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Oh who is sitting at the eternal extreme of the existence,
help me to rescue from the cemetery of my bad habits.

Morteza Avini
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Développement d’une méthode multirésolution

adaptative pour étudier le comportement des

écoulements tourbillonnaires près des parois

solides

Résumé

L’objectif de cette recherche est de développer1 une méthode multi-échelle adapta-
tive en temps et en espace plus efficace que les méthodes actuelles pour résoudre
des équations aux dérivées partielles de type hyperbolique intervenant en mécanique
des fluides. La nouvelle méthode, basée sur une discrétisation en différences finies
d’ordre deux et une analyse multi-échelle, permet de réduire significativement le nom-
bre de points nécessaires. La grille se raffine automatiquement dans les régions avec
un fort gradient. La méthode est appliquée à l’équation de Burgers puis prolongé
aux équations de Navier-Stokes bidimensionnelles. Pour étudier le comportement
des écoulements tourbillonnaires près des parois solides, le problème du collision de
dipôle sur paroi droit a été utilisé comme référence et ensuite le collision sur des parois
courbes avec la méthode de pénalisation a été considéré. La stratégie d’adaptation est
basée sur la transformée en ondelettes et le seuillage des coefficients. Pour intégrer les
équations dans le temps, on utilise des méthodes de Runge-Kutta d’ordre différents,
avec un pas de temps fixe ou adaptatif. Les résultats obtenus montrent que le temps
de calcul peux être réduit considérablement avec cette méthode en conservant la
précision.

Mots clés: Ecoulements incompressibles, Analyses multirésolutions , Formulation
fonction de courant et vorticité, Méthode de pénalisation en volume, Différence fini
centrée

1Le cose est développée en FORTRAN et accessible à tous sur demande par mail [55].
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Development of an adaptive multiresolution

method to study the near wall behavior of

two-dimensional vortical flows

Abstract

In the present investigation, a space-time adaptive multiresolution method is devel-
oped1 to solve evolutionary PDEs, typically encountered in fluid mechanics. The new
method is based on a multiresolution analysis which allows to reduce the number of
active grid points significantly by refining the grid automatically in regions of steep
gradients, while in regions where the solution is smooth coarse grids are used. The
method is applied to the one-dimensional Burgers equation as a classical example
of nonlinear advection-diffusion problems and then extended to the incompressible
two-dimensional Navier-Stokes equations. To study the near wall behavior of two-
dimensional vortical flows a recently revived, dipole collision with a straight wall is
considered as a benchmark. After that an extension to interactions with curved walls
of concave or convex shape is done using the volume penalization method. The space
discretization is based on a second order central finite difference method with sym-
metric stencil over an adaptive grid. The grid adaptation strategy exploits the local
regularity of the solution estimated via the wavelet coefficients at a given time step.
Nonlinear thresholding of the wavelet coefficients in a one-to-one correspondence with
the grid allows to reduce the number of grid points significantly. Then the grid for
the next time step is extended by adding a safety zone in wavelet coefficient space
around the retained coefficients in space and scale. With the use of Harten’s point
value multiresolution framework, general boundary conditions can be applied to the
equations. For time integration explicit Runge-Kutta methods of different order are
implemented, either with fixed or adaptive time stepping. The obtained results show
that the CPU time of the adaptive simulations can be significantly reduced with
respect to simulations on a regular grid. Nevertheless the accuracy order of the un-
derlying numerical scheme is preserved.

Keywords: Incompressible flows, Multiresolution analysis, Vorticity stream-function
formulation, Volume penalization method, Central finite differences

1The code is developed in FORTRAN and is accessible for all [55].
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Chapter 1

Introduction

1.1 Objectives and historical background

The aim of present investigation is to develop a reliable self-adaptive direct numer-
ical method to study the near wall behavior of unsteady incompressible flows. The
governing equations are the Navier-Stokes equations with proper initial and bound-
ary conditions. Conventional methods for spatial discretization of the PDEs (e.g.,
finite differences, finite volumes and finite elements) have limited order of accuracy
especially near boundaries, but they are more flexible in dealing with complex geome-
tries over a suitable grid. On the other hand standard spectral methods which are
widespreadly used in direct numerical simulation of turbulence are limited to Carte-
sian grids. One can recognize the poor spectral localization (good spatial localiza-
tion/resolution) of the former methods while good spectral localization (poor spatial
localization/resolution) of the latter methods [25]. Therefor for flows in/around com-
plex geometries, the use of a grid capable to resolve all the scales will be limited to
low-Reynolds flows. In general the small scales in a turbulent flow are not limited to
near wall regions and can also move in the flow field. A high-order method with a
prescribed grid spacing cannot resolve all the scales and thus the interactions present
in the flow unless with the use of a fine grid in regions with high gradient. The
limitation of mentioned methods for problems with widely disparate spatial scales,
has encouraged the researcher to use alternative methods with limited accuracy but
good spatial localization in regions with high gradient of flow variables. As a result
recently there has been increasing interest in self adaptive numerical methods for solv-
ing time-dependent PDEs, see for example [46]. Adaptive methods can be divide into
r-type (a fixed number of grid points are redistributed), h-type (regriding is performed
occasionally) and p-type (the degree of the polynomial representing the solution is
locally increased) each with their own advantages and disadvantages as detailed in
literatures. Among different methods for grid adaptation h-type refinement proved to
be more advantageous. By considering some advantages of the h-type refinement we
explain some details of this methods. Existing numerical methods based on h-type
refinement fall into two classes: error indicator based, where the grid is refined to
resolve gradients of a physically relevant quantity, and error control based, where the
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error is estimated and the grid is refined to ensure this error is less than a prescribed
tolerance. The error-indicating strategy does not control the error directly, but in-
stead controls the mesh coarsening and refinement. The error-estimating strategy
minimizes the error as measured in an appropriate norm, which leads to an optimal
distribution of the grid and thus a more reliable solution.
Among different error-estimating adaptation strategies (which most of them belong
to the finite element family) wavelet-based numerical methods have proved to be
an efficient tool in developing adaptive numerical methods which control the global
(usually L2) approximation error. Wavelet transforms allow to estimate the local
regularity of solutions of the given PDE, with a very efficient algorithm, and thus
can define auto-adaptive discretization with local mesh refinement. Liandrat and
Tchamitchian [11] proposed the first wavelet-based adaptive method for numerical
simulation of PDEs. The currently existing wavelet-based algorithms can be classified
as pure wavelet methods and wavelet optimized grid methods. Pure wavelet methods,
divided to Galerkin and collocation schemes, employ wavelets directly for discretiza-
tion of the governing equations. The wavelet transform facilitates the effective sparse
representation of the functions and pseudo-differential operators (and their inverse)
by filtering of wavelet coefficients of the function and of the matrix representing the
operators. The characterization of function spaces in terms of wavelet coefficients and
the corresponding norm equivalences leads to diagonal preconditioning of operators
(compression) in wavelet space. In practice similar to pseudo-spectral methods the
evaluation of nonlinear term in function space is not efficient, usually by performing
an inverse wavelet transform in each time step, the solution is reconstructed on a
locally refined grid, and the nonlinear term is then evaluated point-wise in physical
space. For a comprehensive review of wavelet methods applied to the computational
fluid dynamics see [52]. On the other hand, wavelet optimized grid (WOG) methods
combine classical discretizations of considered equations (e.g., finite differences or fi-
nite volumes) with wavelets, which are used to define the adaptive grid. The goal of
the wavelet-based adaptation of the grid is to obtain the best approximation of the
flow variables on a near optimal grid. This approximation has a one-to-one correspon-
dence between the wavelet expansion coefficients and the grid points. Thus, nonlinear
filtering of wavelet coefficients of the interested flow variables automatically coarsens
the computational grid. Since with the use of wavelet transform and thresholding
of the wavelet coefficients, a given functions can be reconstructed with a prescribed
accuracy, thus adaptive methods based on wavelets provide global error control for
numerical solution of PDEs. See [33] and [53] where a finite volume discretization of
governing equations combined with cell-averaged interpolating wavelet transform for
grid adaptation. In the present work the Navier-Stokes equations are discretized with
a classical second order central finite differences, thus similar to WOG methods the
role of the wavelet transform is the adaptation of the grid and the fast interpolation of
flow variables at new unknown points. Wavelet optimized finite difference (WOFD)
methods based on fast wavelet transforms are very efficient (especially for problems
with a large magnitude of scales, e.g., turbulence) since the computational cost scales
linearly with the number of wavelet coefficients retained in the approximation [43].
In the procedure of solving the incompressible Navier-Stokes equations a difficulty
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arises because of the lack of a time-derivative term in the continuity equation, which
limits the straightforward use of time-marching numerical methods designed for cou-
pled equations. Another problem is the procedure of updating the pressure, which
requires special treatment. Most numerical methods like projection, marker and cell
and fractional step methods involve solving a decoupled Poisson equation for the
pressure at each time step. The common application of this method consist of two
steps: The first step is to solve for an intermediate velocity field using the momentum
equations (Burgers-like), in which a fraction of the pressure-gradient term from the
previous time step can be involved or it can be excluded entirely. In the second step,
the pseudo pressure is computed via intermediate velocity field, which maps (Leray
projector) the intermediate velocities onto a divergence-free (selonoidal) velocity field.
This method is first order in time, originally proposed by Chorin [3] in 1968 and de-
veloped by Kim and Moin [9] to second order accuracy. For a comprehensive review
of projection methods see [40]. Another approach is the artificial compressibility
method (ACM), which relaxes the ellipticity of the pressure field by adding a pseudo-
time derivative of pressure into the continuity equation, hence coupling continuity and
momentum equations. Then iterations are performed in pseudo-time until attaining
a divergence free velocity field. The method was originally designed for steady prob-
lems by Chorin [2] in 1967 and developed by Rogers and Kwak [13] to second order
accuracy in time, with the use of dual time stepping strategy. For a comprehensive
review of ACM methods see [36]. However in two-dimensional problems vorticity and
stream-function formulation would be the best for some purposes by eliminating the
pressure gradient entirely and reducing the flow variables to one scalar value.
In the present work the concept of adaptive multiresolution method will be applied
to the vorticity and stream-function formulation. However the developed concepts
are also applicable to the primitive variable formulation. See [32] and [39] for a finite
difference discretization of governing equations using gradient approach for grid adap-
tation. To the best of our knowledge this investigation is the first attempt to develop
an adaptive finite difference method based on the interpolating wavelet transform
applied to the vorticity and stream-function formulation. A second-order central
finite difference method with symmetric stencil over an adaptive Cartesian grid is
used for spatial discretization of the equations. Finite difference method represents a
suitable combination with the multiresolution analysis based on the Harten’s point-
value wavelet transform. The chosen discretization avoids adding excessive numerical
dissipation which is usually introduced by upwind methods, thus has a reasonable
accuracy in space over an adapted grid. The concept of symmetric stencils will lead
to intermediate (hung) points, that their values can be interpolated accurately via
inverse wavelet transform. Another advantage of the vorticity and stream-function
formulation is that it allows the use of high-order time stepping rather easily, e.g.,
fourth-order Runge-Kutta method, to minimize the truncation error due to discrete
time integration which is in nature an accumulative error during simulations [28].
In the present investigation the unexpectedly difficult, dipole-wall collision is cho-
sen as a benchmark computation. The problem is studied experimentally with the
use of PIV technique by Naguib and Koochesfahani [35]. Numerical simulations of
the dipole-wall collision were first performed by Orlandi [12] in two dimensions, who
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revealed that the creation of vorticity at the wall drives a vigorous rebound of the
dipolar vortex. Each dipole half forms a new pair with a secondary vortex consist-
ing of boundary layer vorticity. The new dipoles travel along circular trajectories
away from the wall. The production of the secondary vorticity at the wall during
the dipole-wall collision was later studied by Coutsias and Lynov [14] and by Clercx
and van Heijst [29]. The Reynolds number in the reported simulations is limited
to Re = 5000 as accurate representation of the small-scale structures near the wall
requires very high resolution. Walker [5] and Peridier et al. [15, 16] have investigated
the behavior of the boundary layer at a no-slip wall affected by a nearby single (point)
vortex. This setup permits the use of boundary-layer equations, i.e., a reduced ver-
sion of the Navier-Stokes equations, on a specially tailored grid to obtain results for
large Reynolds numbers. More recently Obabko and Cassel [30] reported results on
this problem based on the full Navier-Stokes equations [45].
After validation of the developed adaptive multiresolution method with the results
of previous studies of a dipole collision with a straight wall the extension to collision
with curved walls via the volume penalization method will be presented. Nowadays,
there exist several techniques to introduce solid curved boundaries in the numerical
simulation of different types of flows. Among those, some of them use finite difference
methods by mapping the equations to general curvilinear coordinates [13], others use
full unstructured grids with finite volume or element discretization of the governing
equations, we will call them body-fitted grids. All of them have their own advan-
tages and difficulties. Another approach which became more popular during recent
years are immersed boundary methods for imposing complex geometries while using
the advantages of Cartesian grids. They are easy-to-implement and more efficient
than classical approaches such as body-fitted grids, in particular for moving and/or
flexible geometries [44]. The name immersed boundary comes from the fact that the
physical solid boundary does not always conform with the computational grid points
at boundaries, instead it is inside of the solution domain. The volume penalization
method originally introduced by Arquis and Caltagirone [7] for flows in porous media,
does posses this property; therefore it is an example of immersed boundary methods.
This technique is physically motivated, since it is based on the idea of modeling solids
as porous media whose porosity coefficient tends to zero. In addition, it is mathemati-
cally justified, due to the convergence property proven rigorously by Angot et al. [23].
As a starting point in the present work we take the two-dimensional vorticity stream-
function solver developed in [49] for a uniform grid and the adaptive one-dimensional
Burgers solver developed by author at M2P2 (Marseilles) during the last summer.
The manuscript is organized as follows: In the following a short introduction to the
discrete wavelet transforms and the idea of point selection by filtering of the wavelet
coefficients will be presented. Then in chapter two some theoretical background of
the adaptive multiresolution method will be introduced. After that the results for
the one-dimensional Burgers equation and the dipole collision with either straight or
curved walls will be reported. Finally, conclusions and perspectives will be discussed
in chapter four.
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1.2 Wavelet transform

