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a b s t r a c t

In situ tensile tests were performed at room temperature on a ferrite–cementite steel specifically

designed for this study. The evolution of the average stress in ferrite during loading was analyzed by X-

ray diffraction. Lattice strain measurements were performed with synchrotron ring diffraction in both

ferrite and cementite. These in situ tests were complemented by macroscopic tensile and reversible

tensile-compression tests to study the Bauschinger effect. In order to reproduce stresses in ferrite and

cementite particles, a recently developed micromechanical Internal Length Mean Field (ILMF) model

based on a generalized self-consistent scheme is applied. In this designed ferrite–cementite steel, the

third ‘‘phase’’ of the model represents finite intermediate ‘‘layers’’ in ferrite due to large geometrically

necessary dislocation (GND) densities around cementite particles. The assumed constant thickness of

the layers is calibrated thanks to the obtained experimental data. The ILMF model is validated by

realistic estimates of the Bauschinger stress and the large difference between mean stresses in ferrite

and in cementite phases. This difference cannot be reproduced by classic two-phase homogenization

schemes without intermediate GND layers.

1. Introduction

Nowadays, a particular attention is paid in the nuclear indus-

try to the influence of the carbide particle size on material’s

behavior and local strains and stresses with the aim of better

understanding and deriving fracture toughness in the 16MND5

steels used in nuclear reactor vessels [1]. Mean field approaches

are often used in designing heterogeneous materials, as they can

lead to reasonable estimates of the stress–strain levels in the

matrix and in the inclusions, while being very effective in terms of

computation costs. The classical mean field homogenization

methods used to model the elastic–plastic behavior of hetero-

geneous materials such as the classic self-consistent models [2,3]

or the so-called ‘‘b’’ model [4], can only reproduce particle

morphology and volume fraction effects on strain hardening

curves. However, they are unable to predict constituent size

effects as they do not include any internal length scale in their

formulation as discussed in Ref. [5].

Ferrite–cementite steels are two-phase steels which contain

cementite hard particles embedded in a ferritic soft matrix. Thus,

a high density of collective dislocation arrangements occur near

the matrix–particle interfaces in the course of plastic deformation

in ferrite. These dislocations were partially considered in Ref. [6]

by the presence in the matrix of volume-averaged ‘‘geometrically

necessary dislocation’’ (GND) density arising from plastic strain

incompatibility between the matrix and particles [7]. More

recently, better estimates have been obtained if the saturation

of Orowan loop densities is captured at the particle–matrix

interfaces [8]. GND densities, a continuous description of lattice

incompatibility due to the presence of orderly dislocations, are

associated with the development of lattice curvature and long-

range internal stresses. In contrast, the stochastic arrangement of

‘‘statistically stored dislocations’’ (SSDs) produce no net Burgers

vector and no lattice incompatibility.

Experimentally, layers of dislocations surrounding impenetrable

particles have been observed in Refs. [9,10]. Transmission electronic

microscopy (TEM) was used to qualitatively understand local disloca-

tion accumulation in the vicinity of ferrite–martensite interfaces in

dual-phase steels (DP steels) [11]. However, TEM studies have the

shortcoming that only a small area can be observed. Intermediate

layers involving large GND densities can also be determined quanti-

tatively by high resolution 2D/3D EBSD measurements as recently

done in Ref. [12] in the case of DP steels. However, many statistical

data are needed to estimate a mean value of the GND layer thickness

due to variations of lattice curvatures as functions of local slip

orientations and interface morphologies [12,13].

The present Internal Length Mean Field (ILMF) approach, first

introduced in Ref. [14] for Al/SiC alloys, consists in introducing
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GND layers of the same finite thickness that surround the

impenetrable particles. In addition to particles and matrix, these

layers were considered as a third ‘‘phase’’ in the representative

volume element (RVE) to describe the collective GND arrange-

ment near the matrix–inclusion interfaces. The thickness of the

layer was assumed constant during plastic deformation and was

estimated by unit cell Field Dislocation Mechanics (FDM) simula-

tions for Al matrices reinforced by SiC particles [14]. As a result of

these full field FDM simulations, the layer thickness was found in

the sub-micron range (�0.3 mm) and was not really dependent on

the particle size [14]. Then, this value was introduced in the ILMF

approach to capture particle size effects on the overall strain

hardening curves [14]. The layer thickness could also be reached

by Discrete Dislocation Dynamics (DDD) simulations [15].

The objective of the present paper is first to carry out lattice

strain Synchrotron diffraction measurements [16] to deduce the

per phase average stresses in cementite and ferrite in addition to

the overall stress–strain tensile curves. Second, a ‘‘mean value’’ of

the layer thickness introduced in the ILMF approach will be

‘‘calibrated’’ with the experimental per phase average stresses.

Indeed, the ratio between the layer thickness and the particle size

is expected to have a considerable impact on internal stress self-

organization around particles. In addition to the particle size

dependent overall strain hardening, it is believed here that

reproducing phase stresses altogether with the macroscopic

Bauschinger effect for a different alloy composition represents a

second and complementary validation of the ILMF approach.

The paper is organized as follows. In Section 2, the two-phase

steel constituted of ferrite and cementite is first presented along

with its main microstructural features (particle size, volume

fraction and morphology). The mechanical tests like simple

tension and reversible tension-compression are presented. The

macroscopic ‘‘Bauschinger stress’’ is also defined as a function of

forward macroscopic strain. After recalling the experimental

device for in situ strain analysis during tensile loading with both

X-Ray Diffraction (XRD) and ring diffraction techniques in

Appendix A, the resulting evolution of lattice strains and stresses

in both ferrite and cementite phases during loading are obtained

and discussed. In Section 3, the main steps of the ILMF approach

are recalled. A ‘‘3-phase’’ self-consistent approach with coated

particles is designed, which emphasizes the role of large GND

densities in the intermediate layers between the particles and the

matrix. In this generalized self-consistent scheme, the width of

this layer l is supposed to be constant and is calibrated using the

evaluations of mean stresses in both phases provided in Section 2.

