet and B. Hanouzet 19where [E]=E+−E− =P(D+)−P(D−).The divergen
e free 
onditions write
ωT [D]=ωT [H ]=0. (3.20)If σ 6=0, this 
ondition is ful�lled as soon as (3.19) is satis�ed.If the 
hara
teristi
 �eld for an eigenvalue λ=λ(u,ω) is linearly degenerate, 
on-ta
t dis
ontinuities exist, that is plane dis
ontinuities satisfying (3.19) and su
h that

σ(u+,u−)=λ(u+)=λ(u−). (3.21)It is the 
ase of λ=0 for whi
h we have stationary 
onta
t dis
ontinuities (σ=0):Proposition 3.5. Stationary 
onta
t dis
ontinuities are 
hara
terized by
{

ω× [H ]=0,
ω× [E]=0.The only divergen
e free ones are 
onstant.Let us now study the situations where σ 6=0. In what follows we 
onsider nontrivial dis
ontinuities satisfying (3.19) : [u] 6=0, whi
h is equivalent to
[D] 6=0. (3.22)We �rst establish a preliminary result:Lemma 3.6. Let D+ and D− be two distin
t ve
tors of R

3. Then
0<

[D]T [E]

|[D]|2
< 1 . (3.23)Proof. The appli
ation P being one-to-one, the jump of D is zero if and only ifthe one of E is.

[D]T [E]={(1+ |E+|
2)E+−(1+ |E−|

2)E−}
T (E+−E−)

≥|E+−E−|
2 +

1

2
(|E+|

2−|E−|
2)2>0.Furthermore

|[D]|2− [D]T [E]≥
1

2

(

|E+|
2−|E−|

2
)2

+
∣

∣|E+|
2E+−|E−|

2E−

∣

∣

2
.Moreover |E+|

2E+ = |E−|
2E− if and only if E+ =E− and we obtain the result.Proposition 3.7. Consider u− 6=u+ and σ 6=0. The Rankine-Hugoniot 
onditions(3.19) are satis�ed if and only if the following properties hold.(i) The �eld D is divergen
e free, ie

ωT [D]=0, (3.24)(ii) The jump of H is given by
[H ]=σω× [D]. (3.25)(iii) The three ve
tors ω, [D] and [E] are 
oplanar.(iv) The propagation speed σ satis�es
σ2 =

[D]T [E]

|[D]|2
. (3.26)
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k pro�lesHen
e by lemma 3.6, σ2∈]0,1[.Proof. Ne
essary 
onditions. It is obvious that ωT [D]=ωT [H ]=0 and
[D]T [H ]=0, [E]T [H ]=0. (3.27)We obtain (3.25) by using (3.19-1) and (3.20) in

[H ]= ([H ]T ω)ω−ω×(ω× [H ]).By (3.25) and (3.27) we have
[E]T (ω× [D])=0whi
h means that ω, [D] and [E] are 
oplanar. By (3.19) we have

σ2[D]=−ω×(ω× [E])hen
e
σ2[D]= [E]−(ωT [E])ω.By s
alar produ
t of the previous expression with [D] one �nds (3.26).Su�
ient 
onditions. On the one hand
σ[D]=−σω×(ω× [D])be
ause ωT [D]=0. We dedu
e (3.19-1). On the other hand, by (iii), there exist tworeal numbers α and β su
h that

[E]=α[D]+βωhen
e
[E]T [D]=α|[D]|2, ωT [E]=β.By (3.26) α=σ2 and so

[E]=σ2[D]+([E]T ω)ωwhi
h implies
σ[H ]=σ2ω× [D]=ω× [E]hen
e (3.19-2) and the result.Remark 3.8. It is easy to verify that

ωT ([E]× [D])=ωT (E+×E−)(|E+|
2−|E−|

2)so ω, [D] and [E] are 
oplanar if and only if
ωT (E+×E−)(|E+|

2−|E−|
2)=0. (3.28)The �elds related to the eigenvalues λ su
h that λ2 =(1+ |E|2)−1 are linearly degen-erate. The asso
iated 
onta
t dis
ontinuities are 
hara
terized as follows:
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ontinuity σ, u+, u− is a 
onta
t dis
ontinuity asso
iated toan eigenvalue λ su
h that λ2 =(1+ |E|2)−1 if and only if
{

|E+|= |E−|
σ2 =(1+ |E+|

2)−1 =(1+ |E−|
2)−1 (3.29)and

{

ωT [E]=0
[H ]=σω× [D].

