Kerr-Debye Relaxation Shock Profiles for Kerr Equations

Denise Aregba-Driollet, Bernard Hanouzet

To cite this version:

Denise Aregba-Driollet, Bernard Hanouzet. Kerr-Debye Relaxation Shock Profiles for Kerr Equations. Communications in Mathematical Sciences, 2011, 9 (1), pp.1-31. hal-00959543

HAL Id: hal-00959543

https://hal.science/hal-00959543

Submitted on 14 Mar 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

KERR-DEBYE RELAXATION SHOCK PROFILES FOR KERR EQUATIONS

DENISE AREGBA-DRIOLLET * AND BERNARD HANOUZET \dagger

Abstract

The electromagnetic wave propagation in a nonlinear medium can be described by a Kerr model in the case of an instantaneous response of the material, or by a Kerr-Debye model if the material exhibits a finite response time. Both models are quasilinear hyperbolic, and Kerr-Debye model is a physical relaxation approximation of Kerr model. In this paper we characterize the shocks in the Kerr model for which there exists a Kerr-Debye profile. First we consider 1D models for which explicit calculations are performed. Then we determine the plane discontinuities of the full vector 3D Kerr system and their admissibility in the sense of Liu and in the sense of Lax. At last we characterize the large amplitude Kerr shocks giving rise to the existence of Kerr-Debye relaxation profiles.

Key words. Nonlinear hyperbolic problems, relaxation, shock profiles, Kerr-Debye model.
AMS subject classifications. 35L67,35L65, 35Q60.

1. Introduction

In some contexts the propagation of electromagnetic waves in nonlinear media can be modelized by the so-called Kerr-Debye model, which writes as a quasilinear hyperbolic system with relaxation source-terms depending on the response time of the material. Such hyperbolic relaxation problems have been investigated for a long time in the mathematical litterature, with a particular emphasis on fluid mechanics, see [16] for a review. In an important article ([5]), Chen, Levermore and Liu establish a theoritical framework linking the properties of a relaxation system and its equilibrium model. The Kerr-Debye model under consideration enters this general formalism.

To derive the models, one writes the tridimensional Maxwell's equations

$$
\left\{\begin{array}{l}
\partial_{t} D-\operatorname{curl} H=0 \\
\partial_{t} B+\operatorname{curl} E=0 \\
\operatorname{div} D=\operatorname{div} B=0
\end{array}\right.
$$

with the constitutive relations

$$
\left\{\begin{array}{l}
B=\mu_{0} H \\
D=\epsilon_{0} E+P
\end{array}\right.
$$

where P is the nonlinear polarization and μ_{0}, ϵ_{0} are the free space permeability and permittivity.

In nonlinear optics, if the medium exhibits an instantaneous response it is classical to introduce a Kerr model [18]

$$
P=P_{K}=\epsilon_{0} \epsilon_{r}|E|^{2} E
$$

If the medium exhibits a finite response time $\tau>0$ one should use the Kerr-Debye model for which

$$
P=P_{K D}=\epsilon_{0} \chi E, \partial_{t} \chi+\frac{1}{\tau} \chi=\frac{1}{\tau} \epsilon_{r}|E|^{2} .
$$

[^0]See for example [24] for further details.
The Kerr-Debye model is a relaxation approximation of the Kerr model and τ is the relaxation parameter. Formally when τ tends to $0, \chi$ converges to $\epsilon_{r}|E|^{2}$ and $P_{K D}$ converges to P_{K}. More precisely, as already observed in [8], Kerr system is the reduced system for the Kerr-Debye one in the sense of [5].

The convergence of smooth solutions of Kerr-Debye system towards a smooth solution of Kerr system when τ tends to zero is now well understood. For the initial value problem, as the stability conditions of [22] are satisfied, the result is obtained in [8]. For the more physically realistic situation of impedance boundary conditions, in particular the ingoing wave, the result is proved in [4].

The convergence towards a weak solution of Kerr system is far to be clear, even in the one-dimensional setting. Only a few partial results are available in the litterature for similar problems, and those results do not apply here, see comments and references following (1.5), (1.6). As a first step into the comprehension of the involved phenomena, we shall construct Kerr-Debye profiles for Kerr shocks. These are travelling waves, smooth solutions of Kerr-Debye equations which converge to a weak (discontinuous) solution of Kerr system.

In the following we consider non-dimensionalized models and as usual for relaxation equations we denote ϵ the response time τ. We therefore write the Kerr-Debye equations as:

$$
\left\{\begin{array}{l}
\partial_{t} D_{\epsilon}-\operatorname{curl} H_{\epsilon}=0, \tag{1.1}\\
\partial_{t} H_{\epsilon}+\operatorname{curl} E_{\epsilon}=0, \quad D_{\epsilon}=\left(1+\chi_{\epsilon}\right) E_{\epsilon} \\
\partial_{t} \chi_{\epsilon}=\frac{1}{\epsilon}\left(\left|E_{\epsilon}\right|^{2}-\chi_{\epsilon}\right)
\end{array}\right.
$$

with

$$
\operatorname{div} D_{\epsilon}=\operatorname{div} B_{\epsilon}=0
$$

Let us note that if the initial data are divergence free, then so are $\left(D_{\epsilon}, H_{\epsilon}\right)$. Moreover if χ_{ϵ} is initially positive then so is χ_{ϵ} for all positive times.

Once non-dimensionalized, the relaxed Kerr system writes

$$
\left\{\begin{array}{l}
\partial_{t} D-\operatorname{curl} H=0, \tag{1.2}\\
\partial_{t} H+\operatorname{curl}(\mathbf{P}(D))=0
\end{array}\right.
$$

where \mathbf{P} is the reciprocal function of \mathbf{D} :

$$
\mathbf{D}(E)=\left(1+|E|^{2}\right) E
$$

Denoting

$$
\begin{equation*}
q(e)=e+e^{3}, \quad e \in \mathbb{R}, \quad p=q^{-1} \tag{1.3}
\end{equation*}
$$

we have

$$
\begin{equation*}
E=\mathbf{P}(D)=\left(1+p(|D|)^{2}\right)^{-1} D \tag{1.4}
\end{equation*}
$$

The equilibrium manifold for Kerr-Debye model that is

$$
\mathcal{V}=\left\{(D, H, \chi) ;(1+\chi)^{-2}|D|^{2}-\chi=0\right\}
$$

can be also defined as

$$
\mathcal{V}=\left\{(D, H, \chi) ; \chi=(p(|D|))^{2}=|E|^{2}\right\}
$$

As proposed in [3] we also introduce the one dimensional models satisfied by solutions $D(x, t)=(0, d(x, t), 0), H(x, t)=(0,0, h(x, t))$ and $x=x_{1} \in \mathbb{R}$. In that framework the solutions of Kerr-Debye model (1.1) satisfy the following system:

$$
\left\{\begin{array}{l}
\partial_{t} d_{\epsilon}+\partial_{x} h_{\epsilon}=0 \tag{1.5}\\
\partial_{t} h_{\epsilon}+\partial_{x}\left(\left(1+\chi_{\epsilon}\right)^{-1} d_{\epsilon}\right)=0 \\
\partial_{t} \chi_{\epsilon}=\frac{1}{\epsilon}\left(\left(1+\chi_{\epsilon}\right)^{-2} d_{\epsilon}^{2}-\chi_{\epsilon}\right)
\end{array}\right.
$$

while the solutions of Kerr model (1.2) satisfy the following one:

$$
\begin{cases}\partial_{t} d+\partial_{x} h & =0 \tag{1.6}\\ \partial_{t} d+\partial_{x} p(d) & =0\end{cases}
$$

It turns out that the 1D Kerr system (1.6) is a so-called p-system. As $p^{\prime}>0$ it is strictly hyperbolic but the properties of the function p differ from the ones which appear in the general framework of gas dynamics or viscoelasticity. For the last example, some results concerning the convergence of Suliciu relaxation approximations towards weak solutions of the p-system are obtained in [20] (see also [9], [10]). For Kerr-Debye relaxation approximations, the convergence towards a weak solution of (1.6) is an open problem.

Let us consider a planar discontinuity for the Kerr system (1.2) that is a weak solution $u(x, t)=(D, H)(x, t)$ such that

$$
u(x, t)=\left\{\begin{array}{l}
u_{-} \text {if } x \cdot \omega-\sigma t<0 \\
u_{+} \text {if } x \cdot \omega-\sigma t>0
\end{array}\right.
$$

where $u_{ \pm}, \sigma, \omega(|\omega|=1)$ are given and satisfy the Rankine Hugoniot conditions (see (3.19) part 3). A Kerr-Debye profile of this discontinuity is a smooth solution

$$
w_{\epsilon}(x, t)=\left(D_{\epsilon}, H_{\epsilon}, \chi_{\epsilon}\right)(x, t)=W\left(\frac{1}{\epsilon}(x \cdot \omega-\sigma t)\right)
$$

such that

$$
W(\pm \infty)=\left(D_{ \pm}, H_{ \pm}, \chi_{ \pm}\right)
$$

where $\left(D_{ \pm}, H_{ \pm}, \chi_{ \pm}\right)$are in the equilibrium manifold, so that

$$
\chi_{ \pm}=\left(p\left(\left|D_{ \pm}\right|\right)\right)^{2}=\left|E_{ \pm}\right|^{2}
$$

In [13] T.-P. Liu constructs such profiles for the 2×2 1D hyperbolic systems with relaxation. In [23] W.-A. Yong and K. Zumbrun prove the existence of relaxation profiles for small amplitude Liu-shocks in a general setting. Their results apply for strictly hyperbolic reduced systems (see hypothesis (b) in [23]) which is not true for the 3D Kerr system (1.2), where moreover the eigenvalues have variable multiplicities (see Sect. 3.1 herein). In the case of our 1D models, system (1.6) is strictly hyperbolic and the structural assumptions of [23] are satisfied. In the present paper, without smallness hypothesis, we characterize all the shocks giving rise to the existence of a

Kerr-Debye profile. Namely, we prove that a Kerr-Debye relaxation profile exists if and only if the shock under consideration is entropic in the sense of Lax.

Section 2 of the paper is devoted to the 1D systems (1.6) and (1.5) for which explicit calculations are performed. First we characterize the Liu-admissible shocks, that is the discontinuities satisfying condition (E) in definition 2.1 below. In [12] T.P. Liu proves that condition (E) is equivalent to the existence of a viscous shock profile. Here, it turns out that this condition is not sufficient to ensure the existence of relaxation profiles. In fact we prove that a profile exists if and only if the discontinuity satisfies the additional assumption $d_{-} d_{+}>0$ (so p is convex or concave on the interval $\left.d_{-}, d_{+}\right)$. We then observe that the same condition appears for the existence of a viscosity profile related to the Chapman-Enskog expansion of the Kerr-Debye system.

In section 3 we consider the full vector 3D systems. The Kerr system owns six real eigenvalues

$$
\lambda_{1} \leq \lambda_{2}<\lambda_{3}=0=\lambda_{4}<\lambda_{5}=-\lambda_{2} \leq \lambda_{6}=-\lambda_{1}
$$

The characteristic fields $1,3,4,6$ are linearly degenerate. If $\lambda_{2} \neq \lambda_{1}$ the second characteristic field is genuinely nonlinear. Then we characterize the Liu shocks and the Lax shocks. The main result of this section is that Kerr-Debye relaxation shock profiles only exist for Lax 2 -shocks and Lax 5 -shocks.

2. Kerr-Debye shock profiles for the 1D Kerr system

2.1. Admissible shock waves for 1D Kerr system As already mentioned, the system (1.6) is strictly hyperbolic, the eigenvalues are

$$
\begin{equation*}
\lambda_{1}(d)=-\sqrt{p^{\prime}(d)}<0<\lambda_{2}(d)=\sqrt{p^{\prime}(d)} \tag{2.1}
\end{equation*}
$$

with the related eigenfunctions

$$
\begin{equation*}
r_{1}=\binom{-1}{\sqrt{p^{\prime}(d)}}, r_{2}=\binom{1}{\sqrt{p^{\prime}(d)}} . \tag{2.2}
\end{equation*}
$$

We observe that

$$
\begin{equation*}
\lambda_{i}^{\prime}(d, h) r_{i}(d, h)=\frac{p^{\prime \prime}(d)}{2 \sqrt{p^{\prime}(d)}}, i=1,2 \tag{2.3}
\end{equation*}
$$

which is zero for $d=0$. Hence the characteristic fields are genuinely nonlinear only on $\{u=(d, h) ; d \neq 0\}$.

