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We construct a family of Riemann solver free finite volume schemes for systems of conservation laws. The method is based on a relaxation approximation which takes the form of a BGK system. We prove convergence for unstructured grids in the scalar case. We present 2D computations for Euler equations.

INTRODUCTION

In this paper we construct some finite volume discretisations for hyperbolic systems of conservation laws in two space dimensions, in an open subset Ω ⊂ R 2 with C 2 boundary ∂Ω :

∂ t U + ∂ x 1 A 1 (U ) + ∂ x 2 A 2 (U ) = 0 in ]0, +∞[×Ω, (1) 
where U (x, y, t) ∈ R p and A 1 , A 2 are smooth functions with values in R p . We denote u 0 an initial value for this system:

U (x 1 , x 2 , 0) = U 0 (x 1 , x 2 ). (2) 
D. Aregba-Driollet and R. Natalini 2 designed a class of numerical schemes based on a discrete kinetic approximation of the Cauchy problem for [START_REF] Aregba-Driollet | Kinetic approximation of a boundary value problem for conservation laws[END_REF]. These schemes were extended to the initial-boundary value problem by D. Aregba-Driollet and V. Milišić 1 . All these schemes were designed on cartesian grids, here we extend these works to unstructured grids.

To approximate the solutions of (1), we choose a semilinear hyperbolic system of BGK type :

   ∂ t f ǫ l + λ l1 ∂ x 1 f ǫ l + λ l2 ∂ x 2 f ǫ l = 1 ǫ (M l (U ǫ ) -f ǫ l ) l ∈ {1, • • • , N } f ǫ l (0, x) = M l (U 0 (x)) (3) 
where (λ ld ), 1 ≤ l ≤ N , d = 1, 2 are fixed real numbers, U ǫ is defined by U ǫ = N l=1 f ǫ l , and ǫ is a positive parameter. The link between (1) and ( 3) is done via the following compatibility conditions: Definition 1.1. Let I ⊆ R p be a fixed domain. A Lipschitz continuous function M = (M l ) 1≤l≤N : I → (R p ) N is a (local) Maxwellian Function for [START_REF] Aregba-Driollet | Kinetic approximation of a boundary value problem for conservation laws[END_REF] and with respect to I if the following (compatibility) conditions are verified for all U ∈ I:

N l=1 M l (U ) = U (4) N l=1 λ ld M l (U ) = A d (U ) d = 1, 2. ( 5 
)
It is easy to see formally that if conditions (4)(5) are satisfied and if U ǫ tends to a limit function U as ǫ → 0 then U is a solution of (1). In the following we shall assume that the function M is a Maxwellian Function.

Actually one needs for some stability conditions to ensure this convergence, namely:

Definition 1.2. The functions M = (M l ) 1≤l≤N is Monotone Non Decreasing (MND) on I if all the eigenvalues of M ′ l (U ) are real and non negative for all U ∈ I and all l = 1, . . . , N . In particular in the scalar case p = 1 it means that M ′ l (U ) ≥ 0 on I for all l.

It can be shown that the MND property is closely related to Liu's subcharacteristic condition interlacing the eigenvalues of system (1) and the characteristic velocities λ ld , see Aregba-Driollet and Milišić 1 . In the scalar case, suppose that the maxwellian function is MND on [-U 0 ∞ , U 0 ∞ ]. Then U ǫ → U , the unique entropy solution of the Cauchy problem (1-2), see Natalini 8 . This result has been extended to the initial-boundary problem in Milišić 7 . In the case of systems with a strictly convex entropy, see Bouchut 3 for the relationship between the MND condition and the entropy properties of the BGK approximation.