(3.30)Moreover the only dis
ontinuities satisfying Rankine-Hugoniot 
onditions (3.19) andsu
h that |E−|= |E+| are the above 
onta
t dis
ontinuities.Proof. Condition (3.29) is equivalent to 
ondition (3.21), so the �rst part is a
onsequen
e of proposition 3.7.Finally if a dis
ontinuity satis�es (3.19) and |E−|= |E+| then the expression (3.26)implies (3.29) and therefore it is a 
onta
t dis
ontinuity asso
iated to an eigenvalue
λ su
h that λ2 =(1+ |E|2)−1.At this point, it remains to study the dis
ontinuities whi
h are neither stationnarynor 
onta
t dis
ontinuities related to an eigenvalue λ su
h that λ2 =(1+ |E|2)−1, thatis all those for whi
h the jump of |E| is not zero. By (3.28) su
h dis
ontinuities aresu
h that E+, E− and ω are 
oplanar (hen
e also are D+, D− and ω). Modifyingonly the property (iii) in proposition 3.7 we obtain the following 
hara
terization:Proposition 3.10. The non trivial dis
ontinuities satisfying (3.19) with a non zerojump of |E| (|E+| 6= |E−|) are the σ, u+, u−, (D+ 6=D−) su
h that formulae (3.24),(3.25), (3.26) hold and the three ve
tors ω, D+, D− are 
oplanar ie

ωT (D+×D−) = 0. (3.31)In the following the dis
ontinuities satisfying the previous 
onditions are 
alledsho
ks.Let us re
all that for a �xed left state u− the Hugoniot set of u−, denoted H(u−),is the set of the right states u+ su
h that there exists a sho
k 
onne
ting u− and u+.We denote then σ=σ(u+,u−) the sho
k velo
ity. One 
an give a similar de�nition by�xing the right state.In proposition 3.10 the 
oplanarity 
ondition is trivial if D−×ω=0 orD+×ω=0.Two 
ases are under 
onsideration.Proposition 3.11. Case D−×ω 6=0.Let u− =(D−,H−) be a �xed left state su
h that D−×ω 6=0. Let ζ be a unitaryve
tor orthogonal to ω in the plane de�ned by (ω,D−) .The set H(u−) of the right states u+ 
onne
ted to u− by a sho
k is the union oftwo 
urves H±(u−) parametrized by d∈R and 
onstru
ted as follows: H+(u−) (resp
H−(u−)) is the set of (D+,H+)∈R

6 su
h that
D+ =(ωT D−)ω+ dζ, d∈R,

σ satis�es (3.26), σ> 0 (resp σ< 0) and H+ satis�es (3.25).One 
an des
ribe similarly the set of left states 
onne
ted by a sho
k to u+ su
hthat D+×ω 6=0.The proof is immediate. Let us remark that if
D− =(ωT D−)ω+d− ζ
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k pro�lesthen [D]=0 if and only if d+ =d−, and |E+|= |E−| if and only if d+ =±d−.Proposition 3.12. Case D−×ω=0.Let u− =(D−,H−) be a �xed left state su
h that D−×ω=0. Then the set H(u−)of the right states 
onne
ted to u− by a sho
k is the set of u+ =(D+,H+) satisfying(3.24) and su
h that
σ2 =λ2

1(u+)= (1+ |E+|
2)−1 (3.32)and H+ satis�es (3.25).One 
an similarly des
ribe the set of left states 
onne
ted by a sho
k to u+ su
hthat D+×ω=0.Proof. We have D+ =(ωT D−)ω+d+ζ (d+ 6=0) where ζ is an arbitrary unitaryve
tor orthogonal to ω, whi
h gives (3.32).Remark 3.13. As d+ 6=0 we have

|D+|> |D−|so
|E+|> |E−|and

σ2 =λ2
1(u+)<λ2

1(u−). (3.33)We have a semi 
onta
t dis
ontinuity: the propagation speed of a 
onta
t dis
ontinuity
oin
ide with both the eigenvalues asso
iated to the right state and the left state, see(3.29). Here we have only the equality with the eigenvalue related to the right state.3.2.2. Admissible sho
ks We fo
us our attention on the admissibility ofsho
ks in the sense of Liu or in the sense of Lax.Definition 3.14. Let u− be a left state whi
h the Hugoniot set is a union of 
urves,and 
onsider u+∈H(u−). The dis
ontinuity is Liu-admissible if
(E) σ(u+,u−)≤σ(u,u−), ∀u∈H(u−), u between u− and u+ .Definition 3.15. A dis
ontinuity σ, u−, u+ is a Lax k-sho
k if

{

λk(u+)<σ<λk+1(u+)
λk−1(u−)<σ<λk(u−).