Like Fourier transforms, wavelet transforms can be viewed as a change of basis in
function space, e.g., from time to frequency or from space to wavenumber. The basis
functions of the Fourier transform are trigonometric functions, i.e., sines and cosines.
For the wavelet transform there is a large choice of basis functions which are called
mother wavelets. For the Fourier transform the decay of the Fourier coefficients de-
pends on the global regularity of the decomposed function. In wavelet transforms
some of the new basis functions are more complicated than trigonometric functions
but what makes them interesting is that, unlike the Fourier basis, wavelets are well
localized functions in space; simultaneously, like them, they are quit localized in
function space or more precisely they have a characteristic scale. So they can unfold
signals or fields into both space (or time) and scale, and possibly directions in di-
mensions higher than one. The continuous wavelet transform has been discovered by
Grossmann and Morlet who published the first paper on wavelets in 1984 [8]. The or-
thogonal wavelet transform has been discovered by Lemarié and Meyer (1986). Then,
Daubechies (1988) found orthogonal bases made of compactly supported wavelets,
and Mallat (1989) designed the fast wavelet transform (FWT) algorithm. More de-
tails can be found in [41]. The second generation wavelet transform (SGWT) was
introduced independently by Sweldens [22], Donoho [17] and Harten [20] in the early
1990s. It is a wavelet transform where the filters (or even the represented wavelets)
are not designed explicitly, but rather the transform consists of calculating the dif-
ferences between an interpolated value (with different accuracies) of the function at
a given point from the corresponding neighbor points in lower levels, and its value.
The main advantage of this approach is that it is applicable to either periodic or
non-periodic functions.
Biorthogonal wavelet transform

In a discrete multiresolution analysis framework, data are represented at different
scale levels, and the main tools are appropriate transformations, e.g., wavelet trans-
form, relating the information fJ at the finest scale level J to the lower ones, and vice
versa. After a transformation the output contains the information f0 on the coarsest
level, and dj that keeps the details between a scale level j and the next upper level
j + 1. Schematically, we have

fJ ↔ fMR
J = (f0, d0, ..., dJ−1) (1.1)

To illustrate this methodology, we consider the case of discretization by Harten’s point
values [21] for uniform grids, which is well adapted for finite difference methods, versus
Harten’s cell average method which is more suitable for finite volume methods. By
considering in a unit interval the hierarchy of uniform dyadic grids will obtain from

Xj = {xj,i ∈ R : xj,i = i2−j, i = 0, · · · , 2j}, j = 0, · · · , J (1.2)

with spacing 2−j, where j is the level and i represents the position. The number of
points must always be odd (N = 2J + 1) to have a point in the middle. As indicated
in Fig. 1.1, in multiresolution analysis to go from Xj to a more refined grid Xj+1,
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Figure 1.1: Uniform dyadic grids with N = 2J +1 = 17 points in finest level (J = 4),
including lower levels down to (j = 0).

we add to Xj new midpoints between the old points, dividing by two the step size.
The direct and inverse multiresolution (MR) transforms are usually associated to
bi-orthogonal multiresolution representation of functional spaces of the form

VJ = V0 ⊕
J
∑

j=0

Wj (1.3)

where VJ and WJ are associated function spaces. Thus a given function, f(x) can be
represented with

f(x) =
2J
∑

i=0

f0,iΦ0,i(x) +
J
∑

j=0

2J
∑

i=0

dj,iΨj,i(x) (1.4)

where the orthonormal basis are scaling functions Φj,i and wavelets Ψj,i defined as

Ψj,i(x) = 2j/2Ψ(2jx− i), j, i ∈ Z

Φj,i(x) = 2j/2Φ(2jx− i), j, i ∈ Z

At a given scale (j) the scaling function Φj,i is orthonormal with respect to its trans-
lation by discrete steps i2−j but not with respect to its dilates,

⟨Φj,i,Φj,k⟩ = δik (1.5)

The wavelets Ψj,i are orthonormal with respect to their translates by discrete steps
i2−j and their dilates by discrete steps 2−j corresponding to octaves [41].

⟨Ψj,i,Ψj′,i′⟩ = δjj′δii′ (1.6)

where δ denotes the Kronecker symbol and the inner (scalar) product is defined by

⟨f, g⟩ =

∫

R

f(x)g∗(x)dx (1.7)

where ∗ denotes the complex conjugate in the case of complexed valued wavelets. The
scaling function coefficients, fj,i, essentially encode the smooth part of the function,
while the wavelet coefficients, dj,i, contain information on the function behavior on
successively finer scales and the coefficients are interpreted as the inner products with
the dual basis

fj,i = ⟨f,Φj,i⟩ = f(xj,i) (1.8)
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where Φj,i is the delta distribution at xj,i. Definition of the dual wavelets Ψj,i such
that

dj,i = ⟨f,Ψj,i⟩ = fj+1,2i+1 − f̃j+1,2i+1 (1.9)

implies

Ψj,i(x) = Φj+1,2i+1 −
∑

n

βnΦj,n(x) (1.10)

thus f̃ , can summarized in

f̃j+1,2i+1 =

st/2
∑

n=1

βn(fj,i−n+1 + fj,i+n) (1.11)

where st is the interpolation stencil. For instance, interpolating coefficients for linear
interpolation with st = 2 is β1 = 1/2, and for cubic interpolation with st = 4 are
(β1, β2) = (9/16,−1/16). The following equation is useful to better understand the
relation of indexes between two successive level for a given variable ϕ

ϕj+1,2i+1 ⇐⇒ ϕj,i+ 1

2

(1.12)

1.2.1 One-dimensional transform

The direct wavelet transform (WT) for a discrete function given on dyadic grid points,
is performed simply by replacing the value of the function, with the difference between
its value and its interpolated value from the corresponding neighbors at lower levels

dj,i = fj+1,2i+1 − f̃j+1,2i+1 (1.13)

this must be performed from the finest level J down to j = 1. In contrast the inverse
wavelet transform (IWT) starts from the coarsest (lowest) level up to the finest level

fj+1,2i+1 = dj,i + f̃j+1,2i+1 (1.14)

In this method predictions of the values of the function will be done with interpolating
polynomials. The prediction is exact for polynomials of a prescribed degree [54]. The
most simple example is given by linear (first-order) interpolation

f̃j+1,2i+1 =
fj,i + fj,i+1

2
(1.15)

By using cubic (third-order) interpolation

f̃j+1,2i+1 =
−fj,i−1 + 9fj,i + 9fj,i+1 − fj,i+2

16
(1.16)

better results will obtained in terms of compression rate for sufficient smooth func-
tions. The corresponding scaling functions of the wavelet transform in physical and
Fourier space are shown in Fig. 1.2 and Fig. 1.3 with linear and cubic interpola-
tion, respectively. The functions can be obtained by computing the inverse wavelet
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Figure 1.2: The scaling function Φ1,i of wavelet transform corresponding to linear
interpolation.

transform of a unit vector (Dirac-delta function δ) in the mid component of a zero
vector (of length, e.g., 8192) so the point is belonging to the minimum level. Other
unit vectors would give wavelets with the same shapes, but different positions and
scales. The smooth scaling functions, e.g., the one obtained with cubic interpolation
(see Fig. 1.3) decays rapidly in Fourier space. Close to the left boundary forward
interpolation must be used for cubic interpolation, resulting in

f̃j+1,1 =
5fj,0 + 15fj,1 − 5fj,2 + fj,3

16
(1.17)

and on the right boundary a backward stencil must be used as follows

f̃j+1,2j+1−1 =
fj,2j−3 − 5fj,2j−2 + 15fj,2j−1 + 5fj,2j

16
(1.18)

With the use of cubic interpolation, i.e., four point interpolation stencil (st = 4) it is
not possible to go lower than j = 3 during direct and inverse wavelet transform. The
pseudo-code for direct wavelet transform with linear interpolation of a given function
f(xi) over i = 0, . . . , 2J points, excluding boundary points is given in the following:
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Figure 1.3: The scaling function Φ1,i of wavelet transform corresponding to cubic
interpolation.

1. DO for j = J to j = 1, step = −1

2. Pointer := 2J−j

3. DO for i = Pointer to i = 2J − Pointer, step = 2× P

4. Interpol := 0.5f(i− Pointer) + 0.5f(i+ Pointer)

5. d(i) := f(i)− Interpol

6. END DO

7. END DO

We can note that no intermediate memory is needed in this transformation and the
order of operations is O(cN), where N is the number of points and the constant c
depends on the order of interpolation which is usually less than 10. The pseudo-code
for inverse transformation is given in the following:
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1. DO for j = 1 to j = J, step = 1

2. Pointer := 2J−j

3. DO for i = Pointer to i = 2J − Pointer, step = 2× P

4. Interpol := 0.5f(i− Pointer) + 0.5f(i+ Pointer)

5. f(i) := d(i) + Interpol

6. END DO

7. END DO

1.2.2 Filtering in wavelet space

Given a threshold parameter for the finest ϵJ or the coarsest ϵ1 level, data compres-
sion will be obtained by thresholding of the detail coefficients, also called nonlinear
filtering, applied to wavelet coefficients in wavelet space. After performing the direct
transform, wavelet coefficients smaller than a threshold are set to zero and the corre-
sponding point can be eliminated from the set of the points, in other words we can
find the value of that point by interpolation and the error remains bounded by the
threshold value.

dj,i =

{

0 if |dj,i| ≤ ϵj,
dj,i else

(1.19)

where
ϵj = ϵJ 2D(j−J) = ϵ0 2D(j) (1.20)

in which D = 1, 2, 3 is the dimension of the problem, and J denotes the maximum
level. A linear filtering also can be used, i.e., all wavelet coefficients above a given
scale are set to zero. In the present investigation nonlinear filtering is used. After
nonlinear filtering in wavelet space the given function f(x), can be reconstructed f(x),
just with the significant wavelet coefficients corresponding to the important points of
the function. Those points must be kept to guaranty the boundedness of the error
introduced due to filtering and eliminating non necessary points. Following Donoho
[17], it can be shown that for a sufficiently smooth function f(x)

|f(x)− f(x)| ≤ c1ϵ0 (1.21)

This implies that the number of significant wavelet coefficients Ns is bounded by ϵ0
as

Ns ≤ c2ϵ
−D/PWT

0 (1.22)

where PWT is the order of the wavelet, i.e, the number of neighboring points, or the
stencil size, used for wavelet construction [22] and the coefficients ci depend on f(x)
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(but are of order unity). Note that PWT controls the number of zero moments of the
interpolating scaling function. Combining Eq. (1.21) and Eq. (1.22) we have the
following bounded error in terms of Ns

|f(x)− f(x)| ≤ c3N
−PWT /D
s (1.23)

The estimated error is consistent with numerical experiments for both one-dimensional
and two-dimensional cases [37]. The accuracy of differentiation with wavelet trans-
form applied to a function over a uniform and thresholded grid was examined by
Vasilyev and Bowman [27] for the one dimensional case and by Vasilyev [34] in mul-
tiple dimensions. It was shown that the error bound on the derivative is given by

|DUni
x f(x)−DMR

x f(x)| ≤ c4N
−(PWT−1)/D
s ≈ c4ϵ

(PWT−1)/PWT

0 (1.24)

where Dx stands for the derivative operator in the x direction. This relation was
verified numerically for both one and two dimensions in [27] and [34]. Note that the
error bound (1.24) is also correct for the second-order derivative if a symmetric stencil
is used [37].
The discrete Lp-norm for error estimation is defined by

Lp(f, f) =
[ 1

N

N
∑

i=1

|fi − f i|
p
]

1

p

(1.25)

and L∞-norm is defined as

L∞(f, f) = max |fi − f i|, i = 1, . . . , N. (1.26)

The compression rate can be introduced as

%Compression =
(N− Ns

N

)

× 100 (1.27)

where N is the number of total points and Ns is the number of significant points
after thresholding in wavelet space. The idea of filtering and compression with error
analysis will be shown for two examples.

Example: Consider a non-periodic one-dimensional function f(x) over [0, 1]

f(x) =







8.1e1/4e−|x−1/2| 0.0 ≤ x < 0.25
9e−|x−1/2| 0.25 ≤ x < 0.75
e−|x−1/2|(16x2 − 24x+ 18) 0.75 ≤ x ≤ 1.0

(1.28)

with a discontinuity at x = 0.25, a discontinuity in the first derivative at x = 0.5 and
a discontinuity in second derivative at x = 0.75. As a second example we consider a
Gaussian function

f(x) = exp
(x− 0.5

δ

)2

for x ∈ [0, 1]

their sparse point representations, with the use of cubic (PWT = 4) interpolating
wavelet transform, for J = 10, filtered with threshold ϵ = 1× 10−3 are illustrated in
Fig. 1.4 (a) and (b). Results of the error analysis and compression rates with the
linear and cubic interpolating wavelet transforms, by applying different thresholding
parameters are reported in Tables 1.1 and 1.2.
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Figure 1.4: Sparse point representation of 1D functions, obtained by WT with cubic
interpolation (J = 10), filtered with threshold ϵ = 1× 10−3. The green dots (marked
•) show the retained grid points.

Table 1.1: Results of the error analysis and compression rates for the function (1.28)
with the linear and cubic interpolating wavelet transforms, J = 10.