In Section 4, model predictions in monotonous tension are

analyzed in comparison with experimental results. The impor-

tance of the layer thickness and the contribution of GNDs to

isotropic hardening by dislocation tangles are evidenced in terms

of the high experimental difference found between both stresses

in ferrite and cementite. The impact of the particle aspect ratio is

also discussed in Section 4. A part of the Bauschinger stress is

then estimated and discussed from the stresses in both phases

obtained at the end of the tensile stage.

2. Experimental

2.1. Material and mechanical tests

The studied material is a two-phase steel which contains

0.4 wt% C and 0.7 wt% Mn. It is constituted of ferritic grains with

average size of 15 mm and with small cementite (Fe3C) particles

as shown in Fig. 1. The processing of this steel was constituted of

a first heat treatment at 900 1C for 5 min followed by quenching.

Then, the obtained martensitic state was tempered at high

temperature (690 1C) for 60 h to obtain the designed ferrite–

cementite steel. The resulting microstructure was observed with a

JEOL 7001F SEM-FEG. The resulting Fe3C carbides are both located

in inter- and intra-granular regions (Fig. 1a). Most of particles are

located inside grains although larger particles were observed at

grain boundaries. No strong clustering of particles was observed

and their volume fraction is 5.7%. This value was determined by

neutron diffraction technique. The spatial size distribution of

particles in the ferrite matrix is displayed in Fig. 1b. This

distribution is approximately log-normal with an average particle

size of 0.73 mm. As shown in Fig. 2, the cumulated frequency of

the particle shape factor of particles obtained by image analysis

shows that the aspect ratio of carbides varies essentially between

1 and 2 with an average value of 1.5. It is noteworthy that no

specific orientation distribution was observed regarding the

particle morphology. The effect of particle aspect ratio will be

discussed in Section 4.

Constant low strain rate tension and reversible tension–

compression tests were performed at room temperature. Flat

specimens with 5 mm by 1 mm rectangular cross sections were

Fig. 1. (a) SEM image of the designed ferrite-Fe3C carbides steel with particle spatial distribution, (b) probability distribution of measured particle size D.



used. The gauge length was 24 mm and the applied strain rate

was 10�4 s�1. Fig. 3 gathers all results regarding monotonous and

reverse loadings. In addition to the monotonous tension up to 18%

of strain, three Bauschinger tests were performed after 2.3%, 4.9%

and 10% of forward tensile strain. A remarkable Bauschinger effect

was observed and reflects the presence of significant internal

stresses. A measure of the Bauschinger effect can be provided by

the so-called ‘‘Bauschinger stress’’ denoted X and defined as

X ¼ ðSð1ÞþSð2ÞÞ=2 where S(1) and S(2) are respectively the forward

macroscopic flow stress at the end of the tension stage and the

reverse macroscopic yield stress in the compression stage. Let us

note that this definition of X is half the quantity defined in Ref.

[17]. Fig. 4 reports the measured macroscopic Bauschinger stress

X as a function of macroscopic forward tensile strain. A saturation

of X with increasing tensile strain is observed. Furthermore, the

high values obtained for X suggest that the self-organization of

GNDs around cementite particles increase internal stresses. Thus,

a significant intra-phase kinematic hardening is expected in

addition to that due to the mechanical interactions between

ferritic grains only. This trend will be discussed in the light of

the stresses in both phases deduced from experiments and from

the micromechanical model in Section 4.

2.2. Results of diffraction analyses

2.2.1. XRD measurements for stress evolution in ferrite

The XRD experimental device and the stress analyses are

respectively presented in Sections A.1 and A.2 of Appendix A.

Stress analyses obtained from the XRD measurements show that

ferrite acts as the soft phase in the steel with a level of stress

lower than the macroscopic stress (Fig. 5). The observed differ-

ence between the macroscopic stress and the average stress in

ferrite increases with the applied strain without exceeding

100 MPa. It is maximum before failure for a stress in ferrite

around 520 MPa. This difference is quite the same as the one

obtained in ferrite of a pearlitic steel using neutron diffraction

[18]. Conversely, stresses in cementite should be very high during

tensile loading. It is useful to know the order of magnitude of the

maximum stress reached in this phase. Since the XRD method

does not provide directly the uniaxial stress in cementite along

the tensile direction (x1) denoted sFe3C
11 , this one can be estimated

using a simple mixture rule as follows:

S11 ¼ f Feas
Fea
11 þ f Fe3Cs

Fe3C
11 ð1Þ

where S11 is the macroscopic tensile stress, sFea
11 is the uniaxial

stress in ferrite during loading determined by XRD, fFea and f Fe3C
are respectively the volume fraction of ferrite and cementite in

the steel. The results are presented in Table 1 with an uncertainty

of 710 MPa for the stress in ferrite and 7170 MPa for the stress

in cementite. These results show that the stress in cementite can

reach values around 1500 MPa at 18% of macroscopic strain

before failure.

C
f

Shape factor

Fig. 2. Cumulated frequency (Cf) as a function of particle shape factor in the

as-received designed steel.

Fig. 3. Tensile and tension–compression tests at room temperature with quasi-

static applied strain rate.