(3.34)Liu's 
ondition may be applied only in the presen
e of a sho
k 
urve. Here su
h a
urve exists only if D−×ω 6=0.Proposition 3.16. Let u− =(D−,H−) be a �xed left state su
h that D−×ω=0.Consider u+∈H(u−). If σ< 0 the sho
k is not a Lax sho
k. If σ> 0 the sho
k satis�esthe 5-sho
k 
onditions with large inequalities:
{

λ5(u+)<σ=λ6(u+)
λ4(u−)<σ<λ5(u−).Proof. For σ< 0, a one-sho
k 
annot hold be
ause σ=λ1(u+)>λ1(u−). A 2-sho
k
annot hold be
ause λ2(u+)>σ.
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ause D+×ω 6=0. Moreover λ4 =0 and
λ5(u−)=λ6(u−) hen
e following (3.33) we obtain the desired inequalities.Remark 3.17. One obtains a similar result with σ< 0 by 
onsidering the Hugoniotset of a �xed right state su
h thatD+×ω=0.If the sho
k satis�es the 
onditions of proposition 3.11 then we may study Liu's
ondition. With the same notations as in this proposition, let u− be su
h that D−×
ω 6=0:

D− =d1ω+ d− ζ , d1 =ωTD− , d− 6=0.Consider u∈H(u−):
D=d1ω+ dζ . (3.35)In order to 
hara
terize the admissibility 
onditions (E) or (3.34) we �rst express σas a fun
tion of parameter d in (3.35). We have

P(D)=E= e1ω+ eζwith
e=

d

1+ |E|2
=

d

1+p(
√

d2
1 +d2)2

:= f(d).As [D]= [d]ζ, σ2 =
[e]

[d]
and hen
e

σ2(u,u−)=
f(d)−f(d−)

d−d−
. (3.36)Let us remark that if d1 =0 we have p(d)= f(d) so (3.36) redu
es to (2.6). In fa
twe show in the following lemma that the fun
tions f and p have the same qualitativeproperties.Lemma 3.18. The fun
tion f owns the following properties:(i) f(0)=0, f ′(0)= (1+e21)

−1, f ′′(0)=0,(ii) f is an odd in
reasing fun
tion,(iii)f is stri
tly 
onvex on ]−∞,0], stri
tly 
on
ave on [0,+∞[.Proof. We have
f ′(d)=

1

1+ |E|2
−

2ed

(1+3|E|2)(1+ |E|2)2
=λ2

2(D,ω). (3.37)and using (3.11)
f ′′(d)=−

2(e1ω
T +eζT )

(1+ |E|2)2

[

−
2ee1

(1+ |E|2)(1+3|E|2)
ω+

1+3e21+e2

(1+ |E|2)(1+3|E|2)
ζ

]

=−
2e

(1+ |E|2)2(1+3|E|2)
.As a 
onsequen
e we have the following lemma.Lemma 3.19. For all d− 6=0 there exists an unique d∗(d−) 6=d− su
h that

f ′(d∗)=
f(d∗)−f(d−)

d∗−d−
.
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k pro�lesMoreover d∗(d−)d−<0 and |d∗(d−)|< |d−|.We now give the 
hara
terization of Liu-admissible sho
ks:Proposition 3.20. The Liu-admissible sho
ks are 2-sho
ks or 5-sho
ks.For the 2-sho
ks (σ< 0), 
onsider u− with D−×ω 6=0 and u+∈H−(u−). The dis
on-tinuity is Liu-admissible if and only if d+ belongs to the interval with extremities d−,
d∗(d−).For the 5-sho
ks (σ> 0), 
onsider u− with D−×ω 6=0 and u+ ∈H+(u−). The dis
on-tinuity u−, u+, σ is Liu-admissible if and only if |d+|> |d−| and d+d−>0.Proof. Using formulas (3.36) and (3.37) we observe that

lim
u→u−

σ2(u,u−)=λ2
2(D−,ω)=λ2

5(D−,ω)and
2σσ′(d)=

1

d−d−

(

f ′(d)−
f(d)−f(d−)

d−d−

)