In this paper, for the numerical experiments we focus our attention on the following 4 orthogonal velocities model because the needed information for applying the MND property is minimal: one has just to know the spectral ray of the jacobian of the fluxes. The velocities vectors are

-→ λ 1 = λ x 1 0 -→ λ 2 = λ y 0 -1 -→ λ 3 = λ x -1 0 -→ λ 4 = λ y 0 1 ,
and the Maxwellian Functions are

M 1 (U ) = 1 4 [U + 2A 1 (U ) λ x ] M 2 (U ) = 1 4 [U - 2A 2 (U ) λ y ] M 3 (U ) = 1 4 [U - 2A 1 (U ) λ x ] M 4 (U ) = 1 4 [U + 2A 2 (U ) λ y ]
Here the stability condition reads

λ x > 2 sup U ∈I |σ(A ′ 1 (U ))| λ y > 2 sup U ∈I |σ(A ′ 2 (U ))|,
where σ(•) is the spectrum of the jacobian matrices. The plan of the paper is the following: in section 2 we construct the schemes and give a convergence result for the scalar case. In the last section numerical experiments are performed on Euler equations of gas dynamics.

KINETIC FINITE VOLUME SCHEMES

In this part we design a numerical scheme for the relaxing semilinear system (3) associated with (1), [START_REF] Aregba-Driollet | Discrete kinetic schemes for multidimensional systems of conservation laws[END_REF]. We present here a cell-center type finite volume method on unstructured grid. Our aim is to construct a scheme of the following form :

         U n+1 i = U n i - ∆t |C i | e=C i ∩C j |e|g ij (U n i , U n j , n e ) U 0 i = 1 |C i | C i U 0 (x 1 , x 2 ) dx 1 dx 2 . (6) 

Geometry and notations

We shall collect here the assumptions concerning geometry and the notations used in this work. Definition 2.1. Let a k-polygon be a closed, convex polygon with k vertices. The set T h := {C i /C i is a k-polygon for i ∈ I ⊆ N} (where I ⊆ N is an index set) is called an unstructured grid of Ω ⊂ R n if the two following properties are satisfied :

1. Ω = i∈I C i 2. For two different C i and C j , we have C i ∩ C j = ∅, or C i ∩ C j = a common vertex of C i , C j or C i ∩ C j = a common edge of C i , C j .
Definition 2.2. Let (C i ) i∈I denote an unstructured grid of R 2 . We shall use the following notation :

λ l (n e ) = λ l • n e . h = sup i∈I h i , where h i is the exterior diameter of C i .
U n i : approximation of the exact solution U on C i at time n∆t.

Let us make the following assumptions on the geometry :

Assumption 2.1. We assume that there are two constants c 1 et c 2 such that

0 < c 1 ≤ ∆t h ≤ c 2 (7) 
if ∆t, h → 0. Moreover, we assume that there exists a constant c V > 0 such that

sup i h 2 |C i | ≤ c V (8)

Design of the schemes

The timestep is denoted by ∆t and discrete times are t 0 = 0 and t n+1 = t n + ∆t. Each U n i is an approximation of the mean value of U (•, t n ) on the cell C i . At time t 0 = 0, if U 0 is the initial value, we take

U 0 i = 1 |C i | C i U 0 (x 1 , x 2 )dx 1 dx 2 .
For the microscopic (kinetic) variables, we use as initial conditions :

f 0 l,i = M l (U 0 i ).
We use a fractional step method : first we solve the homogeneous hyperbolic problem on [t n , t n+1 ]:

∂ t f ǫ l + λ l1 ∂ x 1 f ǫ l + λ l2 ∂ x 2 f ǫ l = 0 l ∈ {1, • • • , N } f ǫ l (x 1 , x 2 , t n ) = f ǫ,n (x 1 , x 2 ) (9)
As the system is diagonal, we may consider each equation separately. That is, we choose a conservative scheme of flux ϕ l for the l th -equation. Then we obtain a scheme under conservative form :

f ǫ,n+1/2 l,i = f ǫ,n l,i - ∆t |C i | e=C i ∩C j |e|ϕ l (f ǫ,n l,i , f ǫ,n l,j , n e ).
Next, taking f ǫ,n+1/2 l,i

as initial condition at time t n , we solve the ordinary differential system :

∂ t f ǫ l,i = 1 ǫ (M l (U ǫ,n i ) -f ǫ l,i ) f ǫ l,i (t n ) = f ǫ,n+1/2 l,i
Thanks to the compatibility condition (4), we may solve explicitly this system. Then we write the solution :

f ǫ,n+1 l,i = (1 -e -∆t ǫ )M l (U ǫ,n+1/2 i ) + e -∆t ǫ f ǫ,n+1/2 l,i
, where

U ǫ,n+1/2 i = N l=1 f ǫ,n+1/2 l,i . Note that U ǫ,n+1 = U ǫ,n+1/2 .
We have constructed a family of numerical scheme for the semilinear system (3), that differ by the choice of the homogeneous scheme.