WT ϵ % Compression L∞-Error L1-Error L2-Error
Linear 1× 10−1 96.2 2× 10−2 1× 10−3 5× 10−5

Linear 1× 10−2 93.0 9× 10−3 2× 10−4 1× 10−5

Linear 1× 10−3 86.8 2× 10−4 6× 10−5 2× 10−6

Linear 1× 10−4 72.7 5× 10−5 1× 10−5 5× 10−7

Linear 1× 10−5 42.1 1× 10−5 2× 10−6 9× 10−8

Linear 1× 10−6 0.0 9× 10−16 3× 10−17 5× 10−18

Cubic 1× 10−1 96.3 7× 10−2 6× 10−2 1× 10−4

Cubic 1× 10−2 95.3 9× 10−3 5× 10−5 1× 10−5

Cubic 1× 10−3 94.0 5× 10−5 1× 10−6 1× 10−7

Cubic 1× 10−5 92.4 8× 10−7 9× 10−8 4× 10−9

Cubic 1× 10−7 88.7 2× 10−8 5× 10−9 2× 10−10

Cubic 1× 10−9 67.0 6× 10−11 2× 10−11 9× 10−13

Cubic 1× 10−11 36.7 3× 10−12 9× 10−13 4× 10−14

Cubic 1× 10−13 0.0 5× 10−15 9× 10−16 4× 10−17
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Table 1.2: Results of the error analysis and compression rates for the Gaussian func-
tion, δ2 = 0.1, with the linear and cubic interpolating wavelet transforms, J = 10.

WT ϵ % Compression L∞-Error L1-Error L2-Error
Linear 1× 10−1 97.2 3× 10−3 9× 10−4 4× 10−5

Linear 1× 10−2 94.4 6× 10−4 2× 10−4 8× 10−6

Linear 1× 10−3 88.4 2× 10−4 5× 10−5 2× 10−6

Linear 1× 10−5 52.7 1× 10−5 2× 10−6 1× 10−7

Linear 1× 10−6 4.1 9× 10−7 2× 10−8 4× 10−9

Linear 1× 10−7 0.2 1× 10−9 3× 10−12 2× 10−12

Linear 1× 10−8 0.2 1× 10−9 3× 10−12 2× 10−12

Linear 1× 10−10 0.0 1× 10−16 6× 10−18 7× 10−19

Cubic 1× 10−1 96.3 7× 10−2 6× 10−2 1× 10−4

Cubic 1× 10−2 94.4 6× 10−4 2× 10−4 8× 10−6

Cubic 1× 10−3 96.8 3× 10−5 7× 10−6 3× 10−7

Cubic 1× 10−4 94.2 6× 10−6 8× 10−7 5× 10−8

Cubic 1× 10−6 87.6 1× 10−8 3× 10−9 1× 10−10

Cubic 1× 10−8 71.6 5× 10−9 1× 10−9 5× 10−11

Cubic 1× 10−10 12.1 1× 10−10 7× 10−12 7× 10−13

Cubic 1× 10−12 0.0 7× 10−16 9× 10−17 5× 10−18

1.2.3 Two-dimensional transform

The previously presented one-dimensional wavelet transform can be extended to
higher dimensions. For the moment just the two-dimensional transform will be con-
sidered, since the three-dimensional transform can be constructed analogously. There
are two ways to accomplish this [41]:

1. Rectangular wavelet transform

2. Tensor product wavelet transform

Rectangular wavelet transform : Like the Fourier transform for higher dimensions
this transform is simply equivalent to applying the one dimensional wavelet transform
to the rows and the columns of a matrix or a two-dimensional function.

f(x, y) =
∑

jx,kx

∑

jy ,ky

djx,kx,jy ,kyΨjx,kx,jy ,ky(x, y) (1.29)

where
Ψjx,kx,jy ,ky(x, y) = Ψjx,kx(x)Ψjy ,ky(y) (1.30)

and
djx,kx,jy ,ky = ⟨f,Ψjx,kx,jy ,ky⟩ (1.31)

For some applications, this method is more advantageous. Often the notion of a
scale has a certain meaning, so one would like to have a unique scale assigned to
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Figure 1.5: Schematic representation of two-dimensional wavelet transforms : rect-
angular WT (left), tensor product WT (right), picture taken from [41].

each basis function. For CFD applications the concept of multiresolution analysis
(MRA) is much more interesting so the two-dimensional wavelet transform based on
tensor product will be introduced. A schematic representation of the mentioned two-
dimensional wavelet transforms is shown in Fig. 1.5.

Tensor product wavelet transform : This transform can be obtained through
the tensor product of two one-dimensional multiresolution analysis of L2(R), so three
different wavelets will be generated

f(x, y) =
∑

j

∑

ix,iy

3
∑

µ=1

dµj,ix,iyΨ
µ
j,ix,iy

(x, y) (1.32)

where

Ψµ
j,ix,iy

(x, y) =







Ψj,ix(x)Φj,iy(y), µ = 1
Φj,ix(x)Ψj,iy(y), µ = 2
Ψj,ix(x)Ψj,iy(y), µ = 3

(1.33)

and
dµj,ix,iy = ⟨f,Ψµ

j,ix,iy
⟩ = fj/j+1(ix, iy)− f̃

µ
j/j+1(ix, iy) (1.34)

The scale parameter j simultaneously controls the dilatation in x and y directions,
and in D dimensions this construction yields to 2D − 1 types of wavelets [41].

Application to interpolating wavelet transform : For a two-dimensional func-
tion f(x, y) with the use of the notion of tensor product, the interpolating wavelet
transform will take three different forms for locations with following (ix, iy) index
pair, where ix = 1, . . . , 2J+1 and iy = 1, . . . , 2J+1 are the indexes in x and y direc-
tions, respectively [21].
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(odd,odd): Will not change (they belong to the lower levels) see Fig. 1.6.

(even,odd): Interpolation along x direction, µ = 1

f̃ 1
j+1(2ix, 2iy + 1) =

st/2
∑

n=1

βn

(

fj(ix + n− 1, iy) + fj(ix − n, iy)
)

(1.35)

(odd,even): Interpolation along y direction, µ = 2

f̃ 2
j+1(2ix + 1, 2iy) =

st/2
∑

m=1

βm

(

fj(ix, iy +m− 1) + fj(ix, iy −m)
)

(1.36)

(even,even): 2D interpolation at the same level (diagonal direction), µ = 3

f̃ 3
j (2ix, 2iy) =

st/2
∑

n=1

βn

st/2
∑

m=1

βm

(

fj(ix + n− 1, iy +m− 1) + fj(ix − n, iy +m− 1)

+fj(ix + n− 1, iy −m) + fj(ix − n, iy −m)
)

In the above equations the coefficients βi, (i = 1, 2, . . . , st/2) come from standard
interpolation methods, where (st− 1) is the order of the interpolation, (st being the
stencil size). For a few common values of st we have

st = 2 (linear interpolation) with β1 = 0.5

st = 4 (cubic interpolation) with β1 =
9
16
, β2 = −

1
16

st = 6 (fifth-order interpolation) with β1 =
150
256
, β2 = −

25
256
, β3 =

3
256

The pseudo-code for the direct wavelet transformation, with linear interpolation, for
a matrix or a two-dimensional function f(xix , yiy), ix, iy = 1, . . . , N , with N = 2J +1
points in each direction including boundary points, is given in the following:
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1. DO for j = J to j = 0, step = −1

2. P := 2J−j

3. DO for iy = 1 + P to iy = N − P, step = 2× P

4. DO for ix = 1 + P to ix = N − P, step = 2× P

5. Interpol := 0.25×(f(ix−P, iy)+f(ix+P, iy)+f(ix, iy−P )+f(ix, iy+P ))

6. d(ix, iy) := f(ix, iy)− Interpol END DO END DO

7. DO for iy = 1 to iy = N, step = 2× P

8. DO for ix = 1 + P to ix = N − P, step = 2× P

9. Interpol := 0.5× (f(ix − P, iy) + f(ix + P, iy))

10. d(ix, iy) := f(ix, iy)− Interpol END DO END DO

11. DO for iy = 1 + P to iy = N − P, step = 2× P

12. DO for ix = 1 to ix = N, step = 2× P

13. Interpol := 0.5× (f(ix, iy − P ) + f(ix, iy + P ))

14. d(ix, iy) := f(ix, iy)− Interpol END DO END DO

15. END DO

The inverse transform will be similar by starting from the lowest level j = 0 up
to j = J and performing the two-dimensional interpolations after interpolations in x
and y directions because in each level two-dimensional interpolations are using val-
ues from their own level. In Fig. 1.6 a schematic representation of two-dimensional
wavelet transform based on cubic interpolation and tensor product is shown.

Example: Consider a two-dimensional function with a discontinuity

f(x, y) =

{

1 if (x− 1/2)2 + (y − 1/2)2 ≤ 1
0 else

(1.37)

illustrated in Fig. 1.7 (b) and a two-dimensional Gaussian illustrated in Fig. 1.8 (b).
Their sparse point representation, with the cubic interpolating wavelet transform, for
J = 9, filtered with ϵ = 1×10−3 is also shown in Fig. 1.7 (a) and Fig. 1.8 (a). Results
of error analysis and compression rates with the linear and cubic interpolating wavelet
transforms, by applying different thresholding parameters are reported in Tables 1.3
and 1.4.
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(a) Interpolation in x and y directions (b) 2D interpolation

Figure 1.6: Schematic representation of the two-dimensional wavelet transform with
p = 4, for calculation of the wavelet coefficients dµj (ix, iy), µ = 1, 2, 3. In the one-
dimensional interpolations in x and y directions, (µ = 1, 2) points at the finer level
j + 1 (marked •) must interpolated from the points at the coarser level j (marked
•), illustrated in (a). In the two-dimensional interpolation, (µ = 3) point at the level
j + 1 (marked •) must interpolated from the points at the same level j + 1 (marked
•), illustrated in (b), picture taken from [37].

X

Y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) 2D view

0

0.2

0.4

0.6

0.8

1

W

0

0.2

0.4

0.6

0.8

1

X

0

0.2

0.4

0.6

0.8

1

Y

X Y

Z

(b) 3D view

Figure 1.7: Function (1.37) and its sparse point representation (marked •) with the
linear interpolating wavelet transform, J = 9, ϵ = 10−3, Compression = 99.4%,
L1-Error= 10−15.
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Figure 1.8: Gaussian function and its sparse point representation (marked •) with
the cubic interpolating wavelet transform, J = 9, ϵ = 10−3, Compression= 98%,
L1-Error= 1.14× 10−4.

Table 1.3: Results of the error analysis and compression rates for the (discontinues)
function (1.37) with the linear and cubic interpolating wavelet transforms, J = 9.

WT ϵ % Compression L∞-Error L1-Error L2-Error
Linear 1× 10−1 99.4 10−15 10−15 10−15

Linear 1× 10−7 99.4 10−15 10−15 10−15

Linear 1× 10−13 99.4 10−15 10−15 10−15

Cubic 1× 10−1 98.2 10−15 10−15 10−15

Cubic 1× 10−7 98.2 10−15 10−15 10−15

Cubic 1× 10−13 98.2 10−15 10−15 10−15
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Table 1.4: Results of the error analysis and compression rates for the two-dimensional
Gaussian function with the linear and cubic interpolating wavelet transforms, J = 9.

WT ϵ % Compression L∞-Error L1-Error L2-Error
Linear 1× 10−1 87.6 4× 10−2 9× 10−3 3× 10−5

Linear 1× 10−2 58.8 6× 10−3 2× 10−3 4× 10−6

Linear 1× 10−3 37.2 5× 10−4 1× 10−4 3× 10−7

Linear 1× 10−5 7.7 2× 10−6 2× 10−7 1× 10−9

Linear 1× 10−8 0.0 3× 10−16 4× 10−18 3× 10−20

Cubic 1× 10−2 99.8 6× 10−3 1× 10−3 4× 10−6

Cubic 1× 10−3 98.4 9× 10−4 1× 10−4 4× 10−7

Cubic 1× 10−5 58.1 4× 10−6 3× 10−7 1× 10−9

Cubic 1× 10−8 6.1 6× 10−11 4× 10−13 5× 10−15

Cubic 1× 10−13 0.0 6× 10−16 2× 10−17 9× 10−20
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Chapter 2

An adaptive multiresolution

method for evolutionary PDEs

2.1 Introduction

In this chapter first the theoretical basis of an adaptive multiresolution method for
evolutionary PDEs will be explained in some detail and two time integration meth-
ods from the Runge-Kutta family will be presented. Then the space discretization
based on finite differences on Cartesian grids coupled with wavelet optimized grid
(WOG) adaptation will be described. Finally, the method will be extended to the
two-dimensional Navier-Stokes equations in vorticity and stream-function formulation
including the penalization term which imposes no-slip and no-penetration boundary
conditions, required in the case of complex geometries, e.g., curved walls. Penaliza-
tion methods allow to impose boundary conditions in the case of complex geometries
(even varying in time) without modifying the computational grid.

2.2 Evolutionary PDEs

In fluid mechanics we encounter different types of partial differential equations. They
come from conservation laws and each of them describes the evolution of a different
quantity, i.e., momentum, energy, vorticity and etc. From mathematical point of view
these equations can be divided into three main groups, i.e., hyperbolic, parabolic and
elliptic. The Euler equations are an example of a hyperbolic system of equations.
Two examples for parabolic equations are :
the one-dimensional viscous Burgers equation

∂tu+ uux = νuxx (2.1)

and the two-dimensional vorticity (ω = ∇× u) transport equation

∂tω + (u · ∇)ω = ν∇2ω. (2.2)

As an example for elliptic PDEs, Poisson equation

−∇2ψ = ω (2.3)
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Figure 2.1: Hung point (marked ◦) and active points (marked •), picture taken from
[32].

for stream function ψ can be cited. These equations must completed with suitable
initial and boundary conditions. In unsteady incompressible flows the governing
system of equations, i.e., Navier-Stokes equations, have parabolic character in time
(for steady problems they have elliptic character in space). The continuity equation,
must be satisfied in all time steps so the evolutionary part of the problem will be the
momentum (or vorticity) equations. Hence for instance, we will focus on the time
dependent equations in the form of :

∂u

∂t
= RHS (2.4)

where RHS contains all spatial terms either linear or nonlinear. It is also possible to
write the equations in conservative form

∂u

∂t
= ∇ · F (u) on Ω (2.5)

where F contains all viscous and inviscid fluxes.