.Let us remark that these sho
k 
onditions are analogous to the ones found in part2 for the 2×2 
ase.We 
on
lude this se
tion by the following proposition.Proposition 3.21. The Lax-admissible sho
ks are 2-sho
ks or 5-sho
ks.For the 2-sho
ks (σ< 0), 
onsider u− with D−×ω 6=0 and u+∈H−(u−). The dis
on-tinuity is Lax-admissible if and only if |d+|< |d−| and d+d−>0.For the 5-sho
ks (σ> 0), 
onsider u− with D−×ω 6=0 and u+ ∈H+(u−). The dis
on-tinuity u−, u+, σ is Lax-admissible if and only if |d+|> |d−| and d+d−>0.Proof. We prove the 
ase σ< 0 only, the other one is similar. For a Lax-admissiblesho
k we need the 
ondition
λ2(u+)<λ2(u−)(<0).By (3.37) it is equivalent to

f ′(d+)>f ′(d−)so |d+|< |d−|. The 
ondition λ1(u−)<σ<λ3(u+) writes
1

1+ |E−|2
>

d+(1+ |E−|
2)−d−(1+ |E+|

2)

(d+−d−)(1+ |E−|2)(1+ |E+|2)
. (3.38)If d−<0, d+ ∈]d−,−d−[ and the above inequality is equivalent to

d+(|E+|
2−|E−|

2)>0.Moreover |E+|
2< |E−|

2 be
ause p is an in
reasing fun
tion and |d+|< |d−|. So theLax 
ondition is satis�ed if d+<0 only.If d−>0, d+ ∈]−d−,d−[ so (3.38) writes
d+(|E+|

2−|E−|
2)<0,So the Lax 
ondition is satis�ed if d+>0 only.Re
ipro
ally let us suppose that |d+|< |d−| and d−d+>0. The 
ondition (3.34)follows from (3.36).Remark 3.22. The Lax sho
ks are the Liu sho
ks su
h that d+d−>0, for the 5-sho
ks Lax and Liu sho
ks 
oin
ide.
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k pro�les In this part, we 
onsider a plane Kerr dis
ontinuity whi
his not a 
onta
t dis
ontinuity, in parti
ular σ 6=0. By proposition 3.9 we suppose that
|E+| 6= |E−|. (3.39)By proposition 3.10 we have (3.24), D+, D−, E+, E− et ω are 
oplanar, σ satis�es(3.26) and H satis�es (3.25).Our goal is to 
onstru
t a Kerr-Debye relaxation sho
k pro�le. We therefore lookfor a smooth fun
tion W su
h that

(D,H,X )(x,t)=W

(

1

ǫ
(x.ω−σt)

)

=W (ξ) (3.40)is a solution of (1.1) and satis�es
W (±∞)= (D±,H±,χ±) (3.41)where (D±,χ±) is in the equilibrium manifold

{(D,χ); (1+χ)−2|D|2−χ=0},so that
χ± = |E±|

2 (3.42)and by (3.39)
χ+ 6=χ− . (3.43)Hen
e the pro�le we look for is a smooth solution of the ordinary di�erential system







(−σD−ω×H)′ =0
(−σH+ω×(1+X )−1D)′ =0
−σX ′ =(1+X )−2|D|2−X ,

(3.44)de�ned on R and satisfying (3.41). Let us remark that as σ 6=0, those pro�les aredivergen
e free, whi
h reads as
ωT D′ =ωT H ′ =0. (3.45)Proposition 3.23. If there exists a sho
k pro�le then the solution 
omponent X (ξ)is a solution of the ordinary di�erential equation

σX ′ = X −
|ωT D±|

2

(1+X )2
−
θ(χ±)(1+χ±)−2|ω×(ω×D±)|2

θ(X )
(3.46)where θ(X )= (T (X ))2 =(σ2(1+X )−1)2 as long as X 6=−1 and X 6= 1−σ2

σ2 .Proof. Eliminating H between (3.44-1) and (3.44-2) we have
(σ2D+(1+X )−1ω×(ω×D))′ =0.Hen
e

σ2D+(1+X )−1ω×(ω×D)=σ2D±+(1+χ±)−1ω×(ω×D±), (3.47)
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k pro�lesthe 
ompatibility between right and left values being insured by Rankine-Hugoniot
onditions and by (3.42). On another hand, using the fa
t that D=(ωT D)ω−ω×
(ω×D) along with (3.45) and (3.47) we have