When ǫ → 0, we obtain the relaxed limit of the scheme :

           f n l,i = M l (U n i ) f n+1/2 i = H ∆ (∆t)f n i U n+1 i = N l=1 f n+1/2 l,i
where H ∆ (∆t) represents the numerical scheme applied to the kinetic equations [START_REF] Van Leer | Towards the ultimate conservative difference scheme. IV: A new approach to numerical convection[END_REF].

In order to obtain a finite volume formulation (6), we have to choose for each kinetic equation a numerical scheme, which can be defined by its numerical flux, called ϕ l for the l th equation. According to the form of the relaxed scheme, the numerical scheme is the following :

           U n+1 i = U n i - ∆t |C i | e=C i ∩C j N l=1 |e|ϕ l (M l (U n i ), M l (U n j ), n e ) U 0 i = 1 |C i | C i U 0 (x 1 , x 2 )dx 1 dx 2 . (KFVS)
This scheme is of the form (6) with

g ij (U i , U j , n e ) = N l=1 ϕ l (M l (U i ), M l (U j ), n e ). ( 10 
)
3 Convergence in the scalar case

In the scalar case p = 1 we are able to prove convergence of schemes (KFVS) following the lines of Kröner and Rokyta's work 6 . A preliminary result is the existence of kinetic entropies: Theorem 3.1 (Bouchut 3 ). Let η a strictly C 1 -convex entropy, the condition M ′ l (u) ≥ 0, ∀u ∈ I, ∀l ∈ {1, . . . , N } is equivalent to existence of kinetic entropies S l,η defined in the following way :

S l,η (f ) = R 1 2 (|f -M l (k)| -|M l (k)|)η ′′ (k)dk + 1 2 f (η ′ (-∞) + η ′ (∞)).
They own the following properties :

Functions S l,η are C 2 -convex in [M l (-u 0 ∞ ), M l ( u 0 ∞ )]. ( 11 
) ∀w ∈ I, S ′ l,η (M l (w)) = η ′ (w), ( 12 
) N l=1 λ ld S l,η (M l (w)) = A η,d (w). ( 13 
) N l=1 S l,η (M l (w)) = η(w) -η(0). (14) 
The identity (12) holds in the sense of subdifferentials : for all f ∈ [M l (-u 0 ∞ ), M l ( u 0 ∞ )], and for all w ∈ I,

S l,η (M l (w)) -S l,η (f ) -η ′ (w)(M l (w) -f ) ≤ 0. ( 15 
)
It ensures, for each kinetic equation, the existence of an entropy pair (S l,η , F l ), where F ld (s) = λ ld S l,η (s).

We make the following assumptions on the kinetic numerical fluxes: Assumption 3.1. For all l ∈ {1, . . . , N }, let ϕ l be a numerical flux of linear three-points scheme in conservation form, consistent with λ l f l • n e i.e.

ϕ l (u, u, n e ) = λ l u • n e (16)
We assume that ϕ l is Lipschitz-continuous. In particular, suppose that for all M > 0 there is a constant

C ϕ l (M ) such that for all u, u ′ , v, v ′ ∈ [-M, M ] |ϕ l (u, v) -ϕ l (u ′ , v ′ )| ≤ C ϕ l (M )(|u -u ′ | + |v -v ′ |) (17)
and that ϕ l is conservative, i.e.