2.3 Spatial discretization

For discretization of spatial derivatives a second order central finite difference method
over Cartesian grids will be used as follows:

First derivative:
∂u

∂x

∣

∣

∣

i
=
ui+1 − ui−1

2h
+O(h)2 (2.6)

Second derivative:
∂2u

∂x2

∣

∣

∣

i
=
ui+1 − 2ui + ui−1

h2
+O(h)2 (2.7)

For diffusion terms with a variable coefficient λ we have:

∂

∂x

(

λ
∂u

∂x

)
∣

∣

∣

i
=

(λi+1 + λi)(ui+1 − ui)− (λi−1 + λi)(ui − ui−1)

2h2
+O(h)2 (2.8)

For maintaining the accuracy in the multiresolution analysis by using symmetric
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stencils the indices (±1) are replaced by (±d), where d is an integer number, mul-
tiplying by h, representing the distance (dh) between the point in i and the nearest
active point. For example Eq. (2.7) will be replaced by

∂2u

∂x2

∣

∣

∣

i
=
ui+d − 2ui + ui−d

(dh)2
+O(h)2 (2.9)

For a given grid point after finding the nearest active point, all neighbors will be
checked with the same distance to verify if they are in the list of active points, if
not, we will call them hung points and their values must be interpolated from active
points in lower levels, see Fig. 2.1. For two-dimensional problems the same relations
will be applied to x and y directions.
Another alternative to the idea of the hung point interpolations is the use of non-
symmetric stencils. In this approach evaluation of the first derivative via a non-
symmetric stencil reads:

∂u

∂x

∣

∣

∣

i
=
a2ui+b + (b2 − a2)ui − b

2ui−a

ab(a+ b)h
+O(h) (2.10)

Second derivative can evaluated by:

∂2u

∂x2

∣

∣

∣

i
=

2aui+b − 2(a+ b)ui + 2bui−a

ab(a+ b)h2
+O(h) (2.11)

where a and b are integer numbers, multiplied by h, they represent the distances from
left and right neighbors respectively [26].

2.4 Time integration

In this section the time integration for a general evolutionary PDE is described and
the results will be assessed in the next chapter. For the moment just the explicit
Rung-Kutta family is considered. A classical fourth order Runge-Kutta method with
fixed time step and an adaptive time stepping with embedded Runge-Kutta methods
will be presented.

2.4.1 Explicit fourth order Runge-Kutta method

Because of high accuracy and straightforward parallelization, the fourth order Runge-
Kutta method is one of the best and mostly used methods for integration of ordinary
differential equations [18]. By putting all discretized spatial derivatives in the RHS
operator one can solve the considered partial differential equation as a system of or-
dinary differential equations in time. The RHS can be interpreted as the slope of
the value of the function in time. This method consists of four stages, including two
predictor and two corrector steps, see Fig. 2.2.

First step:
k1 = RHS(u)
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Figure 2.2: Schematic representation of the fourth-order Runge-Kutta method. In
each time step the RHS operator must be evaluated four times: once at the initial
point (marked •), twice at trial midpoints (marked ◦) and once at a trial endpoint
(marked ◦). From these derivatives the value of the function in the next time step
(marked •) can be calculated, picture taken from [18].

u∗ = un +
∆t

2
k1 (2.12)

Second step:
k2 = RHS(u∗)

u∗ = un +
∆t

2
k2 (2.13)

Third step:
k3 = RHS(u∗)

u∗ = un +∆t k3 (2.14)

Fourth step:
k4 = RHS(u∗)

un+1 = un +
∆t

6
(k1 + 2k2 + 2k3 + k4) (2.15)

Usually in addition to one memory location for u, five memory locations are necessary
at each grid point for the evaluation of k1, k2, k3, k4 and u∗. However it is possible
to release k2 after the evaluation of u∗ in the third step, by simply adding the value
of k2 to k3, say

k̃3 ← k3 + k2

So it is possible to use again the allocated memory k2 instead of k4 during the com-
putation. Hence the fourth step will change into

k̃2 = RHS(u∗)

un+1 = un +
∆t

6
(k1 + 2k̃3 + k̃2).
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2.4.2 Adaptive time stepping with embedded Runge-Kutta

methods

For time integration of the considered ODE, instead of using a fixed time step ∆t
chosen a priori, it can be advantageous to have a technique that automatically adjusts
its size dynamically to advance faster in time when possible and to guarantee the
error in solution is bounded by a given value [50]. The time step ∆t must be chosen
sufficiently small to satisfy a required precision of the computed results, denoted by
δdesired, but it must be sufficiently large to avoid unnecessary computational work.
Typically, if u1 is the approximation of uexact(t+∆t) estimated by a method of order
p, asymptotic developments of the local truncation errors of the form

uexact(t+∆t)− u1 = C1∆t
p +O(∆tp+1) (2.16)

can be used to find the step size required to attain a specified accuracy. However, since
the leading constant C is not known a priori, practical error estimates are necessary.
To estimate the local truncation error, the idea is to apply two embedded ODE
solvers, one with order p and the other with order p + 1. If u2 is the approximation
of u(t+∆t) estimated by a method of order p+ 1, then, for sufficiently small ∆t we
have

u1 − u2 ≈ −C1∆t
p + C2∆t

p+1 ≈ −C1∆t
p (2.17)

this yields to estimate

C1 ≈
u2 − u1

∆tp
=

δ

∆tp
(2.18)

By choosing a RK2 and RK3 method for approximations one gets

u∗ = un +∆t RHS(un)

uRK2 =
1

2
(un + u∗ +∆t RHS(u∗)) (2.19)

and

u∗∗ =
1

4
(3un + u∗ +∆t RHS(u∗))

un+1 = uRK3 =
1

3
(un + u∗ + 2∆t RHS(u∗∗)) (2.20)

where
δ = ||up+1 − up||∞ = ||uRK3 − uRK2||∞

Hence the step size required to maintain the local truncation error of the first scheme
below δdesired is given by

∆tnew = ξ∆told

where

ξ =
[δdesired

δ

]
1

p
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For RK2/3 one chooses p = 2. To prevent the time step from varying too abruptly
or to be sure that ∆tnew in fact will produce an error less than δdesired, some care
is needed. In this method, we cannot go back to the previous time step once the
solution at the new time step is computed due to the low storage memory model we
are using. Hence it is better to limit the increase of the time step by introducing a
so-called safety factor S. The new time step ∆tnew is chosen such that

ξ =







1 + S ξ > 1 + S
ξ 1− S > ξ > 1 + S
1− S ξ < 1− S

(2.21)

where S depends to the problem and must be chosen in a way to not destabilize the
time integration, e.g., S = 0.001. Moreover one memory location for u, four memory
locations are needed in each grid point [54].

2.5 Multiresolution analysis

In the following, the multiresolution algorithm for a typical evolutionary PDE is
briefly summarized. For more details on the general adaptive MR algorithm see [54].
Our multiresolution analysis is based on the cubic interpolating wavelet transform,
described in some details in chapter 1. Because of the change in the grid points during
each time step, the MR method is not applicable for backward multi step methods
in time like Adams-Bashforth, instead, one must choose forward multi step methods
like Runge-Kutta family for the time integration of the given PDE. First, depending
on the regularity of the solution from previous time step (or the initial condition), we
have the values (or the initial values) of an arbitrary dependent variable over a dyadic
grid. According to the regularity of the solution, some points have an updated value,
we call them active points. To perform a wavelet transform over the active points, we
suppose the arrangement of these points over the dyadic grid is in such a manner that
by starting from the finest level, down to the coarsest level, all necessary points are
in the list of the active points. The wavelet transform is performed to compute the
wavelet coefficients of these active points, which are also called details. Afterwards
thresholding (nonlinear filtering) of the details (wavelet coefficients) is performed to
determine the new active points (i.e., retained grid points are in a one-to-one corre-
spondence with significant wavelet coefficients). Next a so-called safety zone, which
will be described in more details further down, must be added to the new active
points. As regards the values of some newly added points are unknown, an inverse
wavelet transform will be performed just for the points that their values are unknown,
that is to say, their values will be interpolated from known points in lower levels by
performing an inverse wavelet transform with dj,i = 0. After that spatial derivatives
in RHS must be evaluated with the use of the equations described in Section 2.3.
Finally, a time evolution is made just for the active points.
The threshold operator (nonlinear filtering) depending on the choice of the threshold
ϵ0, will select the important points for obtaining compression, while keeping the error
introduced by filtering of wavelet coefficients (grid adaptation) below the truncation
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error of the spatial discretization scheme.

Safety zone

The presence of nonlinear terms in the governing equations of fluid mechanics will
imply the creation of smaller scales in the flow, which may lead to energy trans-
fer into the finer scales. Therefore when solving the governing evolutionary PDEs
with MR technique, one needs to apply an additional criterion to ensure that the
wavelet basis corresponding to a computational mesh is sufficient to approximate
the solution throughout the time-integration stage for an evolution problem. To en-
sure the adequate approximation of the solution during time integration, Liandrat &
Tchamitchian (1990) introduced the concept of a safety or an adjacent zone, which
adds the points whose wavelet coefficients can possibly become significant during the
period of time integration to the current significant points, when the grid remains
unchanged. Most current wavelet-adaptation techniques are based on the concept of
safety zone. In actual implementations, the safety zone (neighboring wavelets at the
same and one above levels of resolution) is added for each significant coefficient. The
sufficiently small time step usually chosen by explicit time integration methods, e.g.,
Runge-Kutta methods, ensures that the regularity of the solution does not propagate
outside the safety zone. This typically results in a CFL-like (cell-Reynolds) constraint
(Courant et al. 1928), which ensures that no energy at a given resolution scale prop-
agates outside the safety region. The thickness of the safety zone determines the
time interval during which the calculations can be carried out without modifying the
computational grid. However, for computational efficiency, it was found (e.g., Schnei-
der et al. 2006, Vasilyev 2003) that the safety zone, which includes the immediate
neighboring wavelets, is the optimal [52]. The adaptation strategy for an evolution
problem is illustrated in Fig. 2.3. In our simulations the number of points in the
safety zone is almost equal to the number of active points.
As explained to allow the basis (grid points) to change, we have to extend the sparse
point representation after thresholding. First, in space, we add neighbor points cor-
responding to neighbor wavelets in the sparse point representation. The number of
points to be added depends also on the PDEs wave propagation speed. Then the grid
points are able to adjust when the solution is moving in space. Second, in scale, we
add neighbor points corresponding to wavelets on the next finer scale in the sparse
point representation. The number of points to be added in upper scales depends
to order of nonlinear term in the governing PDE, e.g., second order in the case of
Navier-Stokes equations and third order in the case of nonlinear Schrödinger equation
(NLS, discovered in optics and water waves). This refinement allows the accurate de-
velopment of the solution in time and space, i.e., four points in one dimension and 16
points in two dimensions must be added but most of them will be common [24].
Moreover to the points added in the above procedure another check must be per-
formed to add all necessary points to the current list of the active points for having
a consistent direct or inverse WT. This depends on the stencil of the WT, we have
presented two methods of interpolation in previous chapter, i.e., linear and cubic
interpolation. In one dimension two points for linear interpolation and four points
for cubic interpolation are necessary. For two-dimensions depending on the index
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Figure 2.3: Illustration of the adjacent zone for adaptive wavelet methods in wavelet
coefficient space with level (scale) index j and position index i. Solid circles (marked
•) indicate the positions of wavelets. The locations of wavelets with significant coef-
ficients kept after thresholding at time t are marked by the orange bell curve (——).
The second bell-shaped region (− − −) on the right of the original one marks the
locations of the significant wavelet coefficients at the end of the time integration, i.e.,
at t + ∆t. The safety zone is represented by red bell-shaped region, picture taken
from [52].

composition (odd-even), different situations can occur, see Fig. 1.6. This step will
determine all the points that will be used in the current time step to evaluate the
solution.
Another point to be considered is the possibility to have, big jumps in the stencil of
central finite differences in an adaptive method which may lead to a divergence of
the value of the derivatives in some points. To prevent this problem, in each solution
point the ratio of the distances of right and left neighbor points must not be more
than two. In some literature this is called gradedness of the grid points and maybe
it is equivalent to the check for wavelet interpolation stencil of WT based on linear
interpolation. Of course the stencil of WT based on cubic interpolation is wider than
linear interpolation and so the gradedness is guaranteed. This point will be optional
if necessary points for interpolation via WT are already added to the active points.