If two constant states u_{+}and u_{-}are connected by a shock propagating with speed σ, then the Rankine-Hugoniot conditions are satisfied:

$$
\left\{\begin{array}{l}
h_{+}-h_{-}=\sigma\left(d_{+}-d_{-}\right) \tag{2.4}\\
p\left(d_{+}\right)-p\left(d_{-}\right)=\sigma\left(h_{+}-h_{-}\right) .
\end{array}\right.
$$

We consider non trivial shocks, that is $d_{+} \neq d_{-}$. Rankine-Hugoniot conditions write

$$
\left\{\begin{array}{l}
\sigma\left(u_{+}, u_{-}\right)=\frac{h_{+}-h_{-}}{d_{+}-d_{-}} \tag{2.5}\\
\left(h_{+}-h_{-}\right)^{2}=\left(p\left(d_{+}\right)-p\left(d_{-}\right)\right)\left(d_{+}-d_{-}\right)
\end{array}\right.
$$

For $\left(d_{-}, h_{-}\right)$fixed we denote $\mathcal{H}\left(u_{-}\right)$the Hugoniot set of $u_{-}=\left(d_{-}, h_{-}\right)$. It is the union of four sets:

$$
\mathcal{H}_{1}^{ \pm}\left(d_{-}, h_{-}\right)=\left\{(d, h), h=h_{-} \mp \sqrt{\left(p(d)-p\left(d_{-}\right)\right)\left(d-d_{-}\right)}, d \gtrless d_{-}\right\}
$$

and

$$
\mathcal{H}_{2}^{ \pm}\left(d_{-}, h_{-}\right)=\left\{(d, h), h=h_{-} \pm \sqrt{\left(p(d)-p\left(d_{-}\right)\right)\left(d-d_{-}\right)}, d \gtrless d_{-}\right\}
$$

$\mathcal{H}_{1}\left(u_{-}\right)=\mathcal{H}_{1}^{+}\left(u_{-}\right) \cup \mathcal{H}_{1}^{-}\left(u_{-}\right)$is the set of states u connected to u_{-}with $\sigma\left(u, u_{-}\right)<$ 0 , while $\mathcal{H}_{2}\left(u_{-}\right)=\mathcal{H}_{2}^{+}\left(u_{-}\right) \cup \mathcal{H}_{2}^{-}\left(u_{-}\right)$is the set of states u connected to u_{-}with $\sigma\left(u, u_{-}\right)>0$.

In [11], T.P. Liu gives a generalization of Lax's shock entropy conditions when the characteristic fields are not everywhere genuinely nonlinear: the condition (E).
Definition 2.1. Let u_{-}be a given left state and consider $u_{+} \in \mathcal{H}\left(u_{-}\right)$. The discontinuity is Liu-admissible if
(E) $\quad \sigma\left(u_{+}, u_{-}\right) \leq \sigma\left(u, u_{-}\right), \quad \forall u \in \mathcal{H}\left(u_{-}\right), u$ between u_{-}and u_{+}.

One-shocks. Liu's one-shocks are the shocks satisfying condition (E) and such that u_{+}belong to $\mathcal{H}_{1}\left(u_{-}\right)$. Here we have

$$
\begin{equation*}
\sigma\left(u, u_{-}\right)=\sigma\left(d, d_{-}\right)=-\sqrt{\frac{p(d)-p\left(d_{-}\right)}{d-d_{-}}} \tag{2.6}
\end{equation*}
$$

Lemma 2.2. For all $d=q(e) \in \mathbb{R}$ we denote

$$
\begin{equation*}
d^{*}(d)=q\left(-\frac{1}{2} e\right)=-\frac{1}{8}[d+3 p(d)] \tag{2.7}
\end{equation*}
$$

where q is the function defined by (1.3). As a function of $d, \sigma \in C^{1}(\mathbb{R})$ and σ owns a unique global minimum which is reached at the point $d^{*}\left(d_{-}\right)$.

Proof. In the following σ^{\prime} is the derivative of $\sigma\left(d, d_{-}\right)$with respect to d :

$$
\sigma^{\prime}\left(d, d_{-}\right)=\frac{1}{2 \sigma\left(d, d_{-}\right)\left(d-d_{-}\right)}\left[p^{\prime}(d)-\frac{p(d)-p\left(d_{-}\right)}{d-d_{-}}\right] .
$$

It is easy to see that as a function of $d, \sigma \in C^{1}(\mathbb{R})$ and that $\sigma^{\prime}\left(d_{-}, d_{-}\right)=\frac{-p^{\prime \prime}\left(d_{-}\right)}{4 \sqrt{p^{\prime}\left(d_{-}\right)}}$. Let us define

$$
K(d)=p^{\prime}(d)-\frac{p(d)-p\left(d_{-}\right)}{d-d_{-}}
$$

and $k=K \circ q$. We have

$$
k(e)=\frac{-2 e^{2}+e e_{-}+e_{-}^{2}}{\left(e^{2}+e e_{-}+e_{-}^{2}+1\right)\left(1+3 e^{2}\right)}
$$

and the roots are $-\frac{1}{2} e_{-}$and e_{-}. This allows us to conclude.
As a first case, we study one-shocks with $u_{+} \in \mathcal{H}_{1}^{+}\left(u_{-}\right)$. We observe that if $d_{-} \geq 0$ condition (E) cannot be satisfied since we must have $d>d_{-}$and p is concave for $d_{-} \geq 0$.

Fig. 2.1. Admissibility of a shock: d^{*} is such that the secant $\left(u_{-}, u^{*}\right)$ is tangent to the graph of function p at u^{*}.

Let us now suppose that $d_{-}<0$. By lemma 2.2σ is decreasing on $\left[d_{-}, d^{*}\left(d_{-}\right)\right]$ and increasing on $\left[d^{*}\left(d_{-}\right),+\infty[\right.$. Therefore the condition (E) is satisfied if and only if $\left.\left.d_{+} \in\right] d_{-}, d^{*}\left(d_{-}\right)\right]$.

We turn our attention to $u_{+} \in \mathcal{H}_{1}^{-}\left(u_{-}\right)$. We remark that $u \in \mathcal{H}_{1}^{-}\left(u_{-}\right)$if and only if $-u \in \mathcal{H}_{1}^{+}\left(-u_{-}\right)$. On another hand $\sigma\left(-d,-d_{-}\right)=\sigma\left(d, d_{-}\right)$. Therefore, we can deduce that the condition (E) is satisfied on $\mathcal{H}_{1}^{-}\left(u_{-}\right)$if and only if $d_{-}>0$ and $d_{+} \in\left[d^{*}\left(d_{-}\right), d_{-}[\right.$.

Finally denoting S the function defined by

$$
\begin{equation*}
S\left(d, d_{-}\right)=\sqrt{\left(p(d)-p\left(d_{-}\right)\right)\left(d-d_{-}\right)} \tag{2.8}
\end{equation*}
$$

the following proposition summarizes the results.
Proposition 2.3. For a Liu one-shock

$$
\sigma=-\sqrt{\frac{p\left(d_{+}\right)-p\left(d_{-}\right)}{d_{+}-d_{-}}} .
$$

Let u_{-}be a given left state.
If $d_{-}>0, u_{+}$is a right state connected to u_{-}by a Liu one-shock if and only if

$$
d_{+} \in\left[d^{*}\left(d_{-}\right), d_{-}\left[, \quad h_{+}=h_{-}+S\left(d_{+}, d_{-}\right)\right.\right.
$$

If $d_{-}<0, u_{+}$is a right state connected to u_{-}by a Liu one-shock if and only if

$$
\left.\left.d_{+} \in\right] d_{-}, d^{*}\left(d_{-}\right)\right], \quad h_{+}=h_{-}-S\left(d_{+}, d_{-}\right)
$$

If $d_{-}=0$ there does not exist any right state connected to u_{-}by a Liu one-shock.

Two-shocks. Similar considerations lead to Proposition 2.4. For a Liu two-shock

$$
\sigma=\sqrt{\frac{p\left(d_{+}\right)-p\left(d_{-}\right)}{d_{+}-d_{-}}}
$$

Let u_{-}be a given left state.

If $d_{-}>0, u_{+}$is a right state connected to u_{-}by a Liu two-shock if and only if

$$
d_{+}>d_{-}, \quad h_{+}=h_{-}+S\left(d_{+}, d_{-}\right)
$$

If $d_{-}<0, u_{+}$is a right state connected to u_{-}by a Liu two-shock if and only if

$$
d_{+}<d_{-}, \quad h_{+}=h_{-}-S\left(d_{+}, d_{-}\right)
$$

If $d_{-}=0, u_{+}$is a right state connected to u_{-}by a Liu two-shock if and only if

$$
d_{+} \neq 0, \quad h_{+}=h_{-}+\operatorname{sgn}\left(d_{+}\right) S\left(d_{+}, d_{-}\right)
$$

2.2. Shock profiles In this section we construct Kerr-Debye relaxation shock profiles, that are smooth solutions of Kerr-Debye system (1.5) under the form

$$
w_{\epsilon}(x, t)=W\left(\frac{x-\sigma t}{\epsilon}\right), \quad W=(D, H, \mathcal{X})
$$

and such that

$$
W(\pm \infty)=w_{ \pm}=\left(d_{ \pm}, h_{ \pm}, \chi_{ \pm}\right)
$$

We suppose that

$$
\begin{equation*}
w_{-} \neq w_{+} \tag{2.9}
\end{equation*}
$$

It is wellknown that $\sigma,\left(d_{ \pm}, h_{ \pm}\right)$must satisfy the Rankine-Hugoniot conditions and that $w_{ \pm}$belong to the equilibrium manifold, so we have $(2.4), d_{+} \neq d_{-}, \sigma \neq 0$ and

$$
\begin{equation*}
\chi_{ \pm}=\left(p\left(d_{ \pm}\right)\right)^{2}=e_{ \pm}^{2} \tag{2.10}
\end{equation*}
$$

The problem is to find $W(\xi) \in C^{1}\left(\mathbb{R}, \mathbb{R}^{3}\right)$ such that

$$
\left\{\begin{array}{l}
-\sigma D^{\prime}+H^{\prime}=0 \tag{2.11}\\
-\sigma H^{\prime}+\left((1+\mathcal{X})^{-1} D\right)^{\prime}=0 \\
-\sigma \mathcal{X}^{\prime}=(1+\mathcal{X})^{-2} D^{2}-\mathcal{X}
\end{array}\right.
$$

and

$$
\begin{equation*}
(D(\pm \infty), H(\pm \infty), \mathcal{X}(\pm \infty))=\left(d_{ \pm}, h_{ \pm},\left(p\left(d_{ \pm}\right)\right)^{2}\right) \tag{2.12}
\end{equation*}
$$

Denoting $E=(1+\mathcal{X})^{-1} D$, system (2.11) also reads as

$$
\left\{\begin{array}{l}
-\sigma D+H=C_{1}=-\sigma d_{ \pm}+h_{ \pm} \tag{2.13}\\
-\sigma H+E=C_{2}=-\sigma h_{ \pm}+e_{ \pm} \\
-\sigma \mathcal{X}^{\prime}=E^{2}-\mathcal{X}
\end{array}\right.
$$

Let us also remark that by the last equation in (2.11) we have necessarily

$$
\begin{equation*}
\forall \xi \in \mathbb{R}, \quad \mathcal{X}(\xi) \geq 0 \tag{2.14}
\end{equation*}
$$

Let us determine some necessary conditions for the existence of smooth shock profiles.

First, eliminating H from the two first equations of (2.13) we have

$$
\begin{equation*}
-\sigma^{2} D+E=\sigma C_{1}+C_{2}=-\sigma^{2} d_{ \pm}+e_{ \pm} \tag{2.15}
\end{equation*}
$$

Lemma 2.5. If $W \in C^{1}\left(\mathbb{R}, \mathbb{R}^{3}\right)$ is solution of (2.11)(2.12) with (2.9) then

$$
\begin{equation*}
\sigma C_{1}+C_{2} \neq 0 \tag{2.16}
\end{equation*}
$$

Proof. Suppose that $\sigma C_{1}+C_{2}=0$. As $d_{-} \neq d_{+}$, one of them is not zero. Suppose for instance that $d_{-} \neq 0$. There exists a non empty maximal interval $]-\infty, \xi_{1}[$ where $D \neq 0$. By (2.15), on this interval we have

$$
\left(-\sigma^{2}+(1+\mathcal{X})^{-1}\right) D=0
$$

so that \mathcal{X} is a constant. By the last equation of $(2.13), D=d_{-}$on this interval. If ξ_{1} is finite, then $D\left(\xi_{1}\right)=0$, otherwise the limit of D at $+\infty$ is $d_{+} \neq d_{-}$. In each case it is a contradiction. The same can be done if $d_{-}=0$ and $d_{+} \neq 0$. प

As a consequence we have

$$
\begin{equation*}
\forall \xi \in \mathbb{R}, \quad\left[1-\sigma^{2}(1+\mathcal{X}(\xi))\right] \frac{D(\xi)}{1+\mathcal{X}(\xi)}=\sigma C_{1}+C_{2} \neq 0 \tag{2.17}
\end{equation*}
$$

Denoting

$$
\theta(\mathcal{X})=\left[1-\sigma^{2}(1+\mathcal{X})\right]^{2}
$$

we remark also that

$$
\begin{equation*}
\left(\sigma C_{1}+C_{2}\right)^{2}=\chi_{-} \theta\left(\chi_{-}\right)=\chi_{+} \theta\left(\chi_{+}\right) \tag{2.18}
\end{equation*}
$$

Proposition 2.6. If $W \in C^{1}\left(\mathbb{R}, \mathbb{R}^{3}\right)$ is solution of (2.11) (2.12) with (2.9) and (2.4) then

$$
\begin{equation*}
d_{+} d_{-}>0 \quad \text { and } \quad \forall \xi \in \mathbb{R} \quad D(\xi) \neq 0 \tag{2.19}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
\forall \xi \in \mathbb{R} \quad \theta(\mathcal{X}(\xi)) \neq 0 \tag{2.20}
\end{equation*}
$$

\mathcal{X} is solution of the ordinary differential problem

$$
\begin{gather*}
\mathcal{X}^{\prime}=\frac{1}{\sigma} \frac{\mathcal{X} \theta(\mathcal{X})-\chi_{ \pm} \theta\left(\chi_{ \pm}\right)}{\theta(\mathcal{X})} \tag{2.21}\\
\mathcal{X}(\pm \infty)=\chi_{ \pm}=\left(p\left(d_{ \pm}\right)\right)^{2} \tag{2.22}
\end{gather*}
$$

and D and H are given by

$$
\left\{\begin{array}{l}
D=\frac{\left(\sigma C_{1}+C_{2}\right)(1+\mathcal{X})}{1-\sigma^{2}(1+\mathcal{X})} \tag{2.23}\\
H=C_{1}+\sigma D
\end{array}\right.
$$

Proof. Using (2.14), (2.17) and taking into account the continuity of D and the equalities

$$
\sigma C_{1}+C_{2}=-\sigma^{2} d_{ \pm}+p\left(d_{ \pm}\right)
$$

we obtain (2.19).
The property (2.20) is an immediate consequence of (2.17).
Hence D is given by the first equation of (2.23) and we obtain the ODE (2.21) by the third equation of (2.11).