Fig. 4. Measured Bauschinger stress X (the definition is given in the text) as a

function of forward tensile strain at room temperature with quasi-static applied

strain rate.
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2.2.2. Synchrotron ring diffraction analyses for elastic strain

evolutions

In situ tensile tests were performed at the European Synchro-

tron Radiation Facility (ESRF), using the ID11 beamline with high

energy X-rays. The stress analyses in cementite are possible using

ring diffraction measurements detailed in Appendix A. During

loading, the CeO2 calibrant (see Section A.1 of Appendix A) is

crucial for the calculation of the elastic strains from the different

rings. The different peaks of CeO2 must remain at the same 2y

position whereas the peaks of ferrite and cementite are shifting. It

is thus possible to see the gradual shift of these peaks with

increasing applied macroscopic strain (Fig. 6). Considering the

two masks defined in Section A.1 of Appendix A, the rings

integration leads to the evolution of ee11 and ee22 elastic strains

vs. macroscopic applied strain for both ferrite and cementite

phases (see Section A.2 in Appendix A). These elastic strains are

reported in Fig. 7. The uncertainties on strains are 5�10�5 for

ferrite and 2�10�4 for cementite. As expected, since the (x1)

direction is the tensile direction, the values for ee11 and ee22 are

respectively positive and negative. Moreover, the level of elastic

strain in cementite is about five times higher than in the ferrite in

the plastic range. This can be explained by the difference in

mechanical properties between both phases and particularly their

yield stress. As soon as the macroscopic initial yield point is

reached for this steel, ferrite undergoes plastic deformation in

contrast with cementite particles which are supposed to remain

elastic. The obtained curve for elastic strain in cementite as a

function of the macroscopic strain shown in Fig. 7 is not linear,

especially in the plastic range. This is due to elastic–plastic strain

accommodation between ferrite and cementite during plastic

flow in ferrite. The stress values in the tensile direction are then

estimated in each phase using linear elastic formulation with the

hypothesis ee22 ¼ ee33 as follows:

s11 ¼
E

1þn
ee11þ

En

1þnð Þ 1�2nð Þ
ee11þ2ee22
� �

ð2Þ

where E and n are respectively the Young’s modulus and Poisson

ratio of each phase considering the {110} planes for ferrite and the

{122} planes for cementite. The main difficulty is to determine E

and n in Eq. (2) for each considered planes family. Therefore, an

inverse method is proposed in the following way. First, E and n are
identified for the {110} planes in ferrite so that the s11 stress in

this phase is consistent with the stress values obtained using

XRD: EFea110f g
¼ 20071 GPa and n¼0.29. These values are consistent

with those reported in Refs. [19,20]. EFea110f g is close to the

calculated Young’s modulus of 225 MPa in bcc iron single crystal

by considering the three elastic constants C11¼237 GPa,

C12¼134 GPa and C44¼116 GPa. Then, since the s11 stress in

cementite is unknown, E and n are identified for the {122} planes

in this phase by the values EFe3C122f g
¼ 16073 GPa and n¼0.33. These

values are obtained from the macroscopic stress which is calcu-

lated with a mixture rule similarly to that used in Eq. (1) and

must fit the macroscopic stress given by the tensile microma-

chine. The obtained value for EFe3C122f g
is similar to that determined

for the same cementite planes family in Ref. [20] using synchro-

tron radiation. In this case, the maximum stress that cementite

can bear is almost 2000 MPa as reported in Fig. 8. This value is a

little bit higher than that estimated from XRD analyses using a

mixture rule, but is certainly more accurate because this is

determined from direct elastic strain measurements in cementite.

Even if a linear elastic formulation was considered for the

calculation, the order of magnitude of the maximum stress in

cementite is found to be realistic.

Table 1

Stress values obtained in ferrite and cementite during tensile loading using a

simple mixture rule (Eq. (1)). Values are given with an uncertainty of 710 MPa in

ferrite and 7170 MPa in cementite.

Macroscopic

strain (%)

Stress in ferrite (MPa) XRD

measurements

Stress in cementite (MPa)

mixture rule

0 0 0

4.85 410 1375

6.7 435 1470

9.15 460 1410

11.7 490 1330

14.2 500 1430

15.6 510 1355

17.55 520 1430
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Fig. 6. Position of the diffraction peaks during loading: (a) CeO2 peaks always at

the same 2y angle, (b) Cementite peaks gradually shifted to smaller 2y angles (e11
strain).
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3. Internal length mean field (ILMF) model

3.1. Constitutive equations with GND layers around particles

In this section, a small strain incremental Internal Length

Mean Field (ILMF) model for elastic–plastic heterogeneous mate-

rials [14] is applied to the designed ferrite–cementite steel. Ferrite

is considered elastic–plastic with a statistically homogeneous

distribution of purely elastic cementite particles with average

diameter D as described in Fig. 9. Since the average particle size D

is much smaller than the average grain size, the polycrystalline

aspect will be disregarded. In the following, three ‘‘phases’’ are

considered. The first phase is the matrix phase representing

ferrite far away from the particles (denoted M). This phase

plastically deforms and hardens only through the evolution of a

SSD density rM
SSD. The second phase represents cementite particles

(denoted C) which are supposed elastic and of same ellipsoidal

shape. Let us denote the respective matrix and particle volume

fractions by fM and fC. In order to improve the capability of mean

field approaches, the physical accumulation of excess dislocations

at the matrix–inclusion interfaces is here taken into account by

introducing a third ‘‘phase’’ (L) with volume fraction fL. This one

consists in intermediate layers of same finite thickness l contain-

ing a large GND density and surrounding the particles (Fig. 9).