σ2D+(1+X )−1ω×(ω×D)=σ2(ωTD±)ω−T (χ±)(1+χ±)−1ω×(ω×D±).Therefore
θ(X )(1+X )−2|ω×(ω×D)|2 = θ(χ±)(1+χ±)−2|ω×(ω×D±)|2.It follows that as long as X 6=−1 and X 6= 1−σ2

σ2

(1+X )−2|D|2 =
|ωT D±|

2

(1+X )2
+
θ(X±)(1+χ±)−2|ω×(ω×D±)|2

θ(X )and (3.46) follows by (3.44-3).Let us now study the right hand side of (3.46), whi
h we denote ψ. If the pro�leexists then there exists a smooth solution of (3.46) with X (±∞)=χ± , χ+ and χ−must be two 
onse
utive zeros of ψ and ψ must keep a 
onstant sign between thosetwo values. Therefore ψ is a monotone non 
onstant fun
tion on this interval, whi
himplies that
χ+ 6=χ− .This is true by (3.39), due to the fa
t that we do not 
onsider 
onta
t dis
ontinuities.The fun
tion ψ writes

ψ(X )=X −ϕ(X ), ϕ(X )=
a

(1+X )2
+

b

θ(X )
(3.48)with

a= |ωTD±|
2, b= θ(χ±)(1+χ±)−2|ω×(ω×D±)|2.These two 
oe�
ients are non negative. In (3.48) we 
annot have b=0 and a>0be
ause otherwise

ψ(X )=X −
a

(1+X )2has only one zero. As a 
onsequen
e we have
{

D−×ω 6=0,
D+×ω 6=0.

(3.49)The only zero of T (X ) is χ= 1−σ2

σ2 and by lemma 3.6
χ>0. (3.50)Furthermore let us remark that

T (χ+) =
1

1+χ−

(χ−−χ+)
DT

− (D+−D−)

|D+−D−|2
,

T (χ−) =
1

1+χ+
(χ−−χ+)

DT
+ (D+−D−)

|D+−D−|2
.

(3.51)
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-1.5 -1 -0.5  0  0.5  1  1.5  2Fig. 3.1. Representation of the fun
tion ϕ in (3.48). Left: a=0 (χ− =1.74, χ+ =0.18, χ=
1.36). Right: a 6=0 (χ− =1.74, χ+ =0.23, χ=1.38).If b=0 and (3.49) holds, then θ(χ±)=0. If θ(χ+)=0, then

DT
− (D+−D−)=0and so D−×ω=0, whi
h is in 
ontradi
tion with (3.49-1). The same holds with

θ(χ−)=0. Consequently
θ(χ−) 6=0, θ(χ+) 6=0 (3.52)whi
h is also equivalent to
χ− 6=χ, χ+ 6=χ. (3.53)As a 
onsequen
e ψ(χ±) is well de�ned and we obtain
ψ(χ−)=ψ(χ+)=0. (3.54)As b>0, χ is a singularity for ψ. If a=0 then the fun
tion ϕ is 
onvex on ]−∞,χ[ andon ]χ,+∞[, ϕ(±∞)=0, ϕ(χ±0)=+∞, see Fig. 3.1 (left). If a>0, the fun
tion ϕ is
onvex on the intervals ]−∞,−1[, ]−1,χ[ and ]χ,+∞[, ϕ(±∞)=0, ϕ(χ±0)=+∞,and ϕ(χ±0)=+∞, see Fig. 3.1 (right).In both 
ases, if the pro�le exists, the zeros χ− and χ+ of ψ are ne
essarily in theinterval ]0,χ[, whi
h we may 
hara
terize by

T (χ+)<0, and T (χ−)<0or, using (3.51), by






(χ−−χ+)DT
− (D+−D−)<0,

(χ−−χ+)DT
+ (D+−D−)<0.

(3.55)Let us denote χm =min(χ−,χ+), χM =max(χ−,χ+). Then, [χm,χM ]⊂]0,χ[ and ψ ispositive on ]χm,χM [, so σ> 0 implies χ− =χm and χ+ =χM , σ< 0 implies χ− =χMand χ+ =χm. In order to expli
it 
ondition (3.55) we use the notations of proposition3.11.
{