Multiresolution analysis in summary

Denoting by E(∆t) the discrete time evolution operator, the global algorithm can
schematically be summarized by

un+1 = E(∆t)
[

M−1 · S · T (ϵ) ·M
]

un (2.22)

where M and M−1 are the direct (WT) and inverse (IWT) wavelet transform oper-
ators. T (ϵ) is the thresholding operator and S represents the safety zone operator.
For an Euler explicit time integration we have

E(∆t)un = un +∆t RHS(un).
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where RHS operator contains all the terms of the considered evolutionary equation
to be integrated except time derivative. In summary the algorithm is given in the
following:

1. Start from an initial condition over a dyadic grid

2. Apply WT to the active points (from the finest level down to the coarsest level)
to compute the wavelet coefficients of the independent variable

3. Perform thresholding T (ϵ) to remove all the points from the list of the active
points which their wavelet coefficients are below the corresponding threshold ϵj

4. Add safety zone to the list of the new active points

(a) Add neighbor points at the same and one above levels

(b) Guarantee the gradedness of the new active points (optional)

(c) Add necessary points to the current list of the active points, for having a
consistent direct or inverse WT

5. Apply IWT to the new active points to compute the values of the independent
variables (or interpolate the values of all newly added points via IWT with
d = 0)

6. Perform the time evolution of the independent variable for all the active points

(a) Search for the nearest active point to determine dist for all active points

(b) Check for the existence of all other neighbors of the active points with
distance dist, mark all the missing points as the hung points

(c) Interpolate the values of the hung points via IWT with d = 0

(d) compute the spatial derivatives for the given PDE via FDMwith symmetric
stencils

7. Go to step 2, if T < Tend

N.B. 1 Before interpolation of the values of an independent variables via IWT (from
the coarsest level up to the finest level) in some grid points (with wavelet coefficients
equal to zero, d = 0), it is necessary to mark all the intermediate necessary points for
having a consistent WT, (from the finest level down to the coarsest level) and adding
them to the list of the points to be interpolated.

N.B. 2 For multi-step methods in time integration such as Runge-Kutta family be-
fore calculation of spatial derivatives at intermediate steps, the value of u∗ for the
hung points, must be interpolated again from the new values of active points. But
(a) and (b) will be done once in each time step.

N.B. 3 In the case of the two-dimensional Navier-Stokes equations in velocity-
vorticity formulation, before calculation of the spatial derivatives it is necessary to
solve an elliptic equation, i.e., Eq. (2.27) for updating stream function.
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2.6 Extension to two-dimensional incompressible

Navier-Stokes equations

The governing equations of incompressible flows are the Navier-Stokes equations (2.23
- 2.24). In primitive variables momentum equations read

∂u

∂t
+ (u · ∇)u = −

1

ρf
∇p+ ν∇2u+ F (x, t) ∈ Ω× [0,∞) (2.23)

and the continuity equation corresponds to

∇ · u = 0 , x ∈ Ω (2.24)

where Ω is the spatial domain of interest, given as an open subset of R3, which can be
bounded or unbounded in general, u(x, t) is the velocity field which assumed to be at
least in C2 with respect to space and in C1 with respect to time, p(x, t) is the pressure
field, ν = µ/ρf is the kinematic viscosity, ρf is the fluid density and F(x, t) is a forcing
term. Thus, for a complete description of a particular problem, the above equations
need to be completed to describe an initial/boundary value problem (IBVP). Hence
by specifying an initial condition u(x, 0) = u0(x), which we assume to be in C∞

and divergence free in all of Ω and by giving boundary conditions for velocity and
pressure satisfying the global mass conservation constraint one will seek the solution
during time evolution [38]. By choosing respectively U∞ and L as reference velocity
and length for a given problem the Navier-Stokes equations can be written in non-
dimensional form in which Re = U∞L/ν is the Reynolds number and ρ is set to
unity:

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u+ F (2.25)

However in two-dimensional problems as explained earlier the vorticity and stream-
function formulation has the advantage that it not only eliminates the pressure vari-
able entirely, but also ensures a divergence-free velocity field (continuity equation), if
Eq. (2.27) properly satisfied. One will encounter with two scalar quantity, i.e., ψ and
ω, instead of velocity vector and the pressure field, thus it makes the computations
very efficient. We continue with this formulation, but the concepts are applicable also
to primitive variable formulation. By taking the curl of Eq. (2.23) after elimination
of terms due to two-dimensional assumption, incompressibility Eq. (2.24) and sim-
plifications due to constant density, one obtains the vorticity transport equation for
two-dimensional flows

∂tω + (u · ∇)ω = ν∇2ω +∇× F (2.26)

where ω = ∇×u = vx−uy denotes the vorticity. The equation is a parabolic equation
in time and the velocity components are determined from u = (u, v) = (∂yψ,−∂xψ)
with ψ being the stream function, satisfying

−∇2ψ = ω (2.27)
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which is an elliptic1 equation in space and will be solved numerically via iterative
methods like successive over relaxation or multigrid methods. With the use of auxil-
iary relations for velocity components it is possible to eliminate velocity vector from
Eq. (2.26) and obtain

∂ω

∂t
+
∂ψ

∂y

∂ω

∂x
−
∂ψ

∂x

∂ω

∂y
= ν

(∂2ω

∂x2
+
∂2ω

∂y2

)

+
(∂Fy

∂x
−
∂Fx

∂y

)

(2.28)

Boundary conditions

The boundary conditions for a curved boundary denoted by (s) moving tangent to its
surface with a constant velocity Utan can be written in terms of the stream function
ψ, at each boundary section Γi. The no-penetration boundary condition is equivalent
to

∂ψ

∂τ̂

∣

∣

∣

wall
= n̂ · u(s, t) = 0 (Neumann) ↔ ψ|wall = Ci (Dirichlet) (2.29)

and the no-slip boundary condition read

∂ψ

∂n̂

∣

∣

∣

wall
= −τ̂ · u(s, t) = ±Utan (Neumann) (2.30)

where Ci is a constant for each (Γi), τ̂ is the tangent to the wall direction and n̂ is
the direction normal to the wall. Free-slip boundary condition is evident and will
achieved by ω = 0. For a wall with zero tangential velocity we will have Utan = 0.
In a simply-connected domain, C0 can be taken equal to zero (C0 = 0). As a result
for a fixed horizontal wall the no-penetration and no-slip boundary conditions are
(v = u = 0) or (ψx = ψy = 0).
For simulation of two dimensional incompressible flows, beside the mentioned advan-
tages of vorticity and stream-function formulation one can see some disadvantages.
Yet, the main difficulties in the numerical implementation of this formulation come
from the boundary conditions [31] the majors among them are as follows:

1. The implementation of the two cited boundary conditions for the stream func-
tion ψ simultaneously.

2. For updating the vorticity ω during time integration, there is no definite bound-
ary condition for vorticity.

3. Determining the constants Ci at each boundary of ”holes” Γi if the computa-
tional domain is multi-connected.

However, several methods have been proposed to update the vorticity boundary con-
dition over a solid boundary moving tangent to its surface with a constant velocity
Utan. In the following we cite some of them, which will lead to second and fourth
order accuracies :

1Perturbations will spread in all directions with the speed of sound which approaches to infinity
in the incompressible limit.
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Thom’s formula for the vorticity at wall

ωi,0 =
ψi,0 − ψi,1 ± hUtan

0.5h2
+O(h2) (2.31)

Wilkes, Roach, Pearson and Jensen’s formula for the vorticity at wall

ωi,0 =
7ψi,0 − 8ψi,1 + ψi,2 ± 6hUtan

2h2
+O(h2) (2.32)

Briley’s fourth order formula for the vorticity at wall

ωi,0 =
85ψi,0 − 108ψi,1 + 27ψi,2 − 4ψi,3 ± 66hUtan

18h2
+O(h4) (2.33)

Other relations were proposed by Woods (1954) and Orszag and Israeli (1974). It
is very important to know that, the vorticity boundary condition is responsible to
enforce no-slip boundary condition. Although non of them cannot fall velocity com-
ponents to machine zero, but the accuracy in normal to the wall component of the
velocity is two order of magnitude more than tangent component. The subject of
the vorticity boundary condition has a long history, going back to Thom’s formula in
1933 [1]. In a second order scheme, Thom’s formula, Wilkes formula, or some other
local formulas can be selected and coupled with a centered difference scheme at the
interior points. The advantage of Thom’s formula lies in its simplicity as only one
interior point of the stream function is involved. Thus its stability is very robust.
Yet, it was always very confusing why formulas like Thom’s, which seems hopelessly
first order by formal Taylor expansion on the boundary, is actually second order ac-
curate. This mystery can be explained by Strang-type high-order expansions [19]. It
was proven in 1964 that for nonlinear hyperbolic or parabolic equations, the L2-norm
stability for the linearized problem and the smoothness of the exact solution implies
that the scheme has full accuracy (e.g., second order) in L∞-norm. The main idea
in the proof is the construction of high order expansions with respect to the scheme.
Meth in his thesis [10], proved the stability for the linearized problem. The theo-
retical convergence analysis of the second order scheme with Thom’s formula on the
boundary was given by Hou and Wetton in [48]. It relied upon Strang-type high order
expansions, which resulted in much more regularity assumption of the exact solution
than needed. We should mention that the stability of Thom’s formula cannot be
applied to long-stencil formulas automatically, as Wilkes (1963) & Pearson’s (1965)
formula and other local formulas. It was a doubtful question for a long time: are
these long-stencil formulas stable? This question is answered in [31] by performing a
simple, clean analysis of the second order scheme using Wilkes formula to determine
the vorticity at the boundary. In fact, direct calculations and standard local estimates
cannot work it out. The convergence analysis of the compact scheme with Briley’s
[4] formula is given in [31], illustrating why the fourth order scheme combined with
the third order boundary formula still works. Generally one can say that the order
of implementation of the Neumann boundary conditions may be one order less than
that of the discretization in the interior points of the solution domain. This choice
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Figure 2.4: Domain of the solution and the immersed body, Ω = Ωf ∪ Ωs.

can keep the global desired accuracy of the discretization method. In the present
investigation, Thom’s formula at the no-slip boundaries is used for updating the vor-
ticity. For more discussions, on boundary conditions for incompressible Navier-Stokes
problems see [38].

2.6.1 Volume penalization method

For the simulation of curved solid boundaries which do usually not coincide with
grid points one can use the volume penalization method proposed by Arquis and
Caltagirone [7]. It is based on the idea of modeling solid bodies as porous media,
thus getting ride of the Dirichlet boundary conditions by considering both the fluid
and the solid part as one domain with different permeabilities, so one has a domain in
which the solid is embedded. This method will lead to first-order accuracy near the
solid boundary. In the Navier-Stokes equations (2.23) in primitive variables or the
vorticity transport equation (2.26), penalization term can be added as a force term
and thus, it is possible to introduce a solid body in the flow field. The penalization
term for unit mass of the fluid reads,

F = −
χ

η
(u− uB) (2.34)

where uB is the velocity of the immersed body (obstacle) which will be zero for fixed
bodies. Penalization parameter η is the porosity (permeability) coefficient of the
immersed body. In an explicit time integration ∆t must be smaller than η. Typically
we use η = 10−3 or 10−4 to ensure the stability of time integration. The mask function
χ describes the geometry of the flow domain, see Fig. 2.4

χ(x, t) =

{

1 x ∈ Ωs

0 x ∈ Ωf
(2.35)

where Ωf represents the domain of the flow and Ωs represents the immersed solid
in the domain of the solution. The domain is governed by Navier-Stokes equations
in the fluid regions and by Darcy’s law in the solid regions, when η → 0. With the
use of the penalization method the hydrodynamic forces and the moments acting on
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the obstacle, which are usually evaluated via surface integrals of the stress tensor
σ(u, p) = µ(∇u+ (∇u)T )/2− p I, can computed readily by integrating the penalized
velocity over the obstacle’s volume, thus we have the forces by

F =

∮

∂Ωs

σ · n dl = lim
η→0

ρf
η

∫

Ωs

χ(u− uB) ds+ ρfSpenẍcg (2.36)

and moment in two-dimensions is evaluated by

Mxcg
=

∮

∂Ωs

(x−xcg)×σ ·n dl = lim
η→0

ρf
η

∫

Ωs

χ(x−xcg)×(u−uB) ds+
ρf
ρs
Jcgθ̈cg (2.37)

in [N.m], where Jcg is the moment of inertia taken about center of the mass, n is the
unit outward vector to ∂Ωs, xcg is the location of the center of gravity of the immersed
body, θ is the angle of rotation around the center of gravity (dots denote derivation
with respect to time) and Spen is equivalent to the surface of penalized area

Spen =

∫

Ωs

χ ds

For a uniform grid in two-dimensions numerically F can be evaluated as

F ≈
ρf
η
∆x∆y

Imax
∑

i=1

Jmax
∑

j=1

χi,j(u− uB)i,j + ρfSpenẍ
n−1
cg (2.38)

Finally the RHS of the vorticity equation including penalization term reads

RHS = −
∂ψ

∂y

∂ω

∂x
+
∂ψ

∂x

∂ω

∂y
+ ν

(∂2ω

∂x2
+
∂2ω

∂y2

)

+∇× F (2.39)

with the penalization term

∇× F =
∂

∂y

(χ

η

∂ψ

∂y

)

+
∂

∂x

(χ

η

∂ψ

∂x

)

−
∂

∂y

(χuB
η

)

+
∂

∂x

(χvB
η

)

(2.40)

For the points for which the complete stencil belongs to the fluid domain (χ = 0) we
have ∇×F = 0, but for the points for which the complete stencil belongs to the solid
domain (χ = 1) we have ∇ × F = (ωB − ω)/η, i.e., in the time integration we will
have ωn+1 ≈ ωB = 2ΩB, where ΩB is the angular velocity of the embedded body. The
penalization term is thus responsible for the vorticity production at the boundaries.
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Chapter 3

Applications

3.1 Introduction

In this chapter the results obtained by applying the developed adaptive multiresolu-
tion method to the one-dimensional viscous Burgers equation and the two-dimensional
incompressible Navier-Stokes equations will be presented. A dipole colliding with a
straight no-slip wall for a Reynolds of 1000 will be considered as a benchmark, then
with the use of the penalization method the collision of dipoles with curved walls,
either concave or convex, will be examined for Reynolds= 10000.