l provides the internal length of the model and is assumed to be

constant during deformation. The layers and the particles form

composite inclusions (LþC) with same axis ratios (homothetic

topology). Thus, the ‘‘layer phase’’ volume fraction fL is given by

fL¼ fC((aþl)(bþl)(cþl)�R3)/R3 where a, b and c are respectively

the semi-axes of the ellipsoidal particles in the x1, x2 and x3
directions associated with the macroscopic principal stress direc-

tions. Hence, the average radius R¼D/2 of the volume equivalent

spherical particles is defined such as abc¼R3. The Representative

Volume Element (RVE) is shown in Fig. 9. The particles are supposed

to deform elastically such as _sC
ij ¼ cCijkl _e

C
kl where cCijkl are the linear

elastic moduli of cementite particles. A J2 plastic flow theory is

assumed for the hardening of the matrix and the layer. The

consistency condition for plastic flow writes for each phase K

(K¼M, L)

_sK
eq ¼ _sK

ref ð3Þ

where sK
eq ¼ ð3=2sKij s

K
ij Þ

1=2 is the equivalent Von Mises stress in phase

K, sKij are the deviatoric stresses and sK
ref describes the evolution of

isotropic hardening. In the layer phase L, the latter follows the

evolution of the sessile SSD density given by a Kocks–Mecking law

[21] modified to account for interactions with the GNDs

_sL
ref ¼

Mamb

2
ffiffiffiffiffiffiffiffiffiffi

rL
SSD

q
_rL
SSD ¼

M2amb

2
ffiffiffiffiffiffiffiffiffiffi

rL
SSD

q

k

b

ffiffiffiffiffiffiffiffiffiffi

rL
SSD

q

�frL
SSDþkGNDr

L
GND

� �

_epLeq ¼HL _e
pL
eq

ð4Þ

where M is the Taylor factor. For each K, _epKeq is the von Mises

equivalent plastic strain rate _epKeq ¼ 2=3_epK
ij

_epK
ij

� �1=2
and HK denotes

the incremental isotropic hardening modulus. The variables rL
SSD

and rL
GND are respectively the SSD and GND densities in the layer

phase. The additional term kGNDrL
GND accounts for the contribution

of the GNDs to forest dislocation hardening through dislocation

tangles [22]. The ‘‘classic’’ Kocks–Mecking law [21] without this

term is used for (M) as only SSD densities are present in the matrix

_sM
ref ¼

Mamb

2
ffiffiffiffiffiffiffiffiffiffi

rM
SSD

q
_rM
SSD ¼

M2amb

2
ffiffiffiffiffiffiffiffiffiffi

rM
SSD

q

k

b

ffiffiffiffiffiffiffiffiffiffi

rM
SSD

q

�frM
SSD

� �

_epMeq ¼HM _epMeq ð5Þ

The scalar GND density evolution in the layer phase _rL
GND is

derived from simplifications of the transport equation of GNDs for

a spherical elastic inclusion in spherical coordinates. Even though

the elastic distortion may gradually vary from the matrix–particle

interfaces (see e.g. Ref. [14]), the (average) scalar GND density

evolution in the layer phase L of the ILMF scheme can be

reasonably approximated by

_rL
GND �

_epMeq
lb

ð6Þ

Eq. (6) clearly implies a strong influence of the layer thickness

l on the GND density inside the layer and therefore on the overall

strain hardening. The local consistent tangent elastic–plastic

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

Macroscopic strain applied (%)

Stress in cementite - E=160GPa

Macroscopic stress

Stress in ferrite - E=200GPa

σ
1
1
 s

tr
e
s
s
 c

a
lc

u
la

te
d

 (
M

P
a
)

5 10 15 20 25

Fig. 8. Evolution of the s11 stress for both ferrite and cementite phases during

loading. EFea110f g ¼ 20071 GPa and EFe3C122f g
¼ 16073 GPa. The error bars for stress

uncertainties in cementite are provided (see text for values).

Fig. 9. (a) Representative volume element of the ferrite/cementite system (polycrystalline aspects and grain boundaries are disregarded) with GND layers constrained as a

finite ‘‘interphase’’ of constant thickness l between the ferrite matrix (denoted M in the text) and the cementite particles (denoted C in the text). Note that the morphology

of the coated inclusions can be ellipsoidal but the topology remains homothetic. (b) The problem is solved using a Homogeneous Equivalent Medium (HEM) with effective

elastic-properties determined by the Self-Consistent scheme.



moduli lKijkl relating the stress rate and the total strain rate in each

phase K (with K¼M, L) can be computed as

_sK
ij ¼ l

K
ijkl

_eKkl ð7Þ

Here, an ‘‘isotropization’’ of these moduli is applied because usual

anisotropic moduli are known to overestimate the global and local

stresses [23–25]. It was checked in the case of a two-phase material

(matrix and inclusions) with high contrast between both phases [23]

that ‘‘isotropized’’ moduli lead to results fairly close to finite element

results. In their ‘‘isotropized’’ form, the tangent moduli write

l
K
ijkl ¼ 3KK Jijklþ2jKK ijkl, where for each phase K, KK is the bulk elastic

modulus and jK ¼ mKHK

� �

= 3mKþHK

� �

contains both the shear

modulus mK and the hardening modulus HK (present in Eq. (4)

and Eq. (5)). The 4th order tensors Jijkl ¼ 1=3Þdijdkl
�

and K ijkl ¼

1=2 dikdjlþdildjk� 2=3
� �

dijdkl
� �

are respectively hydrostatic and

deviatoric orthogonal projection tensors.