D+ =d1ω+ d+ ζ,

D− =d1ω+ d− ζ.
(3.56)
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k pro�leswith d+ 6=d− and, by (3.49) d+ 6=0 and d− 6=0. Then (3.55) reads as
{

d− (χ+−χ−)(d+−d−)>0,
d+ (χ+−χ−)(d+−d−)>0

(3.57)whi
h impose that
d−d+ >0. (3.58)Moreover χ+ =(p(

√

d2
1 +d2

±))2 so that χ−<χ+ if and only if d2
−<d

2
+.If d−>0 and d+>0 then χ−<χ+ if and only if 0<d−<d+, and so we have(3.57).If d−<0 and d+<0 then χ−<χ+ if and only if d+<d−<0, and so we have(3.57) again.As a 
on
lusion, χ− and χ+ belong to the interval ]0,χ[ if and only if inequality(3.58) holds in (3.56).If σ> 0 it is a 5-sho
k, X is an in
reasing fun
tion from χ− to χ+, so |d−|< |d+|and d+d−>0 so the sho
k is admissible in the sense of Lax (and Liu).If σ< 0 it is a 2-sho
k, X is a de
reasing fun
tion from χ− to χ+, so |d−|> |d+|and a

ording to proposition 3.21 
ondition (3.58) impose that the sho
k is admissiblein the sense of Lax.Re
ipro
ally, let us 
onsider a sho
k as de�ned in proposition 3.10 and supposethat 
ondition (3.58) is satis�ed (so we have also (3.49)). Then χ− and χ+ are in theinterval ]0,χ[ and ψ is positive on ]χm,χM [.If σ> 0, χ−<χ+ there exists a solution X of (3.46) with X (±∞)=χ± and X isan in
reasing fun
tion.If σ< 0, χ+<χ− there exists a solution X of (3.46) with X (±∞)=χ± and X isa de
reasing fun
tion.We 
ompute D by using the fa
t that

D=(ωTD)ω−ω×(ω×D), ωT D=ωT D±and
ω×(ω×D)=T (X )−1(1+X )T (χ±)(1+χ±)−1ω×(ω×D±)and the expression of H is obtained by using (3.44-2).Theorem 3.24. Consider a sho
k as de�ned in proposition 3.10. There exists aKerr-Debye pro�le for it if and only if it is a Lax 2-sho
k or a Lax 5-sho
k.3.4. Revisited one-dimensional 
ases The plane dis
ontinuities of Kerrsystem (1.2) are weak solutions of a 6×6 one-dimensional system. Without loss ofgenerality we 
an assume that ω=(1,0,0) and then if we denote x=x1 this systemwrites































∂tD1 =0
∂tD2 +∂xH3 =0
∂tD3−∂xH2 =0
∂tH1 =0
∂tH2−∂xP3(D)=0
∂tH3 +∂xP2(D)=0

(3.59)



D. Aregba-Driollet and B. Hanouzet 29The divergen
e free 
onditions write
∂xD1 =0, ∂xH1 =0 (3.60)so that D1 and H1 are 
onstant. Let us look for dis
ontinuities su
h that

D− =(0,d− 6=0,0), H− =(H1,0,h−)
D+ =(0,d+,D3,+), H+ =(H1,H2,+,h+).

(3.61)A 
onta
t dis
ontinuity (for the 1 or 6 
hara
teristi
 �elds) satis�es 
onditions (3.29)and (3.30), so we have
d2
+ +D2

3,+ =d2
− .If moreover D3,+ =0, then H2,+ =0 and (d,h)= (D2,H3) is a weak solution of the

2×2, one dimensional system (1.6). In this 
ase d+ =−d− and this weak solution isnot a Liu admissible solution of (1.6).If a 
onta
t dis
ontinuity does not hold then d2
+ +D2

3,+ 6=d2
− and by (3.31) D3,+ =

0, hen
e by (3.59)H2,+ =0. Su
h a weak solution is ne
essarily a 2-sho
k or a 5-sho
k,the 
ondition D−×ω 6=0 reads as d− 6=0, propositions 3.20, 3.21 dire
tly apply. Asbefore, (d,h)= (D2,H3) is a weak solution of the 2×2 one-dimensional system (1.6).This weak solution is a 1-Liu sho
k (resp 2- Liu sho
k) of system (1.6) if and only ifit is a 2-Liu sho
k (resp 5-Liu sho
k) of system (3.59).Let us remark that for the 2×2 system (1.6), Liu and Lax admissibility of sho
k
oin
ide but this is not the 
ase for the 6×6 system (3.59) where the Lax 
onditionmust be more restri
tive, 
f remark 10. As a 
on
lusion we 
an see that for the system(3.59) the Lax-admissibility of a sho
k is 
hara
terized by the existen
e of a relatedKerr-Debye relaxation pro�le. REFERENCES[1℄ D. Aregba-Driollet and C. Berthon. Numeri
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