3.2 Application to the one-dimensional

Burgers equation

A well-known example of nonlinear PDEs is the one-dimensional viscous Burgers
equation, including both nonlinear advection and diffusion terms.

∂tu+ uux = νuxx (3.1)

The value of ν determines the ratio of two phenomena in competition. The Eq. (3.1)
is completed with suitable initial and boundary conditions. By putting the spatial
terms in RHS, using second-order centered finite differences for spatial discretization,
the RHS operator reads

RHS(i) = −ui
ui+d − ui−d

2d∆x
+
ui+d − 2ui + ui−d

d2∆x2
(3.2)

where for a uniform grid d will be replaced by d = 1. First a solver based on uniform
discretization of the Burgers equation via finite differences using Eq. (3.2) is developed
as reference solver. An error analysis of the time integration of the Burgers equation
(3.1) over a uniform grid is performed to examine the accuracy of the developed code
based on the fourth order Runge-Kutta method. The aim is to show the decrease of
the error with successive reduction of the time step. A simulation with ∆tmax/16 is
considered as reference solution to compute the errors, where ∆tmax is chosen rather
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Figure 3.1: Time and space accuracy for the Burgers equation over uniform grid with
ν = 10−3.

large, e.g., equal to 0.1, to avoid the truncation error from falling in the range of
round-off error for ∆tmax/16. The other simulations are performed with ∆tmax/8,
∆tmax/4, ∆tmax/2 and ∆tmax. The computations start from an initial condition

u(x, 0) = sin(x), x ∈ [0, 2π]

at t = 0 and stop at t = 1, so the time step and the number of iterations for each
simulation is different (boundary conditions are fixed to zero at x = 0, 2π). Different
errors as a function of ∆tmax/∆t are compared with the theoretical (−4) slope in
Fig. 3.1 (a), a good agreement can be seen. Then an error analysis to examine the
second-order discretization in space is performed. Again we consider the Burgers
equation to show the accuracy of the solver on the uniform grid. A simulation with
J = 12 grid points is considered as reference solution to compute the errors, other
simulations were performed with 211, 210, 29 and 28 grid points. The computations
start from an initial condition

u(x, 0) = sin(x), x ∈ [0, 2π]

at t = 0 and stop at t = 1 (with fixed boundary conditions). The time step is chosen
small enough, i.e., 4× 10−5, which is stable for time integration with 212 grid points,
to minimize the error due to time integration, consequently the number of iterations
for all simulations are the same. Different errors are compared with the theoretical
(−2) slope in Fig. 3.1 (b).
Then a one-dimensional adaptive solver based on the multiresolution algorithm pre-
sented in Chapter 2 and Eq. (3.2) for the viscous Burgers equation (3.1) is developed.
Then we perform multiresolution computations for the viscous Burgers equation (3.1),
for which analytical solutions are known. For (x, t) ∈ R× [0,+∞), an analytical so-
lution in an infinite domain is given in the form of

uexact(x, t) =
1

2

[

1− tanh
(x− 1− t/2

4ν

)]

(3.3)
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(b) Time evolution up to t = 1.5

Figure 3.2: Initial condition (left) and time evolution (right) computed with the
multiresolution solver, threshold ϵ = 10−3, ν = 10−3, ∆t = 10−5 and a maximum grid
level J = 11. The exact solution is represented by (—) solid color lines.

For x ∈ [0, 2] it can be verified that the boundaries are sufficiently far so that their
influence are negligible [33] for small time intervals. The initial condition is given by

u(x, 0) =

{

1 x ≤ 1
0 x > 1

(3.4)

and Dirichlet boundary conditions at the right and left boundaries are imposed, i.e.,

u(0, t) = 1 , u(2, t) = 0.

The initial condition and the time evolution of the solution computed with the mul-
tiresolution solver for Burgers equation, with threshold ϵ = 10−3 for ν = 10−3 and
∆t = 10−5, maximum grid level J = 11, are illustrated in Fig. 3.2 (a) and (b),
respectively. The exact solution is plotted simultaneously by solid lines. The L∞, L1

and L2 errors at t = 1.5 are of order 10−2, 10−4 and 10−5, respectively. The evolution
of the active grid points during the computation, is illustrated in Fig. 3.3 and corre-
sponding active points represented in their level, is illustrated in Fig. 3.4.
With the use of multiresolution code for the Burgers equation (3.1), some qualita-
tively comparisons of the results with uniform grid solver was performed. The only
adjustable parameter which had a considerable impact in the agreement of the results
with that of uniform grid solver is the threshold parameter (ϵ). Another error analysis
is performed to examine the second-order accuracy of the multiresolution method in
space by changing the threshold parameter. To show the conservation of the formal
accuracy for the space discretization with adaptive method, the analytical exact so-
lution in Eq. (3.3), is used as a reference solution to compute the errors, different
simulations are performed with 211, 210, 29, 28 and 27 grid points. The computations
start from the initial condition showed in Fig. 3.2 (a) at t = 0 and stop at t = 1.5
showed in Fig. 3.3. The time step is chosen smaller than stability limit for 211 grid
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Figure 3.3: The evolution of the adaptive solution during time (active points repre-
sented by ◦) computed with the multiresolution solver and the exact solution given by
Eq. (3.3) for the Burgers equation, ν = 10−3, (represented by ——), with maximum
grid level J = 11 and a threshold parameter ϵ = 10−3.
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Figure 3.4: The evolution of the active grid points during time represented in their
level (marked by ◦) during the computation with the multiresolution solver for the
Burgers equation, ν = 10−3, with maximum grid level J = 11, minimum level of
filtering j = 3, threshold parameter ϵ = 10−3.
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Figure 3.5: Convergence of different spatial errors (L∞ on top, L1 on bottom, for all
cases) for the Burgers equation computed with the multiresolution solver, for ν = 10−3

and ∆t = 10−5.

points, to minimize the error due to time integration. Hence the number of iterations
for all simulations are the same. Different errors are compared with the theoretical
(−2) slope in Fig. 3.5 (a) and (b) for ϵ = 10−3 and ϵ = 5 × 10−3, respectively. The
results are in good agreement with the (−2) slope, which confirms that the adaptive
multiresolution method preserves the discretization order of the underlying numerical
scheme. There is a deviation for ϵ = 5 × 10−3, with 211 grid points, which is due to
big threshold parameter in comparison with truncation error. The truncation error
of a second-order method in space x ∈ [0, 2π] is of order 10−5 for 211 grid points.
The evolution of the number of active, important (corresponding to the retained
points after filtering of wavelet coefficients), safety zone, hung and interpolated points
for wavelet transform during the computation with the multiresolution solver for the
Burgers equation with ν = 10−3 and ∆t = 10−5 with maximum grid level J = 10,
for threshold ϵ = 10−3 and ϵ = 5 × 10−3, are illustrated in Fig. 3.6, (a) and (b), re-
spectively. The average number of points after filtering is about 35 and after adding
the safety zone, it increases to 63 out of 1025. Hence for this test case we have a
compression of points about 95% which is considerable, and the time of computa-
tions with the multiresolution solver is at least half in comparison to the uniform grid
solver. The gain in CPU-time becomes more especially for fine resolutions, where the
overhead due to the additional complexity of the multiresolution algorithm becomes
less important.
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Figure 3.6: The evolution of the number of active, important (corresponding to the
retained points after filtering of wavelet coefficients), safety zone, hung and interpo-
lated points for the wavelet transform during the computation with the multireso-
lution solver for the Burgers equation, with maximum grid level J = 10 (1025 grid
points).

3.3 Application to two-dimensional incompressible

flows

In this section we are considering the two-dimensional incompressible flows by means
of the vorticity transport equation (2.26). By putting all of the spatial derivatives
in the RHS operator, the discretized form of the vorticity equation including the
penalization term (2.34) reads

∂tω|i,j = RHS(i, j)

with the use of second-order finite-difference approximations (2.6), (2.7) and (2.8)
one gets:

RHS(i, j) = −
ψi,j+d − ψi,j−d

2d∆y

ωi+d,j − ωi−d,j

2d∆x
+
ψi+d,j − ψi−d,j

2d∆x

ωi,j+d − ωi,j−d

2d∆y

+ν
(ωi+d,j − 2ωi,j + ωi−d,j

d2∆x2
+
ωi,j+d − 2ωi,j + ωi,j−d

d2∆y2

)

+
(χi+d,j + χi,j)(ψi+d,j − ψi,j)− (χi−d,j + χi,j)(ψi,j − ψi−d,j)

2ηd2∆x2

+
(χi,j+d + χi,j)(ψi,j+d − ψi,j)− (χi,j−d + χi,j)(ψi,j − ψi,j−d)

2ηd2∆y2

−
(uBi,j+dχi,j+d − u

B
i,j−dχi,j−d)

2ηd∆y
+

(vBi+d,jχi+d,j − v
B
i−d,jχi−d,j)

2ηd∆x

For a uniform grid in the above formula d will be replaced by 1, for the multiresolution
solver d will be determined by a search algorithm, to find the nearest active point.
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The vorticity equation is advanced in time with a Runge-Kutta technique which was
described in Section 2.4.1. Before each evaluation of RHS, one Poisson equation for
stream function with vorticity (ω) forcing on the right hand side, i.e., Eq. (2.27)
must be solved to update the stream function to the correct value for the interior
points. The vorticity at the boundary points must be updated by Thom’s formula.
The Poisson equation will be solved via an iterative method for elliptic equations,
namely the point successive over relaxation (PSOR) method

ψn+1
i,j = βψnew

i,j + (1− β)ψold
i,j (3.5)

where β is the over relaxation factor, β ∈ [1, 2]. So we will have

ψn+1
i,j = ψold

i,j +
β

4
Res (3.6)

by the use of the Gauss-Seidel method

Res =
4

∑

nb=1

ψlast
nb − 4ψold

i,j + h2ωi,j (3.7)

in which h = ∆x = ∆y and nb denotes the neighbor points with distance d (always
their updated value will be used). The norm of the residuum, ||Res||∞ must converge
below to a prescribed convergence criterion, e.g., 10−6. For the finer grids like J = 12
we require smaller criterion, e.g., 10−12. For useful discussions in the choice of a
proper over relaxation factor we refer to [18]. The hung points are the same for the
elliptic and the parabolic part and they must be updated in each iteration. In the
present investigation a geometric multi-grid solver for uniform grids will be used to
accelerate the convergence of the elliptic part, which is the most time-consuming part
of the simulations. But the PSOR solver is used in the multiresolution simulations
because for the moment the MG solver is not applicable for adaptive grids. See [37]
for a multilevel adaptive method for elliptic problems and [39] for a MG method used
in adaptive solution of incompressible flows via FDM. In terms of memory usage the
PSOR solver is more advantageous in comparison to MG solver, thus for the moment
the applicability of multigrid solver due to insufficient memory is limited to maximum
grid level J = 10 in each direction.

3.4 Dipole-wall collision

The famous problem of the dipole collision with a straight wall is considered in this
section. We will study the flow in a square domain [0, 2] × [0, 2]. On the four walls
of the domain (x, y = 0 & x, y = 2) no-slip and no-penetration boundary conditions
are applied. The flow is initialized in the form of two shielded Gaussian mono-polar
vortices, their centers placed at a distance 0.2 apart. The vorticity distribution in
each monopole is given by

ω(0,xn) = ωe

(

1−
r2

r20

)

exp
(

−
r2

r20

)

(3.8)
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where r0 is the core radius, r = ||x − xn|| with xn being the position of the vortex
center. The two isolated monopoles are located at

x1 = (1, 1.1) and x2 = (1, 0.9)

Demanding that the root mean square (rms) velocity is initially equal to unity (E = 2)
yields the amplitude of each isolated monopole, ωe = ±299.528385375226 [47]. The
core radius of the shielded monopoles is set to r0 = 0.1. The vorticity amplitude in
the radial direction decreases exponentially with r. As a result, the circulation of
one isolated monopole calculated over a circular contour around the vortex origin de-
creases exponentially towards zero for increasing contour radius. Hence, no boundary
layers are required at the no-slip walls when constructing the initial flow field. The
integral-scale Reynolds number for the initial field is given by

Re =
UrmsL

ν
(3.9)

where the characteristic length scale is set to the half-height of the domain, L = 1, and
the characteristic velocity to the initial root mean square velocity, Urms = 1. This
integral Reynolds number differs slightly from the Reynolds number Red ≈ 0.8Re
based on the dipole translation speed Ud and the dipole radius R, see [45]. The time
evolution of the dipole is calculated by the developed multiresolution finite difference
code with threshold ϵ = 10−3 and maximum grid level J = 11 for Reynolds 1000.
The evolution of the vorticity isolines starting from the initial condition at t = 0 up
to t = 1, is shown in Fig. 3.7 and Fig. 3.8. After releasing the initial set of shielded
mono-polar vortices, Fig. 3.7 (a), one observes how the cores combine into a dipole,
while the surrounding shields are substantially deformed Fig. 3.7 (b). Somewhat
later, the dipolar vortex has traveled away in the positive x-direction Fig. 3.7 (c),
and the shields left behind combine into another, much weaker dipolar structure that
translates in the opposite direction Fig. 3.7 (d). This weak dipole has no considerable
impact on the primary dipole and is not discussed further. The first collision with
the right wall can be seen in Fig. 3.7 (e) and the formation of secondary vortices
is illustrated in Fig. 3.7 (f). Previous studies have revealed that the primary dipole
vortex closely resembles the Lamb dipole, i.e., a compact dipolar vorticity structure
in a circular area with a linear vorticity stream-function relationship. The rest of the
evolution and the collision of the primary and newly generated vortices with right
and left walls are illustrated in Fig. 3.8; detachment of vortices from wall is seen in
Fig. 3.8 (a), a second collision of newly generated dipoles with the right wall in Fig.
3.8 (b), formation and turnover of weaker secondary vortices in Fig. 3.8 (c), (d), (e),
collision of the backward traveling dipole with the left wall in Fig. 3.8 (f).
The evolution of the adaptive grid during the computation of the dipole-wall collision
with the multiresolution solver with threshold ϵ = 10−3 and maximum grid level
J = 11, for Reynolds 1000 are illustrated in Fig. 3.9 and Fig. 3.10. The evolution
of the number of active, safety zone, hung and interpolated points for the wavelet
transform during the computation of the dipole-wall collision with the multiresolution
solver with maximum grid level J = 11, Reynolds 1000, for two thresholds, ϵ = 10−3