3.2. Homogenization strategy

Homogenization for this kind of topology is often performed

through a generalized self-consistent scheme introduced by

Christensen and Lo [26] and extended by Hervé and Zaoui

[27,28], Marcadon et al. [29] for elastic composites with spherical

multi-coated inclusions. Cherkaoui et al. [30] solved the case of

heterogeneous elastic composites with more general ellipsoidal

coated inclusions. The case of general ellipsoidal multi-coated

inclusions for elastic composites with eigenstrains was recently

solved by Berbenni and Cherkaoui [31]. Here, the procedure

follows the one investigated in Refs. [30,31] using the Hill’s

interfacial operators [32] and is adapted to elastic–plastic hetero-

geneous materials with ‘‘isotropized’’ tangent moduli as intro-

duced in Section 3.1. The material is supposed to be constituted of

‘‘3 phases’’. As described in Fig. 9, the RVE is subjected to

macroscopic strain rates _Eij. By denoting the effective tangent

moduli l
ef f
ijkl for the Homogeneous Equivalent Medium (HEM in

Fig. 9), the macroscopic stress rates _S ij is related to _E ij as follows:

_S ij ¼ l
ef f
ijkl

_Ekl ð8Þ

The imposed strain rates _E ij are the volume averages of the

strain rates in the three phases, and the macroscopic stress rates
_S ij are the volume averages of stress rates in the three phases as

follows:

_E ij ¼ f C _e
C
ijþ f L _e

L
ijþ fM _eMij

_S ij ¼ f C _s
C
ijþ f L _s

L
ijþ fM _sM

ij ð9Þ

Let us now write the strain rate concentration equations as

follows:

_eCij ¼ AC
ijkl

_Ekl

_eLij ¼ AL
ijkl

_Ekl ð10Þ

where AC
ijkl,A

L
ijkl are respectively the strain rate concentration

tensors for phases C and L. They are determined by using the

interfacial operator technique (see the appendix in Ref. [14] for

details). The strain rates in the matrix phase _eMij can easily be

obtained from Eqs. (9) and (10), and the corresponding stress

rates _sM
ij follow from Eq. (7). Furthermore, Eqs. (8–10) give

l
ef f
ijkl ¼ l

M
ijklþ f C cCijmn�l

M
ijmn

� �

AC
mnklþ f L l

L
ijmn�l

M
ijmn

� �

AL
mnkl ð11Þ

The effective tangent moduli lef fijkl require the calculation of the

strain rate concentration tensors in Eq. (10). This is performed by

the self-consistent method where homothetic ellipsoidal particles

and layers are embedded in the HEM (Fig. 9). In this description,

the HEM contains C, L and M. The strain rate concentration

tensors simplify into [14]

AC
ijkl ¼

IijklþTef f
ijmn

cCmnkl�l
ef f
mnkl

� �

�

f L
f C þ f L

Tef f
ijmn l

L
mnpq�l

ef f
mnpq

� �

TL
pqrs� Tef f

ijrs�TL
ijrs

� �h i

l
L
rskl�cCrskl

� �

2

6

4

3

7

5

�1

ð12Þ

and

AL
ijkl ¼ ½Iijpq�TL

ijmn l
L
mnpq�cCmnpq

� �

�AC
pqkl ð13Þ

where the 4th order symmetric tensors Tef f
ijkl

(resp. TL
ijkl) are

derived from the classic symmetric Eshelby tensors associated

with l
ef f
ijkl (resp. l

L
ijkl) and, Iijkl is the 4th order unit tensor.

4. Model calibration and validation

4.1. Key physical parameters

The parameter identification was performed using simple

macroscopic tensile response as well as the ferrite and cementite

stresses reported in Fig. 8 directly estimated from lattice strain

measurements in Section 2.2. The average inclusion diameter

(assuming equivalent spherical shape) is taken as D¼0.73 mm and

the volume fraction of cementite particles (Fe3C) is fC¼5.7%. The

elasticity constants are supposed linear isotropic and the Young’s

modulus for ferrite (matrix phase and layer) is classically

EFea¼210 GPa. Young’s modulus for cementite (C) is taken equal

to EFe3C¼230 GPa following recent estimated isotropic elastic

constants for cementite [33]. The Poisson ratio is supposed uni-

form (see Table 2). Isotropic strain hardening parameters k and f

for ferrite were adjusted around typical values recently identified

for purely ferritic steels (no cementite particles) with different

grain sizes [34]. These parameters were adjusted to reproduce the

saturation of experimental macroscopic strain hardening with

strain. The initial SSD densities in the matrix and the layers are

1010 m�2. The initial GND density in the layer is 1010 m�2. The

initial critical stresses in the matrix and the layer are 100 MPa. All

other parameters are listed in Table 2.

As anticipated in Section 1, the key parameter is the layer

thickness l. Here, its value is calibrated in order to reproduce the

elastic strain measurements and corresponding stresses in both

metallurgical phases (Fig. 8). In order to compare the model

predictions to the experimental values obtained for the tensile

stress in ferrite, the latter is computed as a function of the average

stress in the matrix (M) and the layer (L) phases

sFea
11 ¼ fMs

M
11þ f Ls

L
11

� �

= fMþ f L
� �

ð14Þ

Fig. 10 shows the reference model predictions for the macro-

scopic and phase stress curves during simple tension in the (x1)

direction with elongated ellipsoidal particles aligned in the tensile

direction with a constant aspect ratio of 1.5. The latter corre-

sponds to the averaged value for aspect ratio of particles given in

Fig. 2. While fitting the experimental macroscopic strain

Table 2

List of material parameters used in the model to fit both experimental macro-

scopic and local stress curves given in Fig. 10. For the simulation, the particles are

ellipsoidal inclusions aligned in the tensile direction and with a constant aspect

ratio of 1.5. The GND layers around particles have constant thickness l (0.3 mm).

a M l (mm) EFea (GPa) EFe3C (GPa)

0.4 3 0.3 210 230

nFea nFe3C k f b (Fea) (m)

0.29 0.29 0.03 14 2.5�10�10



hardening curve, l is adjusted to capture the significant experi-

mental difference between the tensile stresses in ferrite and

cementite. Concurrently, the value of kgnd was also calibrated

and taken to be 250 k, a value 2.5 higher than that used in Ref.