Reciprocally, according to the above results we consider data such that

$$
\left\{\begin{array}{l}
d_{-} \neq d_{+}, d_{-} d_{+}>0 \\
\text { Rankine }- \text { Hugoniot conditions (2.4) are satisfied. } \tag{2.24}
\end{array}\right.
$$

Such data satisfy the relation

$$
\chi_{-} \theta\left(\chi_{-}\right)=\chi_{+} \theta\left(\chi_{+}\right)
$$

Let us study the problem $(2.21)(2.22)$. We point out the fact that if $\mathcal{X}(\xi)$ is a solution of this problem then $\mathcal{X}(\xi-\tau)$ is one also for all $\tau \in \mathbb{R}$. Hence uniqueness does not hold for $(2.21)(2.22)$.
Proposition 2.7. Let us suppose that the data satisfy conditions (2.24). A solution of problem (2.21)(2.22) exists if and only if one of the two following conditions holds:
(i) $\sigma<0$ and $0<\left|d_{+}\right|<\left|d_{-}\right|$,
(ii) $\sigma>0$ and $0<\left|d_{-}\right|<\left|d_{+}\right|$.

Any solution \mathcal{X} is monotone, positive and $\mathcal{X} \in C^{\infty}(\mathbb{R})$.
Proof. We denote by ψ the function defined by

$$
\psi(\mathcal{X})=\mathcal{X} \theta(\mathcal{X})-\chi_{-} \theta\left(\chi_{-}\right)=\mathcal{X} \theta(\mathcal{X})-\chi_{+} \theta\left(\chi_{+}\right)
$$

As $d_{-} \neq d_{+}$and $d_{+} d_{-}>0, \chi_{-}$and χ_{+}are two distinct real roots of ψ. Hence there exists a third real root χ_{0}. We have

$$
\begin{equation*}
\chi_{0}+\chi_{-}+\chi_{+}=2\left(\sigma^{-2}-1\right) \tag{2.25}
\end{equation*}
$$

so using

$$
\sigma^{-2}=\frac{q\left(e_{+}\right)-q\left(e_{-}\right)}{e_{+}-e_{-}}=1+e_{+}^{2}+e_{+} e_{-}+e_{-}^{2}
$$

we obtain

$$
\chi_{0}=\left(p\left(d_{+}\right)+p\left(d_{-}\right)\right)^{2} .
$$

Denoting $\chi_{m}=\min \left(\chi_{-}, \chi_{+}\right)$and $\chi_{M}=\max \left(\chi_{-}, \chi_{+}\right)$we thus have

$$
\begin{equation*}
0<\chi_{m}<\chi_{M}<\chi_{0} \tag{2.26}
\end{equation*}
$$

Equation (2.21) reads as

$$
\mathcal{X}^{\prime}=\sigma^{3} \frac{\left(\mathcal{X}-\chi_{m}\right)\left(\mathcal{X}-\chi_{M}\right)\left(\mathcal{X}-\chi_{0}\right)}{\theta(\mathcal{X})}
$$

We have

$$
\theta(y)=\sigma^{4}\left[\sigma^{-2}-1-y\right]^{2}
$$

and

$$
\begin{equation*}
\left.\sigma^{-2}-1=e_{+}^{2}+e_{-}^{2}+e_{-} e_{+} \in\right] \chi_{M}, \chi_{0}[\tag{2.27}
\end{equation*}
$$

so that θ is positive on $\left[\chi_{m}, \chi_{M}\right]$.
By the general theory of ODEs, for all $\left.y_{0} \in\right] \chi_{m}, \chi_{M}[$, this equation has a unique solution $\mathcal{X} \in C^{1}(\mathbb{R})$ such that $\mathcal{X}(0)=y_{0}$. It remains to study the behaviour of this solution at infinity.

We remark that as $\mathcal{X}(\xi) \in] \chi_{m}, \chi_{M}[$ for all $\xi \in \mathbb{R}$:

$$
\operatorname{sgn}\left(\mathcal{X}^{\prime}\right)=\operatorname{sgn}(\sigma) .
$$

If $\sigma<0$ then

$$
\lim _{\xi \rightarrow-\infty} \mathcal{X}(\xi)=\chi_{M}, \quad \lim _{\xi \rightarrow+\infty} \mathcal{X}(\xi)=\chi_{m}
$$

Therefore a solution of $(2.21)(2.22)$ exists if $0<\chi_{+}<\chi_{-}$which is equivalent to

$$
\text { either } 0<d_{+}<d_{-} \text {or } d_{-}<d_{+}<0 \text {. }
$$

With similar considerations, we prove that if $\sigma>0$ then a solution of $(2.21)(2.22)$ exists if

$$
\text { either } 0<d_{-}<d_{+} \text {or } d_{+}<d_{-}<0 \text {. }
$$

Reciprocally, if neither (i) nor (ii) hold, by the general theory of ODEs the desired solution does not exist.

We are now in position to prove the main result of this section.
Theorem 2.8. There exists a Kerr-Debye relaxation shock profile $W \in C^{1}\left(\mathbb{R} ; \mathbb{R}^{3}\right)$ solution of (2.11)(2.12) with (2.9) if and only if the conditions (2.24) are fulfilled and the such defined shock is Liu-admissible. In that case each component of the profile is monotone.

Proof. Suppose that a shock profile exists. By proposition 2.6 conditions (2.24) are satisfied and \mathcal{X} is solution of (2.21) with (2.22). Therefore by proposition 2.7 either condition (i) or condition (ii) is satisfied. In view of propositions 2.3 and 2.4, the shock is Liu-admissible.

Reciprocally suppose that conditions (2.24) are satisfied and that the shock is entropic. Then either condition (i) or condition (ii) is satisfied in proposition 2.7 so that there exists a solution $\mathcal{X} \in C^{\infty}(\mathbb{R})$ of (2.21) with (2.22) and \mathcal{X} is positive.

We take

$$
C_{1}=-\sigma d_{-}+h_{-}=-\sigma d_{+}+h_{+}, \quad C_{2}=-\sigma h_{-}+p\left(d_{-}\right)=-\sigma h_{+}+p\left(d_{+}\right) .
$$

A straightforward computation gives relations (2.18). We define D and H by (2.23). Then we have

$$
\left(\frac{D}{1+\mathcal{X}}\right)^{2}=\frac{\chi_{+} \theta\left(\chi_{+}\right)}{\theta(\mathcal{X})} .
$$

Consequently the last equation of (2.13) is satisfied. It is easy to verify that so are the two first equations of (2.13).

It remains to verify the limits at infinity:

$$
\lim _{\xi \rightarrow+\infty} D(\xi)=\frac{\left(-\sigma^{2} d_{+}+p\left(d_{+}\right)\right)\left(1+p\left(d_{+}\right)^{2}\right)}{1-\sigma^{2}\left(1+p\left(d_{+}\right)^{2}\right)}=d_{+}
$$

and similarly

$$
\lim _{\xi \rightarrow-\infty} D(\xi)=d_{-} .
$$

The limits for H are then immediate by the second equation of (2.11).
The monotonicity of the shock profiles is a direct consequence of the above considerations.

Let us detail theorem 2.8 for a Liu-admissible shock $\sigma,\left(u_{+}, u_{-}\right)$.
If $\sigma<0$ and $d_{-}>0$ then the profile exists if $\left.d_{+} \in\right] 0, d_{-}\left[\right.$, does not exist if $d_{+} \in$ $\left[d^{*}\left(d_{-}\right), 0\right]$.

If $\sigma<0$ and $d_{-}<0$ then the profile exists if $\left.d_{+} \in\right] d_{-}, 0$ [, does not exist if $d_{+} \in$ $\left[0, d^{*}\left(d_{-}\right)\right]$.

If $\sigma>0$ and $d_{-} \neq 0$ then the profile always exists, if $d_{-}=0$ it does not exist.
Let us point out that the condition $d_{-} \neq 0$ is also required to apply the results of [23] for the weak shocks. We note that if $d_{-} \neq 0$ the Shizuta-Kawashima [19] condition is satisfied. This condition is also crucial to study the stability of relaxation shock profiles, see [14] and references therein. In a recent paper [7] the existence of profiles for weak shocks under a weaker (Kawashima-like) assumption is proved.
Remark 2.9. By (2.17) we have

$$
\left(1-\sigma^{2}(1+\mathcal{X})\right) E=\sigma C_{1}+C_{2} \neq 0
$$

We can directly show that E is necessarily a solution of the following ODE:

$$
\begin{equation*}
E^{\prime}=-\frac{\sigma}{\sigma C_{1}+C_{2}} E\left(E-e_{+}\right)\left(E-e_{-}\right)\left(E+e_{+}+e_{-}\right) \tag{2.28}
\end{equation*}
$$

which of course leads to the same conclusions. This is made possible by the fact that here E is a scalar quantity. That will not be true in the full vector 3D system.
REMARK 2.10. If $d_{+}=0$ or $d_{-}=0$ we can construct discontinuous shock profiles. In the case of an entropic one-shock with $d_{+}=0$ and $d_{-} \in \mathbb{R}$ the following solution can be written:

$$
\left\{\begin{array}{lr}
D(\xi)=d_{-} \text {if } \xi<0, & 0 \text { else } \\
H(\xi)=h_{-} \text {if } \xi<0, & h_{+} \text {else } \\
\mathcal{X}(\xi)=\chi_{-} \text {if } \xi<0, \chi_{-} \mathrm{e}^{\xi / \sigma} \text { else }
\end{array}\right.
$$

A similar solution exists for an entropic two-shock with $d_{-}=0$ and $d_{+} \in \mathbb{R}$.
We can prove the following asymptotic behavior of the shock profiles.
Theorem 2.11. Let W be a shock profile with (2.12) and (2.9). We define

$$
R_{+}=\frac{e_{-}+2 e_{+}}{e_{-}+e_{+}} \frac{1}{\sigma}\left(1-\frac{e_{+}}{e_{-}}\right), \quad R_{-}=\frac{2 e_{-}+e_{+}}{e_{-}+e_{+}} \frac{1}{\sigma}\left(1-\frac{e_{-}}{e_{+}}\right)
$$

R_{-}is positive, R_{+}is negative and there exists a positive constant K such that

$$
\begin{equation*}
\forall \xi \in \mathbb{R} \quad\left|W(\xi)-w_{+}\right| \leq K \mathrm{e}^{\xi R_{+}}, \quad\left|W(\xi)-w_{-}\right| \leq K \mathrm{e}^{\xi R_{-}} \tag{2.29}
\end{equation*}
$$

Proof. We take data such that conditions (2.24) are fulfilled and the such defined shock is entropic, so that shock profiles exist. By theorem 2.8, a shock profile is determined by a solution \mathcal{X} of problem $(2.21)(2.22), D$ and H being given by (2.23) with ad hoc C_{1} and C_{2}. Suppose that

$$
\begin{equation*}
\left|\mathcal{X}(\xi)-\chi_{+}\right| \leq C \mathrm{e}^{\xi R_{+}} \tag{2.30}
\end{equation*}
$$

Then

$$
\begin{aligned}
\left|D(\xi)-d_{+}\right| & =\left|\sigma C_{1}+C_{2}\right|\left|\frac{1}{(1+\mathcal{X})^{-1}-\sigma^{2}}-\frac{1}{\left(1+\chi_{+}\right)^{-1}-\sigma^{2}}\right| \\
& =\left|\sigma C_{1}+C_{2}\right| \frac{\left|\chi_{+}-\mathcal{X}\right|}{\left(1-\sigma^{2}\left(1+\chi_{+}\right)\right)\left(1-\sigma^{2}(1+\mathcal{X})\right)}
\end{aligned}
$$

By (2.27) we know that

$$
1-\sigma^{2}(1+\mathcal{X}) \geq 1-\sigma^{2}\left(1+\chi_{M}\right)>0
$$

Therefore

$$
\left|D(\xi)-d_{+}\right| \leq \frac{\left|\mathcal{X}-\chi_{+}\right|}{\theta\left(\chi_{M}\right)}, \quad\left|H(\xi)-h_{+}\right| \leq|\sigma|\left|D(\xi)-d_{+}\right|
$$

Finally, it remains to prove inequality (2.30) to obtain the behavior at $+\infty$.
Therefore we consider a solution \mathcal{X} of problem $(2.21)(2.22)$ such that $\mathcal{X}(0)=y_{0} \in$ $] \chi_{m}, \chi_{M}[$. Then $\mathcal{X}(\xi) \in] \chi_{m}, \chi_{M}[$. Equation (2.21) reads as

$$
\mathcal{X}^{\prime}=f(\mathcal{X})
$$

and for all $y \in] \chi_{m}, \chi_{M}[$:

$$
\frac{1}{f(y)}=\frac{1}{f^{\prime}\left(\chi_{-}\right)\left(y-\chi_{-}\right)}+\frac{1}{f^{\prime}\left(\chi_{+}\right)\left(y-\chi_{+}\right)}+\frac{1}{f^{\prime}\left(\chi_{0}\right)\left(y-\chi_{0}\right)}
$$