46



X

Y

0 0.5 1 1.5 2
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

-286.374 -135.651 -62.5362 -28.3123 15.0723 45.217 109.535 256.229

(a) t = 0

X

Y

0 0.5 1 1.5 2
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

-286.374 -135.651 -62.5362 -28.3123 15.0723 45.217 109.535 256.229

(b) t = 0.05

X

Y

0 0.5 1 1.5 2
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

-286.374 -135.651 -62.5362 -28.3123 15.0723 45.217 109.535 256.229

(c) t = 0.15

X

Y

0 0.5 1 1.5 2
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

-286.374 -135.651 -62.5362 -28.3123 15.0723 45.217 109.535 256.229

(d) t = 0.25

X

Y

0 0.5 1 1.5 2
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

-449.261 -200.105 -97.0339 -15.0723 36.4417 105.506 195.94 620.681

(e) t = 0.35

X

Y

0 0.5 1 1.5 2
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

-449.261 -222.792 -105.506 -30.3892 15.0723 45.217 135.651 256.229

(f) t = 0.45

Figure 3.7: The evolution and collision of the vortices (represented by the colored
isolines) with walls, maximum grid level J = 11 in each direction, threshold ϵ =
10−3, for Reynolds 1000. (a) The initial vorticity distribution; (b) Shedding of the
surrounding vorticity shields; (c) Formation of a forward-traveling Lamb-type dipole;
(d) Formation of a weaker backward-traveling dipole; (e) First collision with the right
wall; (f) Formation of secondary vortices.
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Figure 3.8: The evolution and collision of the vortices (represented by the colored
isolines) with walls, maximum grid level J = 11 in each direction, threshold ϵ = 10−3,
for Reynolds 1000. (a) Detachment of vortices from the wall; (b) Second collision of
newly generated dipoles with the right wall; (c-d-e) Formation and turnover of weaker
secondary vortices; (f) Collision of backward-traveling dipole with the left wall.
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Figure 3.9: Evolution of the adaptive grid during the computation of the dipole-wall
collision with the multiresolution solver with threshold ϵ = 10−3, maximum grid level
J = 11 in each direction for Reynolds 1000.
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Figure 3.10: Evolution of the adaptive grid during the computation of the dipole-wall
collision with the multiresolution solver with threshold ϵ = 10−3, maximum grid level
J = 11 in each direction for Reynolds 1000.
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Figure 3.11: Evolution of the number of active, safety zone, hung and interpolated
points for the wavelet transform during the computation of the dipole-wall collision
with the multiresolution solver, maximum grid level J = 11 in each direction.

and ϵ = 10−4, are illustrated in Fig. 3.11, (a) and (b), respectively. The average
number of points after filtering is about 3 × 105 and after adding the safety zone it
is increased to 106. Hence for this test case we have a compression of points about
25% which is not so good in comparison to one-dimensional test case, but the time of
the computations with multiresolution solver is at least one over six in comparison to
the uniform grid solver. This CPU-time is promising, especially for higher resolutions
with large number of grid points, i.e., J larger than nine. The main reason for
considerable CPU-reduction is the presence of the elliptic solver in the algorithm in
which the order of operations is proportional to O(N2) for a point successive over
relaxation method, where N is the number of active points.

3.4.1 Convergence study*

To verify the accuracy of the numerical method the results are compared with the
results reported by Clercx et al. [42] which are computed with a pseudo spectral
solver. The method of Clercx et al. is a pseudo spectral method, both the velocity and
vorticity are expanded in a truncated series of Fourier polynomials for the periodic-
direction and in a truncated series of Chebyshev polynomials for the non periodic-
direction. Some invariants of the flow, (i.e. total energy, enstrophy and palinstrophy)
which are conserved by the flow dynamics for inviscid fluids (ν = 0), can be assessed
in viscous flows, where they will not conserved, but instead varying in time depending
on the Reynolds number. Three quantities in the flow field, i.e., total energy E, total
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enstrophy Z and total palinstrophy*1 P are defined as

E(t) =
1

2

∫

Ω

|u(x, t)|2dx (3.10)

Z(t) =
1

2

∫

Ω

|ω(x, t)|2dx (3.11)

∗ P (t) =
1

2

∫

Ω

|∇ω(x, t)|2dx (3.12)

Applying the trapezoidal quadrature formula we get the discrete versions

E(t) =
∆x∆y

2

Imax
∑

i=1

Jmax
∑

j=1

(u2i,j + v2i,j) (3.13)

Z(t) =
∆x∆y

2

Imax
∑

i=1

Jmax
∑

j=1

(ωi,j)
2 (3.14)

∗ P (t) =
∆x∆y

2

Imax
∑

i=1

Jmax
∑

j=1

(∂ωi,j

∂x

)2

+
(∂ωi,j

∂y

)2

(3.15)

where ∆x = Lx

Imax−1
and ∆y = Ly

Jmax−1
. For any two-dimensional viscous flow (z > 0)

the total energy E(t) decays according to

dE

dt
= −ν

∫

Ω

ω2dA = −2νZ. (3.16)

where −2νZ is the energy dissipation [6]. Note that the decay rate is proportional to
the total enstrophy, Z(t), which is a measure of the squared vorticity integrated over
the domain. Understanding the evolution of the total enstrophy is therefore of crucial
importance for explaining the energy decay. For a domain with no-slip boundaries
the change in total enstrophy is governed by

dZ

dt
= −2νP + ν

∮

∂Ω

ω(n · ∇ω)ds (3.17)

where n denotes the outer normal vector with respect to ∂Ω. The first term on the
right-hand side simply states that the enstrophy decays due to vorticity gradients
(palinstrophy) that are present in the flow. The second term represents the vorticity
production at the no-slip boundaries involving the vorticity and its gradients, which
will give rise to the total palinstrophy. Note that the vorticity influx at the no-slip
boundaries is equal to (n · ∇ω). In the case of a square domain with stress-free or

1*Notice: There is an error in some curves of palinstrophy P (t) noted by *, because of not
taking to account the vorticity derivatives at boundaries via forward/backward stencil, which are
significant. Otherwise all the curves of palinstrophy P (t) obtained by present study will be above
that of Clerx et al. as is in the case of enstrophy. I am apologizing the reader to not be able to
modify the figures now but in a probable future publication this will be considered.

52



periodic boundary conditions the second term on the right-hand side of Eq. (3.17)
vanishes. As a result, the total enstrophy cannot increase for a domain with stress-
free or periodic boundary conditions and is thus always bounded by its initial value
and zero [45]. For a steady flow we have

P =
1

2

∮

∂Ω

ω(n · ∇ω)ds

Different simulations were performed to obtain a grid independent solution, by suc-
cessive increasing the number of points. To have a stable simulation the time step
must be reduced according to the CFL condition, see Table 3.1. A simulation over
an uniform grid with a second order (in space) multi-grid solver with maximum grid
level J = 10 in each direction, was done in the first step. The evolution of the total
kinetic energy, total enstrophy and total palinstrophy for Re = 1000 are compared
with the computations of Clercx et al. [42] in Fig. 3.12 and Fig. 3.13 (a) and (b),
respectively. Note that the energy steadily decreases from its normalized initial value
of E = 2 towards E ≈ 0.8 at t = 1. At t ≈ 0.35 the first collision of the dipole
with the right wall takes place and the kinetic energy decays faster, which is due to
the increased enstrophy production (dissipation) on the domain. On the other hand
enstrophy starts from its initial value P (0) = 800 and decays until t = 0.2 and then
goes up rapidly. The first peak in the enstrophy curve during time takes places at
t = 0.35, and thus coincides with the first collision of the dipole with the right wall.
During the first collision the boundary layers create a large amount of vorticity. The
enstrophy in the boundary layers is then the main contribution to the total enstro-
phy. At t ≈ 0.64 another smaller peak is visible in the enstrophy evolution curve,
which is due to the second collision of newly generated vortices. The results for total
energy are in reasonable agreement with the pseudo-spectral simulations, we can see
a systematic deviation in enstrophy and palinstrophy curves especially near the first
peak, which is due to insufficient resolution of second-order solver in comparison with
the pseudo-spectral solver of Clercx [29].
Two simulations for Reynolds 1000 with the multiresolution code, using a maximum
grid level J = 11, were performed with ϵ = 10−3 and ϵ = 10−4. The total enstrophy
and palinstrophy during time, with ϵ = 10−3, are compared with the computations
of Clercx et al. in Fig. 3.14, (a) and (b), respectively. The same quantities with
ϵ = 10−4 are compared with that of Clercx et al. in Fig. 3.15, (a) and (b), respec-
tively. The accordance of enstrophy and palinstrophy curves during time with Clercx
data with J = 11 are better than that of J = 10, which is promising. Another point
to be noted is that the results for ϵ = 10−4 and ϵ = 10−3 are almost identical and the
multiresolution code works properly with ϵ = 10−3. Hence we will use ϵ = 10−3 for
the multiresolution computations. The number of grid points and the corresponding
time steps and CPU times on an Intel-P4 CPU (1.3 GHz), are given in the Table 3.1.
In one Runge-Kutta iteration (averaged over 100 ∆t) four Poisson equation (2.27)
must be solved using either multigrid or PSOR methods.
A convergence study for the total enstrophy Z(t) and the total palinstrophy P (t)
(with the uniform grid solver) for Reynolds 1000, with different grid spacings, i.e.,
maximum level in each direction J = 8, 9, 10, 11, is performed. Once again the sim-
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Figure 3.12: Comparison of the total energy E(t) between the data from Clercx and
the present finite difference computation with a uniform multigrid solver for Reynolds
1000 and maximum grid level J = 10 in each direction.
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Figure 3.13: Comparison of the total enstrophy Z(t) and the total palinstrophy P (t)
between the data from Clercx and the present finite difference computation with a
uniform multigrid solver for Reynolds 1000 and maximum grid level J = 10 in each
direction.
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Figure 3.14: Comparison of the total enstrophy Z(t) and the total palinstrophy P (t)
between the data from Clercx and the present computation with a multiresolution
solver with threshold ϵ = 10−3 for Reynolds 1000 and maximum grid level J = 11 in
each direction.
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Figure 3.15: Comparison of the total enstrophy Z(t) and the total palinstrophy P (t)
between the data from Clercx and the present computation with a multiresolution
solver with threshold ϵ = 10−4 for Reynolds 1000 and maximum grid level J = 11 in
each direction.
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Table 3.1: Number of grid points and the corresponding time steps ∆t and CPU time
(second) for one RK4 iteration with multigrid and PSOR solver with ||Res||∞ ≤ 10−7,
for Re = 1000 and maximum grid level J in each direction.

Grid J ∆t MG PSOR
65× 65 6 1× 10−2 0.003 0.01
129× 129 7 5× 10−3 0.01 0.06
257× 257 8 1× 10−3 0.07 0.2
513× 513 9 5× 10−4 0.6 1.2
1025× 1025 10 1× 10−4 2.5 7
2049× 2049 11 5× 10−5 — 74
4097× 4097 12 1× 10−5 — —

ulation with pseudo-spectral solver of Clercx is taken as the reference solution. The
results of the present computation are illustrated in Fig. 3.16, (a) and (b), respec-
tively. It can be observed that by increasing the number of grid points the curves
become closer and closer, we hope the results of J = 12 will match with that of
Clercx. Now comparisons of total energy E(t), total enstrophy Z(t) and total palin-
strophy P (t) between the uniform grid solver and the multiresolution computation
with thresholds, ϵ = 10−3 and ϵ = 10−4, for Reynolds 1000 and with maximum grid
level J = 9 will be presented. The comparison of total energy E(t) is plotted in Fig.
3.17, the results for total enstrophy Z(t) and total palinstrophy P (t) are compared in
Fig. 3.18, (a) and (b), respectively. The agreement between the uniform grid solver
and the multiresolution solver is perfect and the results for ϵ = 10−3 and ϵ = 10−4

are almost identical.