[14]. After the yield stress, the discrepancy between model stress

response and experimental data up to 5% of overall strain is

clearly due to a Lüders plateau which originates from a macro-

scopic plastic instability seen for this steel in tension. The

micromechanical ILMF model is based on a homogenization

scheme which does not aim to account for strain localization

phenomena like macroscopic Lüders bands. In the present con-

stitutive framework, the first perfect plastic behavior after the

initial yield point is not described and the study is only focused on

the influence of GND layers on the homogeneous strain hardening

behavior after a few percents of overall strains (see Fig. 10).

Thus, a sub-micron value of 0.3 mm was found to give a

reasonable fit to experimental results in Fig. 10 at overall strains

larger than 5%. It is noteworthy that a layer thickness on the order

of 0.3 mm was also estimated by Field Dislocation Mechanics

(FDM) simulations in the framework of Al matrices reinforced by

SiC particles [14] even though particle sizes were different from

the present study. In Ref. [14], that allowed capturing particle size

effects on overall strain hardening for two Al matrix compositions

with the ILMF model. Here, the present calibration of the ILMF

model using combined XRD and Synchrotron diffraction measure-

ments gives same order of magnitude for l. Let us note that the

particle sizes were larger in Ref. [14] than in the present designed

ferrite–cementite steel. From these results and with a simple

reasoning using Eq. (6) which is a simplification of the GND

transport equation, it seems that the layer thickness l is espe-

cially influenced in our approach by the ratio between accumu-

lated plastic strain in the matrix phase and the uniform GND

density in layers around particles. Thus, the formulation does not

give a direct influence of particle size. In this sense the model is

different from classic models [6,7] which considered an average

scalar GND density in the overall matrix but did not consider

spatial GND distributions in finite layers around particles and

characterized by an internal length l. Accordingly, it is not

unrealistic to find same order of magnitude for GND layer

thickness even though the microstructural systems may have

different particle size.

In the present study, a significant difference of about

1300 MPa at the end of forward straining is obtained between

the tensile stresses in ferrite and in cementite in good agreement

with experimental estimations. The layer thickness l, which is

about half the particle size, and the GND contribution to isotropic

hardening (through kgnd) are responsible for such a difference.

This difference results from a higher stress in the layer than in the

matrix because of the physical GND contribution to isotropic

hardening (Eq. (4)). We also checked that such difference was not

reachable with classic two-phase homogenization schemes for

which l-0 (fL-0) using elastic–plastic ‘‘isotropized’’ tangent

moduli even if these formulations were calibrated by classic finite

element cell calculations [23,24]. As evidenced in Fig. 11, when

the layer thickness is divided by a factor of ten while keeping

unchanged the value of kgnd, the difference between both phase

stresses is much smaller (about 400 MPa). This difference is also

reduced when kgnd¼0 while keeping the layer thickness (about

300 MPa) unchanged. It was checked that the huge experimental

difference between the stresses in ferrite and in cementite cannot

be captured by the model with a too small layer and/or a too

small value of kgnd, even by using new identified physical strain

hardening parameters. These results show the impact on the

induced length scale parameter l on local stress estimates using

‘‘isotropized’’ tangent moduli.

Concurrently with the effect of the GND layer thickness l, the

aspect ratio of particles is also a parameter which can affect

significantly the difference between phase stresses. As shown in

Fig. 11, when the aspect ratio is increased up to 2 with ellipsoidal

particles aligned in the tensile direction, the difference increases.

Conversely, when an aspect ratio of 1.5 is taken into account with

ellipsoidal particles aligned in the normal direction to tensile

loading (i.e. the transverse direction), the difference is signifi-

cantly reduced. A stress difference reduction was also found when

particles are assumed spherical. Thus, the model predictions

suggest that ellipsoidal particles with same average aspect ratio

of 1.5 aligned in the tensile direction carry more loads and

contribute to increase the difference between the stresses in

ferrite and cementite, as compared to spherical particles for the

same calibrated GND layer thickness l. However, it should be

Fig. 10. Macroscopic and phase stresses predicted by the model with an aspect

ratio of 1.5 for ellipsoidal particles aligned in the tensile direction. Experimental

estimations of Fig. 8 are superimposed for comparison.

Fig. 11. Evolution of the model predictions when: the layer thickness l is divided

by a factor of 10 with respect to its value in Table 2, i.e. l¼0.03 mm (dashed lines),

kgnd¼0 (dotted lines), an aspect ratio of 2 is accounted for in the tensile direction

(mixed lines), an aspect ratio of 1.5 is considered normal to the tensile direction

(full lines), and, particles are assumed spherical (no lines). The circles and

diamonds denote the macroscopic stress and the stress in cementite particles,

respectively.



noted that no preferential orientation of particles with respect to

tensile direction was observed (Fig. 1). The ILMF model might be

extended to account for particle orientation distribution but this

is left for future study.