We already proved that $\operatorname{sgn}(f(\mathcal{X}))=\operatorname{sgn}\left(\mathcal{X}^{\prime}\right)=\operatorname{sgn}(\sigma)$.
If $\sigma<0$ then $\chi_{+}<\chi_{-}$so $f^{\prime}\left(\chi_{+}\right)<0$ and $f^{\prime}\left(\chi_{-}\right)>0$.
If $\sigma>0$ then $\chi_{-}<\chi_{+}$so $f^{\prime}\left(\chi_{+}\right)<0$ and $f^{\prime}\left(\chi_{-}\right)>0$.
Hence in all cases we have $f^{\prime}\left(\chi_{+}\right)<0$ and $f^{\prime}\left(\chi_{-}\right)>0$. Moreover by a straighforward computation one finds

$$
R_{+}=f^{\prime}\left(\chi_{+}\right), \quad R_{-}=f^{\prime}\left(\chi_{-}\right)
$$

which proves that $R_{+}<0$ and $R_{-}>0$.
To end the proof of the theorem, we remark that the solution of (2.21) satisfies the following equality:

$$
\xi=\ln \left|\frac{\mathcal{X}(\xi)-\chi_{-}}{y_{0}-\chi_{-}}\right|^{1 / R_{-}}+\ln \left|\frac{\mathcal{X}(\xi)-\chi_{+}}{y_{0}-\chi_{+}}\right|^{1 / R_{+}}+\ln \left|\frac{\mathcal{X}(\xi)-\chi_{0}}{y_{0}-\chi_{0}}\right|^{1 / f^{\prime}\left(\chi_{0}\right)}
$$

This can also be written as

$$
\mathrm{e}^{-\xi R_{+}}\left|\mathcal{X}(\xi)-\chi_{+}\right|=\left|y_{0}-\chi_{+}\right|\left|\frac{\mathcal{X}(\xi)-\chi_{-}}{y_{0}-\chi_{-}}\right|^{-R_{+} / R_{-}}\left|\frac{\mathcal{X}(\xi)-\chi_{0}}{y_{0}-\chi_{0}}\right|^{-R_{+} / f^{\prime}\left(\chi_{0}\right)}
$$

from which we deduce the first inequality in (2.29). The second one is proved similarly. —
2.3. Chapman-Enskog expansion In the above paragraph we saw that if a Kerr-Debye shock profile exists then the interval $] d_{-}, d_{+}[$(or $] d_{+}, d_{-}[$) cannot contain zero. As proposed in [5] it is classical to perform the Chapman-Enskog expansion of a relaxation system. In that way one obtains a viscous approximation of the Kerr system. We shall observe that this approximation is degenerate for $d=0$, so if the associated viscous shock profile exists then the interval $] d_{-}, d_{+}[$(or $] d_{+}, d_{-}[$) cannot contain zero.

Let us first establish the Chapman-Enskog expansion for Kerr-Debye system.
Proposition 2.12. The Chapman-Enskog expansion of the system (1.5) leads to the following viscous approximation system:

$$
\left\{\begin{array}{l}
\partial_{t} d^{\epsilon}+\partial_{x} h^{\epsilon}=0 \tag{2.31}\\
\partial_{t} h^{\epsilon}+\partial_{x} p\left(d^{\epsilon}\right)=\epsilon \partial_{x}\left(B\left(d^{\epsilon}\right) \partial_{x} h^{\epsilon}\right)
\end{array}\right.
$$

where the diffusion coefficient is

$$
\begin{equation*}
B(d)=\frac{2(p(d))^{2}}{\left(1+3(p(d))^{2}\right)^{2}} \tag{2.32}
\end{equation*}
$$

Proof. We rewrite the Kerr-Debye system:

$$
\left\{\begin{array}{l}
\partial_{t} d+\partial_{x} h=0 \tag{2.33}\\
\partial_{t} h+\partial_{x}\left((1+\chi)^{-1} d\right)=0 \\
\partial_{t} \chi=\frac{1}{\epsilon} G(d, \chi)=\frac{1}{\epsilon}\left((1+\chi)^{-2} d^{2}-\chi\right)
\end{array}\right.
$$

Following [5] we expand $w=(d, h, \chi)$ in the neighborhood of the equilibrium point $\left(d, h,(p(d))^{2}\right)$, we choose

$$
\chi=(p(d))^{2}+\epsilon m_{1}(d, h)+O\left(\epsilon^{2}\right)
$$

Using (iii) and (i) in (2.33) we find

$$
m_{1}(d, h)=\frac{-2 p(d) p^{\prime}(d)}{\partial_{\chi} G\left(d,(p(d))^{2}\right)} \partial_{x} h=\frac{2 d}{\left(1+3(p(d))^{2}\right)^{2}} \partial_{x} h
$$

Then we report in (ii) in (2.33) and we obtain the viscous approximation (2.31).
Let us now seek viscous shock profiles of the Chapman-Enskog expansion. We are looking for solutions of (2.31) under the form

$$
\begin{equation*}
d^{\epsilon}(x, t)=d\left(\frac{x-\sigma t}{\epsilon}\right), \quad h^{\epsilon}(x, t)=h\left(\frac{x-\sigma t}{\epsilon}\right) \tag{2.34}
\end{equation*}
$$

such that

$$
\begin{equation*}
d^{\epsilon}(\pm \infty)=d_{ \pm}, \quad h^{\epsilon}(\pm \infty)=h_{ \pm} \tag{2.35}
\end{equation*}
$$

If such a profile exists then d is a regular solution of the ODE

$$
d^{\prime}=\frac{1}{\sigma B(d)}\left(-\sigma^{2}\left(d-d_{ \pm}\right)+p(d)-p\left(d_{ \pm}\right)\right)
$$

Denoting $e=p(d)$ we obtain the following result.

Proposition 2.13. If a viscous shock profile of the Chapman-Enskog expansion exists then the interval $] d_{-}, d_{+}[$(or $] d_{+}, d_{-}[$) cannot contain zero and $e=p(d)$ is a solution of the $O D E$

$$
\begin{equation*}
e^{\prime}=-\frac{\sigma}{2}\left(1+3 e^{2}\right) e^{-2}\left(e-e_{-}\right)\left(e-e_{+}\right)\left(e+e_{-}+e_{+}\right) . \tag{2.36}
\end{equation*}
$$

We observe that the existence condition of a relaxation profile is the same as the one of a viscosity profile for (2.31), however in equation (2.28) $E=0$ is a root, while in equation (2.36) $e=0$ is a singularity.

We can also consider the non degenerate viscous approximation:

$$
\left\{\begin{array}{l}
\partial_{t} d+\partial_{x} h=\epsilon \partial_{x x} d \\
\partial_{t} d+\partial_{x} p(d)=\epsilon \partial_{x x} h
\end{array}\right.
$$

and consider a Liu-admissible one-shock (so we have condition (E)) with $d_{-}>0$, $\left.d_{+} \in\right] d^{*}\left(d_{-}\right), d_{-}[$. Then by [12] there exists a viscous profile for this shock. Note that for $\left.\left.d_{+} \in\right] d^{*}\left(d_{-}\right), 0\right]$ Kerr-Debye relaxation profiles and Chapman-Enskog viscous profiles do no exist.

3. Kerr-Debye shock profiles for the full vector 3D Kerr system

In this part we focus our attention on the three space dimensions cases. In order to exhibit the admissible shocks of the 3D Kerr system, we have to study first the properties of its characteristic fields. Then we prove our main result: there exists a Kerr-Debye profile for a shock if and only if it is a Lax 2 -shock or 5 -shock.
3.1. Characteristic fields of Kerr system Let us recall that Kerr system is hyperbolic symmetrisable [8], [4]. For the sake of completeness we actually calculate the eigenmodes (see also [6]). It appears that four characteristic fields are linearly degenerate while the two others are partially genuinely nonlinear.
3.1.1. Eigenmodes $\operatorname{System}(1.2)$ is a 6×6 system of conservation laws which, denoting $u=(D, H)$, can be synthetized as

$$
\partial_{t} u+\sum_{j=1}^{3} \partial_{x_{j}} F_{j}(u)=0
$$

We denote $A_{j}(u)$ the jacobian matrix of F_{j} and for all $\xi \in \mathbb{R}^{3}, \xi \neq 0$:

$$
\mathcal{A}(u, \xi)=\sum_{j=1}^{3} \xi_{j} A_{j}(u)
$$

In order to obtain the eigenvalues of the system (1.2), we introduce the following notation:

$$
\forall v \in \mathbb{R}^{3} \quad \mathcal{R}_{\xi} v:=\left(\begin{array}{ccc}
0 & -\xi_{3} & \xi_{2} \\
\xi_{3} & 0 & -\xi_{1} \\
-\xi_{2} & \xi_{1} & 0
\end{array}\right) v=\xi \times v
$$

With the above notation it is easy to see that for all $u=(D, H) \in \mathbb{R}^{6}, \xi \in \mathbb{R}^{3}$:

$$
\mathcal{A}(u, \xi)=\left(\begin{array}{cc}
0 & -\mathcal{R}_{\xi} \\
\mathcal{R}_{\xi} \mathbf{P}^{\prime}(D) & 0
\end{array}\right) .
$$

where \mathbf{P} is defined in (1.4). The matrix $\mathbf{P}^{\prime}(D)$ is regular for all $D \in \mathbb{R}^{3}$, we have

$$
\begin{aligned}
& \mathbf{P}^{\prime}(D)=-2\left(1+|E|^{2}\right)^{-1}\left(1+3|E|^{2}\right)^{-1} E E^{T}+\left(1+|E|^{2}\right)^{-1} I_{3} \\
& \mathbf{P}^{\prime}(D)^{-1}=2 E E^{T}+\left(1+|E|^{2}\right) I_{3}
\end{aligned}
$$

As we know that the system is hyperbolic we are looking for $\lambda \in \mathbb{R}$ and a non zero vector $r=(X, Y) \in \mathbb{R}^{3} \times \mathbb{R}^{3}$ such that

$$
\left\{\begin{array}{l}
-\lambda X-\mathcal{R}_{\xi} Y=0, \tag{3.1}\\
\mathcal{R}_{\xi} \mathbf{P}^{\prime}(D) X-\lambda Y=0
\end{array}\right.
$$

One can see that $\lambda=0$ is a double eigenvalue with the eigenvectors

$$
(0, \xi)^{T},\left(\mathbf{P}^{\prime}(D)^{-1} \xi, 0\right)^{T}
$$

A real $\lambda \neq 0$ is an eigenvalue if and only if there exists a nonzero vector $X \in \mathbb{R}^{3}$ such that

$$
\begin{equation*}
\left(\lambda^{2} I_{3}+\mathcal{R}_{\xi}^{2} \mathbf{P}^{\prime}(D)\right) X=0 \tag{3.2}
\end{equation*}
$$

In that case, the Y component of the eigenvector is

$$
\begin{equation*}
Y=\lambda^{-1} \mathcal{R}_{\xi} \mathbf{P}^{\prime}(D) X \tag{3.3}
\end{equation*}
$$

Let us first compute $\mathcal{R}_{\xi}^{2} \mathbf{P}^{\prime}(D)$. We have

$$
\mathcal{R}_{\xi}^{2} E E^{T}=(\xi \times(\xi \times E)) E^{T}
$$

and

$$
\mathcal{R}_{\xi}^{2}=\xi \xi^{T}-|\xi|^{2} I_{3}
$$

so that

$$
\mathcal{R}_{\xi}^{2} \mathbf{P}^{\prime}(D)=-2\left(1+|E|^{2}\right)^{-1}\left(1+3|E|^{2}\right)^{-1}(\xi \times(\xi \times E)) E^{T}+\left(1+|E|^{2}\right)^{-1}\left(\xi \xi^{T}-|\xi|^{2} I_{3}\right)
$$

We therefore look for $\lambda \neq 0$ and X such that

$$
\begin{equation*}
\left(\lambda^{2}-\frac{|\xi|^{2}}{1+|E|^{2}}\right) X-\frac{2 E^{T} X}{\left(1+|E|^{2}\right)\left(1+3|E|^{2}\right)} \xi \times(\xi \times E)+\frac{\xi^{T} X}{1+|E|^{2}} \xi=0 . \tag{3.4}
\end{equation*}
$$

We remark that if X is orthogonal to E and to ξ we have the solution

$$
\lambda^{2}=\frac{|\xi|^{2}}{1+|E|^{2}}
$$

If $\xi \times E \neq 0$ we have the eigenvectors

$$
\left(|\xi|^{2} \xi \times E, \lambda \xi \times(\xi \times E)\right)^{T}
$$

Another notable vector is $X=\xi \times(\xi \times E)$. This vector is equal to zero if and only if $\xi \times E=0$. Let us first suppose that it is not the case. Let us take $X=\xi \times(\xi \times E)$. Then $\xi^{T} X=0$ and

$$
\lambda^{2}=\frac{|\xi|^{2}}{1+|E|^{2}}+\frac{2 E^{T} X}{\left(1+|E|^{2}\right)\left(1+3|E|^{2}\right)}
$$

Moreover by using

$$
E^{T} X=E^{T}\left(-E|\xi|^{2}+\left(E^{T} \xi\right) \xi\right)=-|E|^{2}|\xi|^{2}+\left(E^{T} \xi\right)^{2}
$$

we obtain

$$
\lambda^{2}=\frac{|\xi|^{2}\left(1+|E|^{2}\right)+2\left(E^{T} \xi\right)^{2}}{\left(1+|E|^{2}\right)\left(1+3|E|^{2}\right)}
$$

and

$$
\mathcal{R}_{\xi} \mathbf{P}^{\prime}(D) X=-\lambda^{2} \xi \times E
$$

so

$$
Y=-\lambda \xi \times E
$$

Finally we have six real eigenvalues:

$$
\begin{equation*}
\lambda_{1} \leq \lambda_{2}<\lambda_{3}=\lambda_{4}=0<\lambda_{5}=-\lambda_{2} \leq \lambda_{6}=-\lambda_{1} \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{1}^{2}=\frac{|\xi|^{2}}{1+|E|^{2}}, \quad \lambda_{2}^{2}=\frac{|\xi|^{2}\left(1+|E|^{2}\right)+2\left(E^{T} \xi\right)^{2}}{\left(1+|E|^{2}\right)\left(1+3|E|^{2}\right)} \tag{3.6}
\end{equation*}
$$

The eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{5}, \lambda_{6}$ are simple except in the case $\xi \times E=0$. More precisely Property 3.1. The nonzero eigenvalues are double if and only if $\xi \times E=0$. In that case the dimension of the eigenspace for λ_{1} or λ_{6} is 2.