ϕ l (u, v, n e ) = -ϕ l (v, u, -n e ) (18) 
Moreover, we assume that ϕ l is monotone :

∂ ∂u ϕ l (u, v) ≥ 0 ≥ ∂ ∂v ϕ l (u, v) (19) 
Assumption 3.2. Let η : R → R be Lipschitz-continuous and convex, and let (S l,η , F l ) be an entropy pair for [START_REF] Van Leer | Towards the ultimate conservative difference scheme. IV: A new approach to numerical convection[END_REF]. We assume that for all l ∈ [1, N ] there exists a numerical entropy flux G l which is :

(i) consistent with F l (u) • n e = λ l • n e S l,η (u) i.e G l (u, u, n e ) = λ l • n e S l,η (u) (20) 
(ii) Lipschitz-continuous, such that for all M > 0 there is a constant

C G l (M ) such that for all u, u ′ , v, v ′ ∈ [-M, M ] ⊂ R |G l (u, v) -G l (u ′ , v ′ )| ≤ C G l (M )(|u -u ′ | + |v -v ′ |) (21) (iii) conservative, i.e. for all j ∈ N i G l (u, v, n e ) = -G l (v, u, -n e ) ( 22 
)
and (iv) satisfies the kinetic compatibility condition

∂G l ∂v (p, q, n e ) = S ′ l,η (q) ∂ϕ l ∂q (p, q, n e ) ( 23 
)
Let us note that if we choose the (linear) Godunov numerical flux for each ϕ l then assumptions 3.1 and 3.2 are verified. On another hand this choice is the optimal one for first order, as it is the less diffusive one. Lemma 3.1. For all i ∈ I, we have :

e⊂C i e=C i ∩C j |e| n e = 0
A key result to prove convergence is the L ∞ stability of the scheme, which implies monotony and entropy dissipation.

Proposition 3.1 (L ∞ stability). Let u 0 ∈ L ∞ (R 2 ) ∩ L 1 (R 2 ). Let u n
i defined by the kfv scheme (KFVS) such that the fluxes ϕ l satisfy the assumptions 3.1. We denote

M = u 0 L ∞ (R 2 ) and C(M ) = l C l (M l ( u 0 ∞ )).
We assume that the CFL-type condition

∆t h ≤ 1 k • C(M )c V , (24) 
where c V is defined as in [START_REF] Natalini | A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws[END_REF], is fullfilled. We assume that the maxwellian functions M l are MND on [-M, M ]. Then we have, for all n ∈ N,

u n L ∞ (R 2 ) ≤ u 0 L ∞ (R 2 ) . (25) 
Proof. The KFVS method is given by :

u n+1 i = u n i - ∆t |C i | e⊂C i e=Γ ij |e| g ij (u n i , u n j , n e ) = u n i - ∆t |C i | e⊂C i e=Γ ij |e| (g ij (u n i , u n j , n e ) -g ij (u n i , u n i , n e )),
by lemma 3.1. Then

u n+1 i = u n i - ∆t |C i | e⊂C i e=Γ ij D n ij (u n i -u n j ).
where

D n ij = |e| g ij (u n i , u n j , n e ) -g ij (u n i , u n i , n e ) u n i -u n j for u n j = u n i (26) 
and

D n ij = 0 for u n j = u n i . (27) 
Next we can write

u n+1 i = u n i     1 - ∆t |C i | e⊂C i e=Γ ij D n ij     + ∆t |C i | e⊂C i e=Γ ij D n ij u n j .
Let us assume that for a fixed n ≥ 0, u n L ∞ (R 2 ) ≤ M . By assumption 3.1 and monotony of the maxwellian functions 0 ≤ D n ij ≤ C(M )h, and using the CFL-type condition (24) and assumption 2.1

∆t |C i | e⊂C i e=Γ ij D n ij ≤ k ∆ t min i∈I |C i | C(M )h ≤ 1.
Finally we have, due to the convex combination

|u n+1 i | ≤ |u n i |     1 - ∆t |C i | e⊂C i e=Γ ij D n ij     + ∆t |C i | e⊂C i e=Γ ij D n ij |u n j | ≤ u n L ∞ (R 2 )     1 - ∆t |C i | e⊂C i e=Γ ij D n ij     + ∆t |C i | e⊂C i e=Γ ij D n ij u n L ∞ (R 2 ) ≤ u n L ∞ (R 2 ) ≤ M.
Then we get u n+1 L ∞ (R 2 ) ≤ M and we can complete the proof by induction.