For the material parameters given in Table 2, the influence of

particle volume fraction fC and diameter D is investigated. Fig. 12

shows the maps of macroscopic tensile stress S11 and particle

tensile stress sC
11 as functions of fC and D. These maps are given at

5% (resp. Fig. 12a and b) and at 20% (resp. Fig. 12c and d)

macroscopic strains. The stress levels and the aforementioned

difference between both phase stresses increase with increasing

fC. A ‘‘smaller is harder’’ size effect of the particle diameter D is

obtained due to a GND layer thickness of 0.3 mm. Remarkable size

effects can be obtained when D is in the order of l. Conversely,

size effects become gradually negligible when D reaches values,

which are much larger than l. In Fig. 12, we limit the values of D

and fC such that the GND layer volume fraction fL does not exceed

50%. This limit guaranties that the assumption of uniform stress/

strain fields in the GND layers remains reasonable and also that

neighboring GND layers do not overlap, which would make the

model incorrect. The largest value of fL is about 50% for a particle

diameter of 0.6 mm and a particle volume fraction of 7%. In this

case, it was checked that the average particle spacing L, given by

L¼(pD2/(4fC))
1/2 [6], is about 2 mm. As the GND layer thickness is

0.3 mm, there is no overlap of GND layers in a statistical average

sense. For the smallest particle diameter (D¼0.6 mm) and largest

particle volume fractions (fC¼7%), the difference between

phase stresses is important and the tensile stresses in the

particles become very high (�2500 MPa at 20% of macroscopic

strain). In each subfigure of Fig. 12, the triangles indicate the

predicted values for the particular case of the designed ferrite–

cementite steel studied in the present paper for which l/

DE0.4. It was then checked that for a GND layer thickness

divided by a factor ten (l¼0.03 mm ), almost no size effect

occurs in the present range of particle volume fractions and

sizes. Same size independent results are obtained if the

contribution of GNDs to isotropic hardening is cut off (kgnd¼0)

with l¼0.3 mm.

4.2. Bauschinger stress

In order to validate the order of magnitude found for the layer

thickness l (0.3 mm) in Section 4.1, an estimate of the Bauschinger

stress from the results of the ILMF model is now developed.

During complex loadings like Bauschinger tests performed in

Section 2.1, the GND density content may evolve in complex

ways due to the annihilation of dipolar structures in the transient

regime between the direct and reverse loading paths as recently

observed by FDM simulations [35,36]. Thus, the evolution of GND

density in the layer phase is probably more complex than Eq. (6)

which is only valid for monotonic loading. It would require new

understanding using either DDD or FDM simulations to extend

the present GND backstress formulation to strain path changes.

For this reason, the ILMF approach is limited to the prediction of

monotonic responses for this steel. Usually, in order to highlight

the resulting macroscopic backstress originating here from ‘‘inter-

phase’’ stresses (i.e. the so-called Bauschinger stress) the predic-

tions of reversible responses are needed.

However, a simple efficient way to estimate at least one part

of the overall experimental Bauschinger stress X reported in

Fig. 4 is to assume the steel as a two-phase composite material.

Accordingly, we can derive an estimate of the Bauschinger

stress now denoted X0 from the phase stresses in both ferrite

and cementite after monotonic tensile loadings, as previously

reported with both experimental and ILMF model results

(Fig. 10). The analysis consists in considering the uniaxial stresses

at the end of the tensile stage and applying the following formula

to estimate X0.

X0 ¼ f C sFe3C
11 �S11

� �

¼� 1�f C
� �

sFea
11 �S11

� �

¼ f C 1�f C
� �

sFe3C
11 �sFea

11

� �

ð15Þ

Fig. 12. ILMF model predictions with materials parameters given in Table 2 of macroscopic tensile stresses S11 at 5% of strain (a), 20% of strain (c) and particle tensile

stresses sC
11 at 5% of strain (b), 20% of strain (d). The values are reported as functions of fC (particle volume fraction) and D (equivalent average particle size diameter). The

triangles indicate the predicted values for the ferrite-cementite steel studied in the present paper.



where fC¼5.7%. Eq. (15) arises naturally from internal stress self-

equilibrium in the considered two-phase composite [37]. In

Fig. 13, we compared the values given by Eq. (15) for X0 and the

ones given by Fig. 4 for X. To compute X0, we used the phase

stresses predicted by the ILMF model. The results are consistent

with the values for X0 calculated from experimental phase stress

estimations of Fig. 8. Remarkably, the saturation of the Bauschinger

effect with increasing strain is captured by the model, and is here

explained by the saturation of isotropic strain hardening in ferrite.

However, it is noteworthy that the macroscopic Bauschinger stress X

is about twice higher than the model predictions for X0.

The overall Bauschinger effect (X) is indeed reinforced by the

polycrystalline feature of the steel and the presence of GNDs at

ferrite–ferrite grain boundaries [13], which also produce intra-

phase backstress. Experimental values for the Bauschinger stress

are reported in Ref. [34] in the case of reversible shear tests in

pure ferritic steels (without cementite particles) for similar grain

size. Hence, the additive effects of large GND densities near

ferrite–ferrite interfaces close the difference between X and X0

for the present steel.

5. Conclusions

A ferrite–cementite steel was first specifically designed to

calibrate and validate an Internal Length Mean Field (ILMF) model

first introduced in Ref. [14].

To achieve this objective, in situ tensile experiments combined

with XRD and Synchrotron diffraction lattice strain measure-

ments were performed to derive the average stress evolutions

in both ferrite and cementite during tensile loading.

In addition to the macroscopic tensile stresses, these stresses

were used to calibrate the thickness l of an intermediate layer

‘‘phase’’ with large GND density between ferrite and cementite

particles through the ILMF model.