Proof. We have $\lambda_{1}=\lambda_{2}$ if and only if $|E||\xi|=\left|E^{T} \xi\right|$, which is equivalent to $\xi \times E=$ 0.

If $\xi \times E=0$ then the equation (3.4) writes

$$
\left(\lambda^{2}-\frac{|\xi|^{2}}{1+|E|^{2}}\right) X+\frac{\xi}{1+|E|^{2}}\left(\xi^{T} X\right)=0
$$

For all vector X orthogonal to ξ, we find an eigenvector (X, Y) to the eigenvalue λ_{1} so the property holds.

We sum up the above facts in the following proposition:
Proposition 3.2. The 3D Kerr system (1.2) is hyperbolic diagonalizable. The eigenvalues are given by (3.5), (3.6) and the inequalities in (3.5) are strict if and only if $\xi \times E \neq 0$.

The eigenvectors to the eigenvalue 0 are

$$
\begin{equation*}
r_{3}(u, \xi)=\binom{0}{\xi}, r_{4}(u, \xi)=\binom{\mathbf{P}^{\prime}(D)^{-1} \xi}{0} \tag{3.7}
\end{equation*}
$$

If $\xi \times E \neq 0$ the others eigenvectors are:

$$
\begin{equation*}
r_{i}(u, \xi)=\binom{|\xi|^{2} \xi \times E}{\lambda_{i} \xi \times(\xi \times E)}, i=1,6 \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{i}(u, \xi)=\binom{\xi \times(\xi \times E)}{-\lambda_{i} \xi \times E}, \quad i=2,5 \tag{3.9}
\end{equation*}
$$

If $\xi \times E=0$, the others eigenvectors are:

$$
\begin{equation*}
r_{i}(u, \xi)=\binom{|\xi|^{2} X_{k}}{\lambda_{i} \xi \times X_{k}}, i=1,2,5,6, k=1,2 \tag{3.10}
\end{equation*}
$$

where X_{1} and X_{2} are two nonzero independant vectors orthogonal to ξ.
3.1.2. Characteristic fields properties Clearly the characteristic field related to the zero eigenvalue is linearly degenerate. Let us consider the others eigenvalues.
PROPOSITION 3.3. The characteristic fields related to the eigenvalues λ such that $\lambda^{2}=|\xi|^{2}\left(1+|E|^{2}\right)^{-1}$ are linearly degenerate.

Proof. A characteristic field is linearly degenerate if for all $\xi \neq 0$ and for all $u=(D, H): \quad \lambda^{\prime}(u, \xi) r(u, \xi)=0$. As the eigenvalue only depends on $E=\mathbf{P}(D)$, it is enough to verify that

$$
\frac{\partial\left(\lambda^{2}\right)}{\partial E} \mathbf{P}^{\prime}(D) X=0
$$

where X is orthogonal to E and to ξ. We have

$$
\begin{equation*}
\frac{\partial\left(\lambda^{2}\right)}{\partial E}=-|\xi|^{2}\left(1+|E|^{2}\right)^{-2} 2 E^{T} \tag{3.11}
\end{equation*}
$$

and as X is orthogonal to E

$$
\mathbf{P}^{\prime}(D) X=\left(1+|E|^{2}\right)^{-1} X
$$

so

$$
\lambda^{\prime}(u, \xi) r(u, \xi)=0
$$

Proposition 3.4. Let us take $\xi \neq 0$. The characteristic fields 2 and 5 are genuinely nonlinear in the direction ξ in the open set

$$
\Omega(\xi)=\left\{(D, H) \in \mathbb{R}^{6} ; \xi \times D \neq 0\right\}
$$

that is for all $u \in \Omega(\xi)$ and $i=2,5$

$$
\begin{equation*}
\lambda_{i}^{\prime}(u, \xi) r_{i}(u, \xi) \neq 0 \tag{3.12}
\end{equation*}
$$

Proof. We note first that $u \in \Omega(\xi)$ if only if $\xi \times E \neq 0$ or also $\xi \times(\xi \times E) \neq 0$. Along this proof we denote

$$
\delta=\left(1+|E|^{2}\right)\left(1+3|E|^{2}\right), \lambda^{2}=\lambda_{2}^{2}=\lambda_{5}^{2}
$$

The condition (3.12) is satisfied if and only if

$$
\frac{\partial\left(\lambda^{2}\right)}{\partial E} \mathbf{P}^{\prime}(D)(\xi \times(\xi \times E)) \neq 0
$$

First we compute $\frac{\partial\left(\lambda^{2}\right)}{\partial E}$.

$$
\begin{equation*}
\frac{\partial\left(\lambda^{2}\right)}{\partial E}=2 \delta^{-1}\left(\left[|\xi|^{2}-2 \lambda^{2}\left(2+3|E|^{2}\right)\right] E^{T}+2\left(E^{T} \xi\right) \xi^{T}\right) \tag{3.13}
\end{equation*}
$$

By using the identity

$$
\begin{equation*}
|\xi|^{2} E^{T}=\left(E^{T} \xi\right) \xi^{T}-(\xi \times(\xi \times E))^{T} \tag{3.14}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\frac{\partial\left(\lambda^{2}\right)}{\partial E}=2 \delta^{-1}\left(\alpha\left(E^{T} \xi\right) \xi^{T}+\beta(\xi \times(\xi \times E))^{T}\right) \tag{3.15}
\end{equation*}
$$

with

$$
\alpha=3-2 \lambda^{2}|\xi|^{-2}\left(2+3|E|^{2}\right), \beta=-1+2 \lambda^{2}|\xi|^{-2}\left(2+3|E|^{2}\right)>1 .
$$

We use again (3.14) to obtain

$$
\begin{equation*}
\mathbf{P}^{\prime}(D)(\xi \times(\xi \times E))=\delta^{-1}\left(a\left(E^{T} \xi\right) \xi+b \xi \times(\xi \times E)\right) \tag{3.16}
\end{equation*}
$$

with

$$
a=\frac{2|\xi \times(\xi \times E)|^{2}}{|\xi|^{4}}>0, b=\frac{|\xi|^{4}+3\left(E^{T} \xi\right)^{2}|\xi|^{2}+|\xi \times(\xi \times E)|^{2}}{|\xi|^{4}}>0
$$

Consequently we obtain

$$
\frac{\partial\left(\lambda^{2}\right)}{\partial E} \mathbf{P}^{\prime}(D)(\xi \times(\xi \times E))=2 \delta^{-2}\left(a \alpha\left(E^{T} \xi\right)^{2}|\xi|^{2}+b \beta|\xi \times(\xi \times E)|^{2}\right)
$$

which writes as
$\frac{\partial\left(\lambda^{2}\right)}{\partial E} \mathbf{P}^{\prime}(D)(\xi \times(\xi \times E))=\frac{2|\xi \times(\xi \times E)|^{2}}{\delta^{2}|\xi|^{4}}\left[(2 \alpha+3 \beta)|\xi|^{2}\left(E^{T} \xi\right)^{2}+\beta\left(|\xi \times(\xi \times E)|^{2}+|\xi|^{4}\right)\right]$
which is strictly positive because

$$
2 \alpha+3 \beta=3+2 \lambda^{2} \frac{2+3|E|^{2}}{|\xi|^{2}}>0
$$

\square
3.2. Admissible plane discontinuities In this paragraph we study Kerr planar shocks and planar contact discontinuities. These are travelling waves propagating in a fixed direction $\omega,|\omega|=1$, with velocity σ :

$$
\begin{equation*}
u(x, t)=u(\omega \cdot x-\sigma t) \tag{3.17}
\end{equation*}
$$

which are weak piecewise constant solutions of Kerr system (1.2) such that

$$
u(\omega \cdot x-\sigma t)= \begin{cases}u_{-} \text {if } \quad \omega \cdot x-\sigma t<0 \tag{3.18}\\ u_{+} \text {if } \quad \omega \cdot x-\sigma t>0\end{cases}
$$

where $u_{-}=\left(D_{-}, H_{-}\right)$and $u_{+}=\left(D_{+}, H_{+}\right)$are two constant vectors of \mathbb{R}^{6}.
3.2.1. Rankine-Hugoniot conditions As usually the jump of X is denoted

$$
[X]=X_{+}-X_{-}
$$

The Rankine-Hugoniot conditions for (1.2) write

$$
\left\{\begin{array}{l}
\sigma[D]=-\omega \times[H] \tag{3.19}\\
\sigma[H]=\omega \times[E]
\end{array}\right.
$$

where $[E]=E_{+}-E_{-}=\mathbf{P}\left(D_{+}\right)-\mathbf{P}\left(D_{-}\right)$.
The divergence free conditions write

$$
\begin{equation*}
\omega^{T}[D]=\omega^{T}[H]=0 \tag{3.20}
\end{equation*}
$$

If $\sigma \neq 0$, this condition is fulfilled as soon as (3.19) is satisfied.
If the characteristic field for an eigenvalue $\lambda=\lambda(u, \omega)$ is linearly degenerate, contact discontinuities exist, that is plane discontinuities satisfying (3.19) and such that

$$
\begin{equation*}
\sigma\left(u_{+}, u_{-}\right)=\lambda\left(u_{+}\right)=\lambda\left(u_{-}\right) \tag{3.21}
\end{equation*}
$$

It is the case of $\lambda=0$ for which we have stationary contact discontinuities $(\sigma=0)$: Proposition 3.5. Stationary contact discontinuities are characterized by

$$
\left\{\begin{array}{l}
\omega \times[H]=0 \\
\omega \times[E]=0
\end{array}\right.
$$

The only divergence free ones are constant.
Let us now study the situations where $\sigma \neq 0$. In what follows we consider non trivial discontinuities satisfying (3.19) : $[u] \neq 0$, which is equivalent to

$$
\begin{equation*}
[D] \neq 0 \tag{3.22}
\end{equation*}
$$

We first establish a preliminary result:
Lemma 3.6. Let D_{+}and D_{-}be two distinct vectors of \mathbb{R}^{3}. Then

$$
\begin{equation*}
0<\frac{[D]^{T}[E]}{|[D]|^{2}}<1 \tag{3.23}
\end{equation*}
$$

Proof. The application \mathbf{P} being one-to-one, the jump of D is zero if and only if the one of E is.

$$
\begin{aligned}
{[D]^{T}[E] } & =\left\{\left(1+\left|E_{+}\right|^{2}\right) E_{+}-\left(1+\left|E_{-}\right|^{2}\right) E_{-}\right\}^{T}\left(E_{+}-E_{-}\right) \\
& \geq\left|E_{+}-E_{-}\right|^{2}+\frac{1}{2}\left(\left|E_{+}\right|^{2}-\left|E_{-}\right|^{2}\right)^{2}>0
\end{aligned}
$$

Furthermore

$$
|[D]|^{2}-[D]^{T}[E] \geq \frac{1}{2}\left(\left|E_{+}\right|^{2}-\left|E_{-}\right|^{2}\right)^{2}+\left|\left|E_{+}\right|^{2} E_{+}-\left|E_{-}\right|^{2} E_{-}\right|^{2}
$$

Moreover $\left|E_{+}\right|^{2} E_{+}=\left|E_{-}\right|^{2} E_{-}$if and only if $E_{+}=E_{-}$and we obtain the result.
Proposition 3.7. Consider $u_{-} \neq u_{+}$and $\sigma \neq 0$. The Rankine-Hugoniot conditions (3.19) are satisfied if and only if the following properties hold.
(i) The field D is divergence free, ie

$$
\begin{equation*}
\omega^{T}[D]=0 \tag{3.24}
\end{equation*}
$$

(ii) The jump of H is given by

$$
\begin{equation*}
[H]=\sigma \omega \times[D] . \tag{3.25}
\end{equation*}
$$

(iii) The three vectors $\omega,[D]$ and $[E]$ are coplanar.
(iv) The propagation speed σ satisfies

$$
\begin{equation*}
\sigma^{2}=\frac{[D]^{T}[E]}{|[D]|^{2}} \tag{3.26}
\end{equation*}
$$

Hence by lemma 3.6, $\left.\sigma^{2} \in\right] 0,1[$.
Proof. Necessary conditions. It is obvious that $\omega^{T}[D]=\omega^{T}[H]=0$ and

$$
\begin{equation*}
[D]^{T}[H]=0, \quad[E]^{T}[H]=0 \tag{3.27}
\end{equation*}
$$