Kröner and Rokyta 6 proved convergence for upwind finite volume schemes. The above stability result allows us to prove monotony and to define an entropy numerical flux, which satisfies the compatiblity condition (23). We are then able to prove the convergence theorem: Theorem 3.2. We consider the Cauchy problem (1)-( 2) and the approximate solution {u h } defined by the kinetic finite volume (first-order) method (KFVS). We suppose that the maxwellian functions are MND on the interval [-u 0 ∞ , u 0 ∞ ] and we take M > u 0 ∞ . We suppose that the conditions [START_REF] Milišić | Stability and convergence of discrete kinetic approximations to an initialboundary value problem for conservation laws[END_REF], [START_REF] Natalini | A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws[END_REF] for the triangulation hold, and that the CFL condition (24)

∆t h ≤ 1 k • C(M )C V , (28) 
is satisfied. Then the method (KFVS) converges weak-⋆ to the unique entropy solution in the sense of Kružkhov of the Cauchy problem (1)- [START_REF] Aregba-Driollet | Discrete kinetic schemes for multidimensional systems of conservation laws[END_REF].

u h → u weak -⋆, u ∈ L ∞ (R 2 × R + ).

Extension to second order in space

We focus now on the extension to second order of these family of kinetic schemes. The semi-discrete version of these scheme is :

|C i | dU i dt + e=C i ∩C j |e|g(U i , U j , n e ) = 0, C i ∈ T h . (29) 
For internal edges, the fonction g(., ., n e ) is equal to the kinetic flux as shown above. The extension to second order accury consists in replacing the states U i and U j in relation (29) by nonlinear extrapolations U i,e and U j,e on each side of the boundary, constructed from the previous states as explained in the sequel. We follow here the method given by where α i (z) is a limiting coefficient satisfying the following conditions :

0 ≤ α i (z) ≤ 1, z ∈ {ρ, ρu, ρv, p}, C i ∈ T h k(z i -m i (z)) ≤ α i (z)∇z| i • (y i,e -x i ) ≤ k(M i (z) -z i ), ∀e ⊂ ∂C i , C i ∈ T h . (38) 
Then α i (z) is chosen as large as possible and less than or equal to 1 in order to satisfy the constraints :

α i (z) = min 1, min(M i (z) -z i , z i -m i (z)) max{|∇z| i • (y i,e -x i )|, e ⊂ ∂C i } . ( 39 
)
For k = 1, we recover the initial limiter proposed by Van Leer 9 . When k = 1/2, we obtain the minmod limiter proposed by Harten 5 . The intermediate value k = 3/4, which was named STS by Dubois and Michaux is a good choice between the two others.

Second order in time

When all values z i,e are known for all control voumes, all faces and all fields, extrapolated states U i,e are naturally defined by going back to the conservatives variables. Then we introduce these states as arguments of the flux function g.. and obtain by this way a new system of ordinary differential equations :

|C i | dU i dt + e⊂∂C i
|e|g(U i,e , U i,j(e) , n e ) = 0, C i ∈ T h .

To have a second order accuracy in time, we use a two-steps Runge-Kutta scheme :

|C i | ∆t (U (1) i 
-U n i ) + e⊂∂C i |e|g(U n i,e , U n i,j(e) , n e ) = 0, C i ∈ T h , (41)

|C i | ∆t (U (2) i -U (1) 
i ) +

e⊂∂C i |e|g(U (1) 
i,e , U

i,j(e) , n e ) = 0,

C i ∈ T h , (42) 
U n+1 i = 1 2 (U (2) i + U n i ), C i ∈ T h . ( 43 
)

NUMERICAL EXPERIMENTS

We approximate a weak solution U of Euler's system of gas dynamics in two dimensions

U =     ρ ρu ρv E     , A 1 (U ) =     ρu ρu 2 + p ρuv (E + p)u     , A 2 (U ) =     ρv ρuv ρv 2 + p (E + p)v     , (44) 
where we have to add the equation of state for a γ-law gas

E = p γ -1 + 1 2 ρ(u 2 + v 2 ). (45) 

Denise Aregba-Driollet, Frédéric Krantz F. Dubois and O. Michaux 4 , which is a generalization of Van Leer's 10 MUSCL scheme for unstructured meshes.

Let us introduce the set V i of neighbouring cells of a given cell C i :

We also introduce the point y i,e on the interface e that links the barycenters x i and x i,j(e) :

y i,e =(1θ i,e )x i + θ i,e x i,j(e) , y i,e ∈ e, e ⊂ ∂C i , C i ∈ T h .