A layer thickness of 0.3 mm was found to give reasonable

estimate of the important difference between the stresses in

ferrite and cementite found by lattice strain measurements.

Without this GND layer and its contribution to isotropic hard-

ening by dislocation tangles, the large difference between phase

stresses cannot be reproduced by the model. The aspect ratio of

particles was also shown to have an impact on this difference.

In addition to previous unit cell FDM simulations performed

on another particulate-reinforced alloy in Ref. [14], experimental

tension–compression tests were also performed to validate the

value of l regarding the overall Baushinger stress.

The measured Bauschinger stress as a function of forward

prestraining is reasonably predicted from the phase stresses

predicted by the ILMF model during first stage tensile loadings.

In particular, the saturation of the Bauschinger stress with

forward tensile strain is captured.

For future study, the polycrystalline aspect with physical

mechanisms taken into account at the scale of slip systems should

be developed for a better quantitative description of the overall

experimental Bauschinger effect [38].
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Appendix A

A.1 XRD and ring diffraction experimental device

Both X-Ray Diffraction (XRD) and synchrotron radiation were

used to obtain the per phase stress distribution in the designed

steel during in situ uniaxial tensile tests at room temperature

when applying increasing stress until failure. These non-

destructive techniques were used to determine the average stress

in both metallurgical phases: bcc ferrite and orthorhombic

cementite. First, a small micromachine was directly placed under

a PROTO iXRD goniometer equipped with a chromium antic-

athode. The average macroscopic stress and strain were recorded

with load and displacement cells, respectively. In accordance with

the European standard, the sin2 cmethod was used to follow only

the stress evolution in ferrite (surface analysis), considering the

{211} planes (2y¼156.11). Because of the low volume fraction of

cementite, the level of stress in this phase could not be assessed

during these tests. The same in situ tensile tests were then carried

out at the European Synchrotron Radiation Facility (ESRF, ID11

beamline) with high-energy X-rays. Ring diffraction measure-

ments were performed with a 60 keV (l¼0.207 Å) monochro-

matic X-ray beam in transmission mode to follow the evolution of

the bulk stress in both ferrite and cementite simultaneously.

Fig. 13. Bauschinger stress X0 model predictions (bold line) by using ILMF

reference stress curves of Fig. 10, and experimental estimations (circles) by using

both phase stresses of Fig. 8. The experimental Bauschinger stress X reported in

Fig. 4 and derived from the macroscopic data in Fig. 3 is also reported (diamonds).

Screen of the

CCD camera

Specimen

Incident

beam 

Rings

Tensile

direction

Fig. A1. Ring diffraction device in the ESRF-ID11 beamline [39].



The stress analyses in cementite were possible because both the

X-ray flux and the diffracting volume are higher than those of lab

XRD. A schematic representation of the experimental device is

shown in Fig. A1 [16]. The micromachine was placed in such a

way that the tensile axis was always vertical. The different

specimens were previously covered with a thin layer of vacuum

grease and a nanocrystalline CeO2 cerium dioxide powder as a

calibrant. The 1 mm2 incident beam entered normally to the

specimens forming complete Debye–Scherrer rings from ferrite,

cementite and the CeO2 calibrant. These resulting 2D diffraction

rings were recorded by a Frelon 2D CCD camera with a resolution

of 2048�2048 pixels and a 48.1�46.8 mm pixel size. The

sample-to-camera distance was 340 mm in order to focus mainly

on the {110} planes of ferrite and the {122} planes of cementite.

These ones were chosen because their corresponding ring was

relatively ‘‘isolated’’ from the others at this distance.

A.2. Diffraction analysis

The XRD sin2 c method was used in a classical way to follow

the evolution of the stress in the ferritic phase [39]. Thirteen c

angles were tested for each analysis to determine the sj stress

values only in the tensile direction. The elastic strain was first

calculated for each c angle as follows:

e¼
d�d0
d0

ðA1Þ

where d0 and d are the interreticular spacings of the considered

planes respectively for the unstressed material and during load-

ing. The final stress sj is then deduced from the sin2 c method

ejc ¼
1þn

E
sin2csj�

n

E
Tr sð Þ ðA2Þ

where E and n are respectively the macroscopic Young’s modulus

and the Poisson ratio of the material.

A typical pattern of ring diffraction is shown in Fig. A2. In this

figure, themost intense rings correspond to ferrite. The others are due

to cementite and CeO2 while the darker beam stop is visible in the

center of the pattern. Many peaks are observed especially for

cementite due to its orthorhombic structure. However, most of them

are double peaks, corresponding to two different plane families

diffracting at the same 2y position, or are peaks very close to each

other. Hence, that makes them very difficult to analyze precisely in

particular when peaks are becoming wider during loading. Therefore,

in order to limit the resulting uncertainties in stress determination,

this work was mainly focused on {111} planes of CeO2 (for the

calibration of the rings) and on {110} planes of ferrite as well as {122}

planes of cementite. The FIT2D software [19] was used to determine

all the geometrical parameters of the experiments for each pattern.

The first four CeO2 rings were considered for the position of the beam

center, the tilt angle and the sample-to-detector distance. The (elastic)

lattice strain component ee11 (resp. ee22) obtained in the tensile (resp.

transverse) direction was calculated by integrating only the corre-

sponding part of the rings. Since the tensile direction was vertical,

two different masks (vertical and horizontal) were created for this

purpose. The resulting peaks of all phases were intense enough to

determine precisely the corresponding 2y diffraction angle (profile

fitting). The different elastic strain components were finally given by

Eq. (A1).
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