We obtain (3.25) by using (3.19-1) and (3.20) in

$$
[H]=\left([H]^{T} \omega\right) \omega-\omega \times(\omega \times[H])
$$

By (3.25) and (3.27) we have

$$
[E]^{T}(\omega \times[D])=0
$$

which means that $\omega,[D]$ and $[E]$ are coplanar. By (3.19) we have

$$
\sigma^{2}[D]=-\omega \times(\omega \times[E])
$$

hence

$$
\sigma^{2}[D]=[E]-\left(\omega^{T}[E]\right) \omega
$$

By scalar product of the previous expression with $[D]$ one finds (3.26).
Sufficient conditions. On the one hand

$$
\sigma[D]=-\sigma \omega \times(\omega \times[D])
$$

because $\omega^{T}[D]=0$. We deduce (3.19-1). On the other hand, by (iii), there exist two real numbers α and β such that

$$
[E]=\alpha[D]+\beta \omega
$$

hence

$$
[E]^{T}[D]=\alpha|[D]|^{2}, \quad \omega^{T}[E]=\beta
$$

By (3.26) $\alpha=\sigma^{2}$ and so

$$
[E]=\sigma^{2}[D]+\left([E]^{T} \omega\right) \omega
$$

which implies

$$
\sigma[H]=\sigma^{2} \omega \times[D]=\omega \times[E]
$$

hence (3.19-2) and the result.
Remark 3.8. It is easy to verify that

$$
\omega^{T}([E] \times[D])=\omega^{T}\left(E_{+} \times E_{-}\right)\left(\left|E_{+}\right|^{2}-\left|E_{-}\right|^{2}\right)
$$

so $\omega,[D]$ and $[E]$ are coplanar if and only if

$$
\begin{equation*}
\omega^{T}\left(E_{+} \times E_{-}\right)\left(\left|E_{+}\right|^{2}-\left|E_{-}\right|^{2}\right)=0 \tag{3.28}
\end{equation*}
$$

The fields related to the eigenvalues λ such that $\lambda^{2}=\left(1+|E|^{2}\right)^{-1}$ are linearly degenerate. The associated contact discontinuities are characterized as follows:

Proposition 3.9. A discontinuity σ, u_{+}, u_{-}is a contact discontinuity associated to an eigenvalue λ such that $\lambda^{2}=\left(1+|E|^{2}\right)^{-1}$ if and only if

$$
\left\{\begin{array}{l}
\left|E_{+}\right|=\left|E_{-}\right| \tag{3.29}\\
\sigma^{2}=\left(1+\left|E_{+}\right|^{2}\right)^{-1}=\left(1+\left|E_{-}\right|^{2}\right)^{-1}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\omega^{T}[E]=0 \tag{3.30}\\
{[H]=\sigma \omega \times[D] .}
\end{array}\right.
$$

Moreover the only discontinuities satisfying Rankine-Hugoniot conditions (3.19) and such that $\left|E_{-}\right|=\left|E_{+}\right|$are the above contact discontinuities.

Proof. Condition (3.29) is equivalent to condition (3.21), so the first part is a consequence of proposition 3.7.

Finally if a discontinuity satisfies (3.19) and $\left|E_{-}\right|=\left|E_{+}\right|$then the expression (3.26) implies (3.29) and therefore it is a contact discontinuity associated to an eigenvalue λ such that $\lambda^{2}=\left(1+|E|^{2}\right)^{-1}$. $\mathbf{\square}$

At this point, it remains to study the discontinuities which are neither stationnary nor contact discontinuities related to an eigenvalue λ such that $\lambda^{2}=\left(1+|E|^{2}\right)^{-1}$, that is all those for which the jump of $|E|$ is not zero. By (3.28) such discontinuities are such that E_{+}, E_{-}and ω are coplanar (hence also are D_{+}, D_{-}and ω). Modifying only the property (iii) in proposition 3.7 we obtain the following characterization: Proposition 3.10. The non trivial discontinuities satisfying (3.19) with a non zero jump of $|E|\left(\left|E_{+}\right| \neq\left|E_{-}\right|\right)$are the $\sigma, u_{+}, u_{-},\left(D_{+} \neq D_{-}\right)$such that formulae (3.24), (3.25), (3.26) hold and the three vectors ω, D_{+}, D_{-}are coplanar ie

$$
\begin{equation*}
\omega^{T}\left(D_{+} \times D_{-}\right)=0 \tag{3.31}
\end{equation*}
$$

In the following the discontinuities satisfying the previous conditions are called shocks.

Let us recall that for a fixed left state u_{-}the Hugoniot set of u_{-}, denoted $\mathcal{H}\left(u_{-}\right)$, is the set of the right states u_{+}such that there exists a shock connecting u_{-}and u_{+}. We denote then $\sigma=\sigma\left(u_{+}, u_{-}\right)$the shock velocity. One can give a similar definition by fixing the right state.

In proposition 3.10 the coplanarity condition is trivial if $D_{-} \times \omega=0$ or $D_{+} \times \omega=0$. Two cases are under consideration.
Proposition 3.11. Case $D_{-} \times \omega \neq 0$.
Let $u_{-}=\left(D_{-}, H_{-}\right)$be a fixed left state such that $D_{-} \times \omega \neq 0$. Let ζ be a unitary vector orthogonal to ω in the plane defined by $\left(\omega, D_{-}\right)$.

The set $\mathcal{H}\left(u_{-}\right)$of the right states u_{+}connected to u_{-}by a shock is the union of two curves $\mathcal{H}^{ \pm}\left(u_{-}\right)$parametrized by $d \in \mathbb{R}$ and constructed as follows: $\mathcal{H}^{+}\left(u_{-}\right)$(resp $\left.\mathcal{H}^{-}\left(u_{-}\right)\right)$is the set of $\left(D_{+}, H_{+}\right) \in \mathbb{R}^{6}$ such that

$$
D_{+}=\left(\omega^{T} D_{-}\right) \omega+d \zeta, \quad d \in \mathbb{R}
$$

σ satisfies (3.26), $\sigma>0$ (resp $\sigma<0$) and H_{+}satisfies (3.25).
One can describe similarly the set of left states connected by a shock to u_{+}such that $D_{+} \times \omega \neq 0$.

The proof is immediate. Let us remark that if

$$
D_{-}=\left(\omega^{T} D_{-}\right) \omega+d_{-} \zeta
$$

then $[D]=0$ if and only if $d_{+}=d_{-}$, and $\left|E_{+}\right|=\left|E_{-}\right|$if and only if $d_{+}= \pm d_{-}$.
Proposition 3.12. Case $D_{-} \times \omega=0$.
Let $u_{-}=\left(D_{-}, H_{-}\right)$be a fixed left state such that $D_{-} \times \omega=0$. Then the set $\mathcal{H}\left(u_{-}\right)$ of the right states connected to u_{-}by a shock is the set of $u_{+}=\left(D_{+}, H_{+}\right)$satisfying (3.24) and such that

$$
\begin{equation*}
\sigma^{2}=\lambda_{1}^{2}\left(u_{+}\right)=\left(1+\left|E_{+}\right|^{2}\right)^{-1} \tag{3.32}
\end{equation*}
$$

and H_{+}satisfies (3.25).
One can similarly describe the set of left states connected by a shock to u_{+}such that $D_{+} \times \omega=0$.

Proof. We have $D_{+}=\left(\omega^{T} D_{-}\right) \omega+d_{+} \zeta\left(d_{+} \neq 0\right)$ where ζ is an arbitrary unitary vector orthogonal to ω, which gives (3.32).
Remark 3.13. As $d_{+} \neq 0$ we have

$$
\left|D_{+}\right|>\left|D_{-}\right|
$$

so

$$
\left|E_{+}\right|>\left|E_{-}\right|
$$

and

$$
\begin{equation*}
\sigma^{2}=\lambda_{1}^{2}\left(u_{+}\right)<\lambda_{1}^{2}\left(u_{-}\right) . \tag{3.33}
\end{equation*}
$$

We have a semi contact discontinuity: the propagation speed of a contact discontinuity coincide with both the eigenvalues associated to the right state and the left state, see (3.29). Here we have only the equality with the eigenvalue related to the right state.
3.2.2. Admissible shocks We focus our attention on the admissibility of shocks in the sense of Liu or in the sense of Lax.
Definition 3.14. Let u_{-}be a left state which the Hugoniot set is a union of curves, and consider $u_{+} \in \mathcal{H}\left(u_{-}\right)$. The discontinuity is Liu-admissible if

$$
(E) \quad \sigma\left(u_{+}, u_{-}\right) \leq \sigma\left(u, u_{-}\right), \quad \forall u \in \mathcal{H}\left(u_{-}\right), u \text { between } u_{-} \text {and } u_{+} .
$$

Definition 3.15. A discontinuity σ, u_{-}, u_{+}is a Lax k-shock if

$$
\left\{\begin{array}{l}
\lambda_{k}\left(u_{+}\right)<\sigma<\lambda_{k+1}\left(u_{+}\right) \tag{3.34}\\
\lambda_{k-1}\left(u_{-}\right)<\sigma<\lambda_{k}\left(u_{-}\right) .
\end{array}\right.
$$

Liu's condition may be applied only in the presence of a shock curve. Here such a curve exists only if $D_{-} \times \omega \neq 0$.
Proposition 3.16. Let $u_{-}=\left(D_{-}, H_{-}\right)$be a fixed left state such that $D_{-} \times \omega=0$. Consider $u_{+} \in \mathcal{H}\left(u_{-}\right)$. If $\sigma<0$ the shock is not a Lax shock. If $\sigma>0$ the shock satisfies the 5-shock conditions with large inequalities:

$$
\left\{\begin{array}{l}
\lambda_{5}\left(u_{+}\right)<\sigma=\lambda_{6}\left(u_{+}\right) \\
\lambda_{4}\left(u_{-}\right)<\sigma<\lambda_{5}\left(u_{-}\right) .
\end{array}\right.
$$

Proof. For $\sigma<0$, a one-shock cannot hold because $\sigma=\lambda_{1}\left(u_{+}\right)>\lambda_{1}\left(u_{-}\right)$. A 2-shock cannot hold because $\lambda_{2}\left(u_{+}\right)>\sigma$.

For $\sigma>0$: the first inequality is true because $D_{+} \times \omega \neq 0$. Moreover $\lambda_{4}=0$ and $\lambda_{5}\left(u_{-}\right)=\lambda_{6}\left(u_{-}\right)$hence following (3.33) we obtain the desired inequalities. \square
Remark 3.17. One obtains a similar result with $\sigma<0$ by considering the Hugoniot set of a fixed right state such that $D_{+} \times \omega=0$.
If the shock satisfies the conditions of proposition 3.11 then we may study Liu's condition. With the same notations as in this proposition, let u_{-}be such that $D_{-} \times$ $\omega \neq 0$:

$$
D_{-}=d_{1} \omega+d_{-} \zeta, \quad d_{1}=\omega^{T} D_{-}, \quad d_{-} \neq 0 .
$$

Consider $u \in \mathcal{H}\left(u_{-}\right)$:

$$
\begin{equation*}
D=d_{1} \omega+d \zeta . \tag{3.35}
\end{equation*}
$$

In order to characterize the admissibility conditions (E) or (3.34) we first express σ as a function of parameter d in (3.35). We have

$$
\mathbf{P}(D)=E=e_{1} \omega+e \zeta
$$

with

$$
e=\frac{d}{1+|E|^{2}}=\frac{d}{1+p\left(\sqrt{d_{1}^{2}+d^{2}}\right)^{2}}:=f(d) .
$$

As $[D]=[d] \zeta, \sigma^{2}=\frac{[e]}{[d]}$ and hence

$$
\begin{equation*}
\sigma^{2}\left(u, u_{-}\right)=\frac{f(d)-f\left(d_{-}\right)}{d-d_{-}} . \tag{3.36}
\end{equation*}
$$

Let us remark that if $d_{1}=0$ we have $p(d)=f(d)$ so (3.36) reduces to (2.6). In fact we show in the following lemma that the functions f and p have the same qualitative properties.
Lemma 3.18. The function f owns the following properties:
(i) $f(0)=0, f^{\prime}(0)=\left(1+e_{1}^{2}\right)^{-1}, f^{\prime \prime}(0)=0$,
(ii) f is an odd increasing function,
(iii)f is strictly convex on $]-\infty, 0]$, strictly concave on $[0,+\infty[$.