Next, for z equal to one scalar variable of the family :

we evaluate a mean value z i,e on the interface e :

and the gradient ∇z| i of field z(•) in volume C i with a Green formula :

An extrapolation of field z(•) is given by

but the variation ∇z| i • (y i,ex i ) has to be limited. To this end we define the minimum m i (z) and the maximum M i (z) of field z in the neighbouring cells :

If the value z i is extremum among the neighbouring ones, we impose that the extrapolated value z i,e is equal to the cell value z i :

We introduce a nonlinear extrapolation of the field z(•) between center x i and boundary face y i,e (e ⊂ ∂C i ) :
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The jacobian matrix A ′ 1 (U ) has the four eigenvalues

As in one dimension, the sound speed is c = γp/ρ. The eigenvalues in the y-direction are similar, with the roles of u and v reversed.

A mach 3 wind tunnel with a step

This example is a classical test example, which has been proven to be useful for a large number of numerical schemes. A very complete presentation can be found in the paper of Woodward and Colella 11 .

The test case describes a Mach 3 flow in a wind tunnel. The tunnel is 1 length unit high and 3 length units long. The step is 0.2 length units high and is located 0.6 length units from the left-hand end of the tunnel. The walls are reflective.

At the left, we impose a supersonic inflow boundary condition, while at the right side we impose an outgoing condition. Initially the wind tunnel is filled with a gamma-law gas, with γ = 1.4, which everywhere has density 1.4, pressure 1.0, x-velocity 3.0 and y-velocity 0.0.

On the boundary we impose reflecting boundary condition that is

We use four different schemes, all constructed on the four velocities model and the upwind (Godunov) flux. Every solution is displayed with 30 isolines at time t=3.5. The first-order scheme (figure 1) gives naturally the least accuracy, but the Mach stem is present.

With the the second-order scheme (figure 2), the shocks are thinner but a numerical instability is evident near the bottom wall, and behind the Mach stem.

In order to improve the previous scheme, where the velocities are the same in each cell, we fixed these velocities by cell. The result is clearly better (figure 3), This scheme gives a more accurate reprensation of the general shape and position of the shocks .

The last scheme (figure 4) is the same as the previous combined with a second-order in time Runge -Kutta scheme. The results are quite similar.

Double mach reflection of a strong shock

This test describes the reflection of a planar Mach shock in air from a wedge. The setup is of a Mach 10 shock which initially makes a 60 degrees angle with a reflecting wall. The undisturbed air ahead of the shock has a density of 1.4 and pressure of 1.0. The computational domain is [0, 4] × [0, 1] and the reflecting wall lies along the bottom of the domain, beginning at x = 1/6. See Woodward and Colella 11 for more precision about this case.

For this test-case we use three different schemes constructed with the four velocities and the upwind flux.

First, the first-order scheme (figure 5) gives the least accurate results. The jet formed by the double Mach reflection is unresolved. The strong shocks are too large.

The second scheme is the second-order scheme with velocities fixed by cells (figure 6). The results are superior to those of first-order. The jet is resolved and the weak shock is better decribed. However there are some unphysical structures.

The third scheme is the same as the previous combined with a second-order in time Runge-Kutta scheme (figure 7). The results are better, the shocks are thinner and the jet is quite well described. However the weak shock generated at the kink in the main reflected shock is quite broad.

CONCLUSIONS

The kinetic models (3) offer an alternative to the Godunov approach for the construction of numerical approximations of hyperbolic systems of conservation laws. The higher order extension in space and in time is easy and this approach is very flexible with regard to the choice of the underlying kinetic model as well as to the one of the discretisation parameters.

In the scalar case, the convergence is proved. We have performed numerical experiments on 2D Euler system with unstructured grids. The chosen kinetic model is as simple as possible, and the implementation needs for minimal information on the spectral properties of the jacobian of the fluxes, namely their spectral ray. We observe nevertheless that the numerical results are qualitatively very satisfying: all the essential structures of the solutions are present.

Other choices of the maxwellian function may need for more precise information and lead also to more accurate results but in all cases one has just to solve linear transport equations.