Proof. We have

$$
\begin{equation*}
f^{\prime}(d)=\frac{1}{1+|E|^{2}}-\frac{2 e d}{\left(1+3|E|^{2}\right)\left(1+|E|^{2}\right)^{2}}=\lambda_{2}^{2}(D, \omega) . \tag{3.37}
\end{equation*}
$$

and using (3.11)

$$
\begin{aligned}
f^{\prime \prime}(d) & =-\frac{2\left(e e_{1} \omega^{T}+e \zeta^{T}\right)}{\left(1+|E|^{2}\right)^{2}}\left[-\frac{2 e e_{1}}{\left(1+|E|^{2}\right)\left(1+3|E|^{2}\right)} \omega+\frac{1+3 e_{1}^{2}+e^{2}}{\left(1+|E|^{2}\right)\left(1+3|E|^{2}\right)} \zeta\right] \\
& =-\frac{2 e}{\left(1+|E|^{2}\right)^{2}\left(1+3|E|^{2}\right)} .
\end{aligned}
$$

As a consequence we have the following lemma.
Lemma 3.19. For all $d_{-} \neq 0$ there exists an unique $d^{*}\left(d_{-}\right) \neq d_{-}$such that

$$
f^{\prime}\left(d^{*}\right)=\frac{f\left(d^{*}\right)-f\left(d_{-}\right)}{d^{*}-d_{-}} .
$$

Moreover $d^{*}\left(d_{-}\right) d_{-}<0$ and $\left|d^{*}\left(d_{-}\right)\right|<\left|d_{-}\right|$.
We now give the characterization of Liu-admissible shocks:
Proposition 3.20. The Liu-admissible shocks are 2-shocks or 5-shocks.
For the 2-shocks $(\sigma<0)$, consider u_{-}with $D_{-} \times \omega \neq 0$ and $u_{+} \in \mathcal{H}^{-}\left(u_{-}\right)$. The discontinuity is Liu-admissible if and only if d_{+}belongs to the interval with extremities d_{-}, $d^{*}\left(d_{-}\right)$.
For the 5-shocks $(\sigma>0)$, consider u_{-}with $D_{-} \times \omega \neq 0$ and $u_{+} \in \mathcal{H}^{+}\left(u_{-}\right)$. The discontinuity u_{-}, u_{+}, σ is Liu-admissible if and only if $\left|d_{+}\right|>\left|d_{-}\right|$and $d_{+} d_{-}>0$.

Proof. Using formulas (3.36) and (3.37) we observe that

$$
\lim _{u \rightarrow u_{-}} \sigma^{2}\left(u, u_{-}\right)=\lambda_{2}^{2}\left(D_{-}, \omega\right)=\lambda_{5}^{2}\left(D_{-}, \omega\right)
$$

and

$$
2 \sigma \sigma^{\prime}(d)=\frac{1}{d-d_{-}}\left(f^{\prime}(d)-\frac{f(d)-f\left(d_{-}\right)}{d-d_{-}}\right)
$$

Let us remark that these shock conditions are analogous to the ones found in part 2 for the 2×2 case.

We conclude this section by the following proposition.
Proposition 3.21. The Lax-admissible shocks are 2-shocks or 5-shocks.
For the 2-shocks $(\sigma<0)$, consider u_{-}with $D_{-} \times \omega \neq 0$ and $u_{+} \in \mathcal{H}^{-}\left(u_{-}\right)$. The discontinuity is Lax-admissible if and only if $\left|d_{+}\right|<\left|d_{-}\right|$and $d_{+} d_{-}>0$.
For the 5-shocks $(\sigma>0)$, consider u_{-}with $D_{-} \times \omega \neq 0$ and $u_{+} \in \mathcal{H}^{+}\left(u_{-}\right)$. The discontinuity u_{-}, u_{+}, σ is Lax-admissible if and only if $\left|d_{+}\right|>\left|d_{-}\right|$and $d_{+} d_{-}>0$.

Proof. We prove the case $\sigma<0$ only, the other one is similar. For a Lax-admissible shock we need the condition

$$
\lambda_{2}\left(u_{+}\right)<\lambda_{2}\left(u_{-}\right)(<0)
$$

By (3.37) it is equivalent to

$$
f^{\prime}\left(d_{+}\right)>f^{\prime}\left(d_{-}\right)
$$

so $\left|d_{+}\right|<\left|d_{-}\right|$. The condition $\lambda_{1}\left(u_{-}\right)<\sigma<\lambda_{3}\left(u_{+}\right)$writes

$$
\begin{equation*}
\frac{1}{1+\left|E_{-}\right|^{2}}>\frac{d_{+}\left(1+\left|E_{-}\right|^{2}\right)-d_{-}\left(1+\left|E_{+}\right|^{2}\right)}{\left(d_{+}-d_{-}\right)\left(1+\left|E_{-}\right|^{2}\right)\left(1+\left|E_{+}\right|^{2}\right)} \tag{3.38}
\end{equation*}
$$

If $\left.d_{-}<0, d_{+} \in\right] d_{-},-d_{-}[$and the above inequality is equivalent to

$$
d_{+}\left(\left|E_{+}\right|^{2}-\left|E_{-}\right|^{2}\right)>0
$$

Moreover $\left|E_{+}\right|^{2}<\left|E_{-}\right|^{2}$ because p is an increasing function and $\left|d_{+}\right|<\left|d_{-}\right|$. So the Lax condition is satisfied if $d_{+}<0$ only.

If $\left.d_{-}>0, d_{+} \in\right]-d_{-}, d_{-}[$so (3.38) writes

$$
d_{+}\left(\left|E_{+}\right|^{2}-\left|E_{-}\right|^{2}\right)<0
$$

So the Lax condition is satisfied if $d_{+}>0$ only.
Reciprocally let us suppose that $\left|d_{+}\right|<\left|d_{-}\right|$and $d_{-} d_{+}>0$. The condition (3.34) follows from (3.36).
REMARK 3.22. The Lax shocks are the Liu shocks such that $d_{+} d_{-}>0$, for the 5shocks Lax and Liu shocks coincide.
3.3. Shock profiles In this part, we consider a plane Kerr discontinuity which is not a contact discontinuity, in particular $\sigma \neq 0$. By proposition 3.9 we suppose that

$$
\begin{equation*}
\left|E_{+}\right| \neq\left|E_{-}\right| . \tag{3.39}
\end{equation*}
$$

By proposition 3.10 we have $(3.24), D_{+}, D_{-}, E_{+}, E_{-}$et ω are coplanar, σ satisfies (3.26) and H satisfies (3.25).

Our goal is to construct a Kerr-Debye relaxation shock profile. We therefore look for a smooth function W such that

$$
\begin{equation*}
(D, H, \mathcal{X})(x, t)=W\left(\frac{1}{\epsilon}(x . \omega-\sigma t)\right)=W(\xi) \tag{3.40}
\end{equation*}
$$

is a solution of (1.1) and satisfies

$$
\begin{equation*}
W(\pm \infty)=\left(D_{ \pm}, H_{ \pm}, \chi_{ \pm}\right) \tag{3.41}
\end{equation*}
$$

where $\left(D_{ \pm}, \chi_{ \pm}\right)$is in the equilibrium manifold

$$
\left\{(D, \chi) ;(1+\chi)^{-2}|D|^{2}-\chi=0\right\}
$$

so that

$$
\begin{equation*}
\chi_{ \pm}=\left|E_{ \pm}\right|^{2} \tag{3.42}
\end{equation*}
$$

and by (3.39)

$$
\begin{equation*}
\chi_{+} \neq \chi_{-} . \tag{3.43}
\end{equation*}
$$

Hence the profile we look for is a smooth solution of the ordinary differential system

$$
\left\{\begin{array}{l}
(-\sigma D-\omega \times H)^{\prime}=0 \tag{3.44}\\
\left(-\sigma H+\omega \times(1+\mathcal{X})^{-1} D\right)^{\prime}=0 \\
-\sigma \mathcal{X}^{\prime}=(1+\mathcal{X})^{-2}|D|^{2}-\mathcal{X}
\end{array}\right.
$$

defined on \mathbb{R} and satisfying (3.41). Let us remark that as $\sigma \neq 0$, those profiles are divergence free, which reads as

$$
\begin{equation*}
\omega^{T} D^{\prime}=\omega^{T} H^{\prime}=0 \tag{3.45}
\end{equation*}
$$

Proposition 3.23. If there exists a shock profile then the solution component $\mathcal{X}(\xi)$ is a solution of the ordinary differential equation

$$
\begin{equation*}
\sigma \mathcal{X}^{\prime}=\mathcal{X}-\frac{\left|\omega^{T} D_{ \pm}\right|^{2}}{(1+\mathcal{X})^{2}}-\frac{\theta\left(\chi_{ \pm}\right)\left(1+\chi_{ \pm}\right)^{-2}\left|\omega \times\left(\omega \times D_{ \pm}\right)\right|^{2}}{\theta(\mathcal{X})} \tag{3.46}
\end{equation*}
$$

where $\theta(\mathcal{X})=(T(\mathcal{X}))^{2}=\left(\sigma^{2}(1+\mathcal{X})-1\right)^{2}$ as long as $\mathcal{X} \neq-1$ and $\mathcal{X} \neq \frac{1-\sigma^{2}}{\sigma^{2}}$.
Proof. Eliminating H between (3.44-1) and (3.44-2) we have

$$
\left(\sigma^{2} D+(1+\mathcal{X})^{-1} \omega \times(\omega \times D)\right)^{\prime}=0
$$

Hence

$$
\begin{equation*}
\sigma^{2} D+(1+\mathcal{X})^{-1} \omega \times(\omega \times D)=\sigma^{2} D_{ \pm}+\left(1+\chi_{ \pm}\right)^{-1} \omega \times\left(\omega \times D_{ \pm}\right) \tag{3.47}
\end{equation*}
$$

the compatibility between right and left values being insured by Rankine-Hugoniot conditions and by (3.42). On another hand, using the fact that $D=\left(\omega^{T} D\right) \omega-\omega \times$ $(\omega \times D)$ along with (3.45) and (3.47) we have

$$
\sigma^{2} D+(1+\mathcal{X})^{-1} \omega \times(\omega \times D)=\sigma^{2}\left(\omega^{T} D_{ \pm}\right) \omega-T\left(\chi_{ \pm}\right)\left(1+\chi_{ \pm}\right)^{-1} \omega \times\left(\omega \times D_{ \pm}\right) .
$$

Therefore

$$
\theta(\mathcal{X})(1+\mathcal{X})^{-2}|\omega \times(\omega \times D)|^{2}=\theta\left(\chi_{ \pm}\right)\left(1+\chi_{ \pm}\right)^{-2}\left|\omega \times\left(\omega \times D_{ \pm}\right)\right|^{2} .
$$

It follows that as long as $\mathcal{X} \neq-1$ and $\mathcal{X} \neq \frac{1-\sigma^{2}}{\sigma^{2}}$

$$
(1+\mathcal{X})^{-2}|D|^{2}=\frac{\left|\omega^{T} D_{ \pm}\right|^{2}}{(1+\mathcal{X})^{2}}+\frac{\theta\left(\mathcal{X}_{ \pm}\right)\left(1+\chi_{ \pm}\right)^{-2}\left|\omega \times\left(\omega \times D_{ \pm}\right)\right|^{2}}{\theta(\mathcal{X})}
$$

and (3.46) follows by (3.44-3).
Let us now study the right hand side of (3.46), which we denote ψ. If the profile exists then there exists a smooth solution of (3.46) with $\mathcal{X}(\pm \infty)=\chi_{ \pm}, \chi_{+}$and χ_{-} must be two consecutive zeros of ψ and ψ must keep a constant sign between those two values. Therefore ψ is a monotone non constant function on this interval, which implies that

$$
\chi_{+} \neq \chi_{-} .
$$

This is true by (3.39), due to the fact that we do not consider contact discontinuities.
The function ψ writes

$$
\begin{equation*}
\psi(\mathcal{X})=\mathcal{X}-\varphi(\mathcal{X}), \quad \varphi(\mathcal{X})=\frac{a}{(1+\mathcal{X})^{2}}+\frac{b}{\theta(\mathcal{X})} \tag{3.48}
\end{equation*}
$$

with

$$
a=\left|\omega^{T} D_{ \pm}\right|^{2}, \quad b=\theta\left(\chi_{ \pm}\right)\left(1+\chi_{ \pm}\right)^{-2}\left|\omega \times\left(\omega \times D_{ \pm}\right)\right|^{2} .
$$

These two coefficients are non negative. In (3.48) we cannot have $b=0$ and $a>0$ because otherwise

$$
\psi(\mathcal{X})=\mathcal{X}-\frac{a}{(1+\mathcal{X})^{2}}
$$

has only one zero. As a consequence we have

$$
\left\{\begin{array}{l}
D_{-} \times \omega \neq 0, \tag{3.49}\\
D_{+} \times \omega \neq 0
\end{array}\right.
$$

The only zero of $T(\mathcal{X})$ is $\bar{\chi}=\frac{1-\sigma^{2}}{\sigma^{2}}$ and by lemma 3.6

$$
\begin{equation*}
\bar{\chi}>0 . \tag{3.50}
\end{equation*}
$$

Furthermore let us remark that

$$
\begin{align*}
& T\left(\chi_{+}\right)=\frac{1}{1+\chi_{-}}\left(\chi_{-}-\chi_{+}\right) \frac{D_{-}^{T}\left(D_{+}-D_{-}\right)}{\left|D_{+}-D_{-}\right|^{2}} \tag{3.51}\\
& T\left(\chi_{-}\right)=\frac{1}{1+\chi_{+}}\left(\chi_{-}-\chi_{+}\right) \frac{D_{+}^{T}\left(D_{+}-D_{-}\right)}{\left|D_{+}-D_{-}\right|^{2}}
\end{align*}
$$

Fig. 3.1. Representation of the function φ in (3.48). Left: $a=0 \quad\left(\chi_{-}=1.74, \chi_{+}=0.18, \bar{\chi}=\right.$ 1.36). Right: $a \neq 0\left(\chi_{-}=1.74, \chi_{+}=0.23, \bar{\chi}=1.38\right)$.

If $b=0$ and (3.49) holds, then $\theta\left(\chi_{ \pm}\right)=0$. If $\theta\left(\chi_{+}\right)=0$, then

$$
D_{-}^{T}\left(D_{+}-D_{-}\right)=0
$$

and so $D_{-} \times \omega=0$, which is in contradiction with (3.49-1). The same holds with $\theta\left(\chi_{-}\right)=0$. Consequently

$$
\begin{equation*}
\theta\left(\chi_{-}\right) \neq 0, \quad \theta\left(\chi_{+}\right) \neq 0 \tag{3.52}
\end{equation*}
$$

which is also equivalent to

$$
\begin{equation*}
\chi_{-} \neq \bar{\chi}, \quad \chi_{+} \neq \bar{\chi} \tag{3.53}
\end{equation*}
$$

As a consequence $\psi\left(\chi_{ \pm}\right)$is well defined and we obtain

$$
\begin{equation*}
\psi\left(\chi_{-}\right)=\psi\left(\chi_{+}\right)=0 \tag{3.54}
\end{equation*}
$$

As $b>0, \bar{\chi}$ is a singularity for ψ. If $a=0$ then the function φ is convex on $]-\infty, \bar{\chi}[$ and on $] \bar{\chi},+\infty[, \varphi(\pm \infty)=0, \varphi(\bar{\chi} \pm 0)=+\infty$, see Fig. 3.1 (left). If $a>0$, the function φ is convex on the intervals $]-\infty,-1[]-1,, \bar{\chi}[$ and $] \bar{\chi},+\infty[, \varphi(\pm \infty)=0, \varphi(\bar{\chi} \pm 0)=+\infty$, and $\varphi(\bar{\chi} \pm 0)=+\infty$, see Fig. 3.1 (right).

In both cases, if the profile exists, the zeros χ_{-}and χ_{+}of ψ are necessarily in the interval $] 0, \bar{\chi}[$, which we may characterize by

$$
T\left(\chi_{+}\right)<0, \quad \text { and } \quad T\left(\chi_{-}\right)<0
$$

or, using (3.51), by

$$
\left\{\begin{array}{l}
\left(\chi_{-}-\chi_{+}\right) D_{-}^{T}\left(D_{+}-D_{-}\right)<0 \tag{3.55}\\
\left(\chi_{-}-\chi_{+}\right) D_{+}^{T}\left(D_{+}-D_{-}\right)<0
\end{array}\right.
$$

Let us denote $\chi_{m}=\min \left(\chi_{-}, \chi_{+}\right), \chi_{M}=\max \left(\chi_{-}, \chi_{+}\right)$. Then, $\left.\left[\chi_{m}, \chi_{M}\right] \subset\right] 0, \bar{\chi}[$ and ψ is positive on $] \chi_{m}, \chi_{M}\left[\right.$, so $\sigma>0$ implies $\chi_{-}=\chi_{m}$ and $\chi_{+}=\chi_{M}, \sigma<0$ implies $\chi_{-}=\chi_{M}$ and $\chi_{+}=\chi_{m}$. In order to explicit condition (3.55) we use the notations of proposition 3.11.

$$
\left\{\begin{array}{l}
D_{+}=d_{1} \omega+d_{+} \zeta \tag{3.56}\\
D_{-}=d_{1} \omega+d_{-} \zeta
\end{array}\right.
$$

with $d_{+} \neq d_{-}$and, by (3.49) $d_{+} \neq 0$ and $d_{-} \neq 0$. Then (3.55) reads as

$$
\left\{\begin{array}{l}
d_{-}\left(\chi_{+}-\chi_{-}\right)\left(d_{+}-d_{-}\right)>0 \tag{3.57}\\
d_{+}\left(\chi_{+}-\chi_{-}\right)\left(d_{+}-d_{-}\right)>0
\end{array}\right.
$$

which impose that

$$
\begin{equation*}
d_{-} d_{+}>0 \tag{3.58}
\end{equation*}
$$

Moreover $\chi_{+}=\left(p\left(\sqrt{d_{1}^{2}+d_{ \pm}^{2}}\right)\right)^{2}$ so that $\chi_{-}<\chi_{+}$if and only if $d_{-}^{2}<d_{+}^{2}$.
If $d_{-}>0$ and $d_{+}>0$ then $\chi_{-}<\chi_{+}$if and only if $0<d_{-}<d_{+}$, and so we have (3.57).

If $d_{-}<0$ and $d_{+}<0$ then $\chi_{-}<\chi_{+}$if and only if $d_{+}<d_{-}<0$, and so we have (3.57) again.

As a conclusion, χ_{-}and χ_{+}belong to the interval $] 0, \bar{\chi}$ if and only if inequality (3.58) holds in (3.56).

If $\sigma>0$ it is a 5 -shock, \mathcal{X} is an increasing function from χ_{-}to χ_{+}, so $\left|d_{-}\right|<\left|d_{+}\right|$ and $d_{+} d_{-}>0$ so the shock is admissible in the sense of Lax (and Liu).

If $\sigma<0$ it is a 2 -shock, \mathcal{X} is a decreasing function from χ_{-}to χ_{+}, so $\left|d_{-}\right|>\left|d_{+}\right|$ and according to proposition 3.21 condition (3.58) impose that the shock is admissible in the sense of Lax.

Reciprocally, let us consider a shock as defined in proposition 3.10 and suppose that condition (3.58) is satisfied (so we have also (3.49)). Then χ_{-}and χ_{+}are in the interval $] 0, \bar{\chi}[$ and ψ is positive on $] \chi_{m}, \chi_{M}[$.

If $\sigma>0, \chi_{-}<\chi_{+}$there exists a solution \mathcal{X} of (3.46) with $\mathcal{X}(\pm \infty)=\chi_{ \pm}$and \mathcal{X} is an increasing function.

If $\sigma<0, \chi_{+}<\chi_{-}$there exists a solution \mathcal{X} of (3.46) with $\mathcal{X}(\pm \infty)=\chi_{ \pm}$and \mathcal{X} is a decreasing function.

We compute D by using the fact that

$$
D=\left(\omega^{T} D\right) \omega-\omega \times(\omega \times D), \quad \omega^{T} D=\omega^{T} D_{ \pm}
$$

and

$$
\omega \times(\omega \times D)=T(\mathcal{X})^{-1}(1+\mathcal{X}) T\left(\chi_{ \pm}\right)\left(1+\chi_{ \pm}\right)^{-1} \omega \times\left(\omega \times D_{ \pm}\right)
$$

and the expression of H is obtained by using (3.44-2).
TheOrem 3.24. Consider a shock as defined in proposition 3.10. There exists a Kerr-Debye profile for it if and only if it is a Lax 2-shock or a Lax 5-shock.
3.4. Revisited one-dimensional cases The plane discontinuities of Kerr system (1.2) are weak solutions of a 6×6 one-dimensional system. Without loss of generality we can assume that $\omega=(1,0,0)$ and then if we denote $x=x_{1}$ this system writes

$$
\left\{\begin{array}{l}
\partial_{t} D_{1}=0 \tag{3.59}\\
\partial_{t} D_{2}+\partial_{x} H_{3}=0 \\
\partial_{t} D_{3}-\partial_{x} H_{2}=0 \\
\partial_{t} H_{1}=0 \\
\partial_{t} H_{2}-\partial_{x} \mathbf{P}_{3}(D)=0 \\
\partial_{t} H_{3}+\partial_{x} \mathbf{P}_{2}(D)=0
\end{array}\right.
$$

The divergence free conditions write

$$
\begin{equation*}
\partial_{x} D_{1}=0, \quad \partial_{x} H_{1}=0 \tag{3.60}
\end{equation*}
$$

so that D_{1} and H_{1} are constant. Let us look for discontinuities such that

$$
\begin{align*}
& D_{-}=\left(0, d_{-} \neq 0,0\right), H_{-}=\left(H_{1}, 0, h_{-}\right) \tag{3.61}\\
& D_{+}=\left(0, d_{+}, D_{3,+}\right), H_{+}=\left(H_{1}, H_{2,+}, h_{+}\right) .
\end{align*}
$$

A contact discontinuity (for the 1 or 6 characteristic fields) satisfies conditions (3.29) and (3.30), so we have

$$
d_{+}^{2}+D_{3,+}^{2}=d_{-}^{2}
$$

If moreover $D_{3,+}=0$, then $H_{2,+}=0$ and $(d, h)=\left(D_{2}, H_{3}\right)$ is a weak solution of the 2×2, one dimensional system (1.6). In this case $d_{+}=-d_{-}$and this weak solution is not a Liu admissible solution of (1.6).

If a contact discontinuity does not hold then $d_{+}^{2}+D_{3,+}^{2} \neq d_{-}^{2}$ and by (3.31) $D_{3,+}=$ 0 , hence by (3.59) $H_{2,+}=0$. Such a weak solution is necessarily a 2 -shock or a 5 -shock, the condition $D_{-} \times \omega \neq 0$ reads as $d_{-} \neq 0$, propositions $3.20,3.21$ directly apply. As before, $(d, h)=\left(D_{2}, H_{3}\right)$ is a weak solution of the 2×2 one-dimensional system (1.6). This weak solution is a 1-Liu shock (resp 2- Liu shock) of system (1.6) if and only if it is a 2 -Liu shock (resp 5 -Liu shock) of system (3.59).

Let us remark that for the 2×2 system (1.6), Liu and Lax admissibility of shock coincide but this is not the case for the 6×6 system (3.59) where the Lax condition must be more restrictive, cf remark 10. As a conclusion we can see that for the system (3.59) the Lax-admissibility of a shock is characterized by the existence of a related Kerr-Debye relaxation profile.

REFERENCES

[1] D. Aregba-Driollet and C. Berthon. Numerical approximation of Kerr-Debye equations. Preprint 2009.
[2] A. Bressan. Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem. Oxford Lecture Series in Mathematics and its Applications, 20. Oxford University Press, Oxford, 2000.
[3] G. Carbou and B. Hanouzet. Relaxation approximation of some nonlinear Maxwell initialboundary value problem. Commun. Math. Sci. 4 (2006), no. 2, 331-344.
[4] G. Carbou and B. Hanouzet. Relaxation approximation of Kerr Model for the three dimensional initial-boundary value problem. J. Hyperbolic Differ. Equ. 6 (2009), no. 3, 577-614.
[5] G.Q. Chen, C.D. Levermore, T.P. Liu, Hyperbolic Conservation Laws with Stiff Relaxation Terms and Entropy. Comm. Pure Appl. Math. 47 (1995), 787-830.
[6] A. de La Bourdonnaye, High-order scheme for a nonlinear Maxwell system modelling Kerr effect, J. Comput. Phys., 160 (2000), 500-521.
[7] A. Dressel, W.-A. Yong, Existence of traveling-wave solutions for hyperbolic systems of balance laws. Arch. Ration. Mech. Anal. 182 (2006), no. 1, 49-75.
[8] B. Hanouzet and P. Huynh. Approximation par relaxation d'un système de Maxwell non linéaire. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 3, 193-198.
[9] L. Hsiao and R. Pan. Zero relaxation limit to centered rarefaction waves for a rate-type viscoelastic system. J. Differential Equations 157 (1999), no. 1, 20-40.
[10] H. Li and R. Pan. Zero relaxation limit for piecewise smooth solutions to a rate-type viscoelastic system in the presence of shocks. J. Math. Anal. Appl. 252 (2000), no. 1, 298-324.
[11] T.-P. Liu. The Riemann problem for general 2×2 conservation laws. Trans. Amer. Math. Soc. 199 (1974), 89-112.
[12] T.-P. Liu. The entropy condition and the admissibility of shocks. J. Math. Anal. Appl. 53 (1976), no. 1, 78-88.
[13] T.-P. Liu. Hyperbolic conservation laws with relaxation. Comm. Math. Phys. 108 (1987), no. 1, 153-175.
[14] C. Mascia and K. Zumbrun. Spectral stability of weak relaxation shock profiles. Comm. Partial Differential Equations 34 (2009), no. 1-3, 119-136.
[15] A. Majda and L. Pego. Stable viscosity matrices for systems of conservation laws. J. Differential Equations 56 (1985), no. 2, 229-262.
[16] R. Natalini, Recent results on hyperbolic relaxation problems, in Analysis of systems of conservation laws (Aachen, 1997), 128-198, Chapman Hall/CRC Monogr. Surv. Pure Appl. Math., 1999.
[17] D. Serre. Systèmes de lois de conservation I. and II. Diderot, Paris, 1996. Cambridge University Press, Cambridge, 1999 for the english translation (Systems of conservation laws I. and II.)
[18] Y.-R. Shen. The Principles of Nonlinear Optics. Wiley Interscience, 1994.
[19] Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14 (1985), no. 2, 249-275.
[20] A.E. Tzavaras. Materials with internal variables and relaxation to conservation laws. Arch. Ration. Mech. Anal. 146 (1999), no. 2, 129-155.
[21] B Wendroff. The Riemann problem for materials with nonconvex equations of state. I. Isentropic flow. J. Math. Anal. Appl. 38, (1972), 454-466.
[22] W.-A. Yong. Singular perturbations of first-order hyperbolic systems with stiff source terms. J. Differential Equations 155 (1999), no. 1, 89-132.
[23] W.-A. Yong and K. Zumbrun. Existence of relaxation shock profiles for hyperbolic conservation laws. SIAM J. Appl. Math. 60 (2000), no. 3, 1565-1575.
[24] R.-W. Ziolkowski. The incorporation of microscopic material models into FDTD approach for ultrafast optical pulses simulations. IEEE Transactions on Antennas and Propagation 45(3):375-391, 1997.

[^0]: *Institut de Mathématiques de Bordeaux, UMR 5251, Université de Bordeaux, 351 cours de la libération, 33405 Talence Cedex, France. aregba@math.u-bordeaux1.fr
 † Institut de Mathématiques de Bordeaux, UMR 5251, Université de Bordeaux, 351 cours de la libération, 33405 Talence Cedex, France. hanouzet@math.u-bordeaux1.fr