3.4.2 The effect of curvature

As mentioned in the previous section the curved walls in a Cartesian grid will take
into account with the penalization method. For validation of the method the same
benchmark problem, i.e., dipole collision with straight wall, will be considered in a
penalized cavity to compare the results with classical boundary conditions (Dirichlet
and/or Neumann) as explained in Section 2.6. All of the computations in this section
are performed with the uniform multigrid solver because of its efficiency in terms of
CPU-time. In the first step, for Re = 1000, the simulations will be performed for
quantitative comparisons of total energy E(t), total enstrophy Z(t) and total palin-
strophy P (t). The comparisons will be in a same geometry, with the same initial
condition. Two category for simulation of a fixed wall will be considered; first the
classical no-slip an no-penetration conditions in boundaries of Cartesian grid, second,
the velocity in a marginal area of a slightly larger cavity will imposed to zero with
penalization method. A schematic representation of the penalized cavity, i.e., the
geometry and initial condition are illustrated in Fig. 3.19 (a) and (b), respectively.
Comparisons of total energy, total enstrophy and total palinstrophy between the two
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Figure 3.16: Convergence study for the total enstrophy Z(t) and the total palinstro-
phy P (t) toward the data from Clercx with the present finite difference computation
with uniform grid solver for Reynolds 1000 and maximum grid level J = 8, 9, 10, 11
in each direction.
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Figure 3.17: Comparison of the total energy E(t) between the uniform grid solver and
the multiresolution computation with thresholds, ϵ = 10−3 and ϵ = 10−4 for Reynolds
1000 and maximum grid level J = 9 in each direction for all simulations.
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Figure 3.18: Comparisons of the total enstrophy Z(t) and the total palinstrophy P (t)
between the uniform grid solver and the multiresolution computation with thresholds,
ϵ = 10−3 and ϵ = 10−4 for Reynolds 1000 and maximum grid level J = 9 in each
direction for all simulations.

cited methods for simulation of a rigid wall for Re = 1000 with a maximum grid
level of J = 10 in each direction are illustrated in Fig. 3.20, Fig. 3.21 (a) and (b),
respectively. The small deviation in the total energy, which is almost invisible, is
negligible and below 3%. For both total enstrophy and total palinstrophy a consid-
erable deviation can be observed, which can be explained by the first order nature
of implementing a solid wall via the volume penalization method. So one must use a
very fine grid for obtaining more accurate results with this method.
After the procedure of validation, for considering the effect of curvature we will con-
tinue with Reynolds 10000 because the flow field is more sensitive to the curvature of
the hitting wall. Thus this Reynolds number will be used for studying the effect of
curvature in the collision of a dipole with concave and convex walls, even if a grid with
10252 points is not sufficient to fully resolved all the spatial scales who are present
in the flow. But the numerical dissipation of the second-order central method will
compensate the effect of eliminated scales to have a stable simulation. For having a
reference solution to compare the results of the penalization method for curved walls,
first the dipole collision with a straight penalized wall at Reynolds 10000 will be sim-
ulated. A schematic representation of the penalized cavity, i.e., the geometry and
the initial condition are illustrated in Fig. 3.22 (a) and (b), respectively. To obtain
a qualitative idea about the flow and its future destiny the evolution and collision
of dipole with a straight penalized wall from t = 0 to t = 2 for Reynolds 10000 is
illustrated in Fig. 3.23 and Fig. 3.24. The simulations are performed with a multigrid
solver over a uniform grid with maximum level J = 10 in each direction. To study
the effect of curvature two configurations will be considered. First the collision of a
dipole with a convex wall with radius R = 1.5 where the center of the convex wall
is placed at xc = 3.1, yc = 1.0. The initial vortices are placed at distance equal to
one from the right wall in all of the simulations. Second the collision with a concave
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Figure 3.19: Schematic representation of penalized cavity (blue represents the fluid
domain) where in solid domain (represented by red) η = 10−3 is imposed. The
geometry and the initial vorticity distribution are the same as the benchmark.
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Figure 3.20: Comparison of total energy E(t) of a dipole collision with a no-slip
and no-penetration straight wall by imposing classical (Dirichlet and/or Neumann)
boundary conditions and a penalized wall, for Reynolds 1000 and maximum grid level
J = 10 in each direction.
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Figure 3.21: Comparison of the total enstrophy Z(t) and the total palinstrophy P (t) of
a dipole collision with a no-slip and no-penetration straight wall by imposing classical
(Dirichlet and Neumann) boundary conditions and a penalized wall, for Reynolds 1000
and maximum grid level J = 10 in each direction.

wall with radius R = 1.5 will be examined where its center is placed at xc = 0.5,
yc = 1.0. The corresponding mask functions and initial conditions are illustrated in
Fig. 3.25 and Fig. 3.26, respectively. For having a qualitative idea about the collision
of the dipole with a convex wall, the flow evolution from the initial condition t = 0
up to t = 2, is illustrated in Fig. 3.27 and Fig. 3.28 for Reynolds 10000. This will
be useful for a qualitative comparison with dipole collision with straight wall. The
computations were done with the same solver over the same grid points, i.e., 10252.
Next the evolution and the collision of the dipole with a concave wall from the initial
condition t = 0 to t = 2, is illustrated in Fig. 3.29 and Fig. 3.30 for Reynolds 10000.
Comparisons of total energy, enstrophy and palinstrophy between collision with a
straight wall, a convex and a concave wall, with R = 1.5, for Reynolds 10000 and
maximum grid level J = 10 in each direction, are shown in Fig. 3.31 and Fig. 3.32
(a) and (b), respectively.
In the total energy evolution, the curve corresponding to the straight wall lies between
those of the convex and concave walls up to t = 1.1, then it falls below the those of
curved walls. But the total energy evolution for the concave wall lies always above
the others, which can be explained as follows; For total enstrophy and palinstrophy,
the curve for the concave wall usually lies below the others, which can be justified
by considering the fact that in that case the surface is minimum, so enstrophy pro-
duction at walls is reduced with respect to the other cases. Thus by considering Eq.
(3.16) the results are qualitatively satisfactory. Some heuristic general features of
the flow for different configurations can be summarized as follows; The time of the
first collision with the right wall at sufficient high Reynolds numbers, independent
of the curvature of the hitting wall is more or less the same, approximately equal to
tcol = 0.3. There will be a rise in the vorticity of small newly generated vortices after
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Figure 3.22: Schematic representation of the penalized cavity (blue represents the
fluid domain) where in solid domain (represented by red) η = 10−3 is imposed. The
geometry and initial condition (initial vorticity distribution) are the same as the
benchmark.

the collision with the walls, this is also independent of the curvature of the hitting
wall. The destiny of the small newly generated dipole reflecting from the right wall
after the second collision of the dipoles with right wall will be different when arriving
to the left wall. One can see the division of this dipole into two vortices in the con-
cave and convex test cases, while it will remain attached in the case of straight wall
because it is stronger. At t = 2 in the case of collision with a straight wall the number
of vortices are about n = 13, while in the cases of concave or convex walls they are
about n = 8. One can see different phenomena in the field such as attachment to and
detachment of vortices from the walls, merging of counter-rotating vortices, creation
and dissipation of vortex sheets (in two dimensions they will be filaments), creation
of new small vortices near the wall with high rotational speed and dissipation of the
vortices during the time. Also collision of vortices and dipoles of different sizes with
the walls and themselves, interaction of vortices, new dipoles or new isolated vortices
moving with different self induced velocities, the effort of vortices to become circular
and symmetric (isotropy) especially in the regions far from the wall to minimize the
potential. The creation of anisotropy near solid walls can also be seen. Another point
to be noted is that the vortices are very persistent and their life time is much longer
in comparison to three-dimensional flows, in which the vortex stretching mechanism
is responsible for the fast decay of vortices by decreasing their size and increasing
the vorticity in the center line of the vortex tubes thus leading to the direct energy
cascade. In two-dimensional flows, the dominant mechanism to destroy a vortex is
the dissipation which becomes small for high Reynolds numbers. The simulations
also exhibit a symmetry of the flow with respect to the y = 1 axis, up to t=4. Then
the symmetry is broken due to the instability of the flow.
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Figure 3.23: The evolution and collision of the dipole (vortices represented by colored
isolines) with straight penalized walls for Reynolds 10000. Maximum grid level J = 10
in each direction and η = 10−3 in the penalized margin is imposed. The black lines
represent the boundaries of the penalized domain.
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X

Y

0 0.5 1 1.5 2
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

-836.439 -287.733 -153.303 -35.5779 51.101 194.184 296.386 735.72

(c) t = 1.45
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Figure 3.24: The evolution and collision of the dipole (vortices represented by colored
isolines) with straight penalized walls for Reynolds 10000. Maximum grid level J = 10
in each direction and η = 10−3 in the penalized margin is imposed. The black lines
represent the boundaries of the penalized domain.
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Figure 3.25: Mask function (blue represents the fluid domain) with η = 10−3 inside
the convex wall, with R = 1.5, xc = 3.1, yc = 1.0, the initial vortices are placed at
distance equal to one from the right wall.
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Figure 3.26: Mask function (blue represents the fluid domain) with η = 10−3 inside
the concave wall, with R = 1.5, xc = 0.5, yc = 1.0, the initial vortices are placed at
distance equal to one from the right wall.
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Figure 3.27: The evolution and collision of the dipole (the vortices represented by
colored isolines) with a convex wall for Reynolds 10000. The center of the mask is
placed at (xc = 3.1, yc = 1.0) with R = 1.5, maximum grid level J = 10 in each
direction is imposed.
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Figure 3.28: The evolution and collision of the dipole (the vortices represented by
colored isolines) with a convex wall for Reynolds 10000. The center of the mask is
placed at (xc = 3.1, yc = 1.0) with R = 1.5, maximum grid level J = 10 in each
direction is imposed.
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Figure 3.29: The evolution and collision of the dipole (the vortices represented by
colored isolines) with a concave wall for Reynolds 10000. The center of the mask is
placed at (xc = 0.5, yc = 1.0) with R = 1.5, maximum grid level J = 10 in each
direction is imposed.
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Figure 3.30: The evolution and collision of the dipole (the vortices represented by
colored isolines) with a concave wall for Reynolds 10000. The center of the mask is
placed at (xc = 0.5, yc = 1.0) with R = 1.5, maximum grid level J = 10 in each
direction is imposed.
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Figure 3.31: Comparison of the total energy E(t) of a dipole collision with a straight
wall by imposing classical no-slip and no-penetration (Dirichlet and Neumann) bound-
ary conditions and a penalized straight, convex and concave walls, R = 1.5, for
Reynolds 10000 and maximum grid level J = 10 in each direction.
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Figure 3.32: Comparison of the total enstrophy Z(t) and the total palinstrophy P (t) of
a dipole collision with a straight wall by imposing classical no-slip and no-penetration
(Dirichlet and Neumann) boundary conditions and a penalized straight, convex and
concave walls, R = 1.5, for Reynolds 10000 and maximum grid level J = 10 in each
direction.
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Chapter 4

Conclusions and perspectives

In the current master thesis a self-adaptive code for direct numerical simulation of two-
dimensional unsteady incompressible flows has been developed. The new algorithm is
based on a central second-order finite difference discretization of the governing equa-
tions coupled with Harten’s point value multiresolution analysis. The multiresolution
analysis uses cubic interpolating wavelet transform for grid adaptation. This kind of
wavelet transform will impose the necessity of using Cartesian uniform grids. The use
of these types of grids will lead to good accuracy, efficiency and simplicity of the solver.
Alongside with these advantages, the implementation of curved boundaries in Carte-
sian grids is a dilemma. The remedy for this problem is to use the idea of immersed
boundary methods, e.g., volume penalization method. The multiresolution analysis
allows to reduce the number of active grid points significantly, nevertheless the an-
alytical accuracy order of the underlying numerical scheme is preserved. For time
integration explicit Runge-Kutta methods of different order are implemented. First
the algorithm was applied to the one-dimensional Burgers equation and the errors in
time and in space have been assessed in detail. Then the method was extended to the
incompressible two-dimensional Navier-Stokes equations expressed in vorticity-stream
function formulation. Therewith the near wall behavior of two-dimensional vortical
flows has been studied for different geometries, i.e., a dipole-wall collision with either
straight or curved walls. For implementation of curved boundaries in a Cartesian grid
the volume penalization method has been used. This method treats solid obstacles
or walls as porous media, no-slip and no-penetration boundary conditions can thus
be enforced by using permeability coefficient of the solid region which tend to zero.
The obtained results show that the CPU-time of the adaptive simulations can be
significantly reduced with respect to simulations on a regular uniform grid. The only
parameter to be adjusted in the adaptive solver is the threshold parameter ϵ, which
directly controls the compression rate, hence the introduced error in the nonlinear
filtering procedure. The numerical experiments showed that for the considered one
and two dimensional problems with maximum grid level less than J = 12 the proper
threshold parameter is ϵ = 10−3. The average number of active points over the base
grid is less than 10% for one-dimensional problems, thus the compression rate of grid
points is usually more than 90%, which is promising. The time of the multiresolution
computations for one-dimensional problems is reduced by more than a factor two
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with respect to the computations on a uniform grid, taking into account the overhead
necessary for the multiresolution algorithm. For higher resolutions further reduction
in CPU-time are expected. The average number of active points over the base grid
for two-dimensional problems is higher than that of one-dimensional problems due to
safety zone, which is necessary to account for the translation of the solution and the
generation of finer scales. In two dimensions 16 points for each active point must be
added as safety zone, four at the same and four at one finer scale, while in one space
dimension only 4 points are necessary as safety zone, two at the same and two at one
finer scale. For the two-dimensional computations the compression rate is typically
about 25%, which is thus not so high. However, the CPU time of the multiresolu-
tion computations is at least one sixth in comparison with the uniform solver (for
maximum grid level J = 10 in each direction). This is due to presence of the elliptic
solver, thus an extension to this work will be development of a multigrid solver or
Krylov subspace methods for the multiresolution algorithm, to accelerate further the
elliptic part of the method. Another suggestion is to develop a wavelet transform
based on fifth-order interpolation which will lead to higher compression rates in com-
parison to the cubic interpolation. This is the case especially for incompressible flows
where the flow fields are much smoother than that of compressible flows where shocks
may occur in the field. The volume penalization method has been introduced into
the finite difference solvers, both on the uniform grid solver and the adaptive one,
to be able to compute flows in complex geometries, like curved walls. Comparing
the solutions obtained via the penalization method with that of classical no-slip and
no-penetration boundary conditions showed that for the dipole-wall collision with a
straight wall, for Reynolds 1000 with 10242 grid point, we found an average deviation
of less than 2% and a maximum deviation of 6% in the total energy evolution. For
evolution of the total enstrophy and the total palinstrophy the difference between
the two methods of applying the boundary conditions is however larger, a maximum
difference (coincide with the first collision) of 30% in total enstrophy and 50% in total
palinstrophy evolutions is seen. The explanation is given by the first-order accuracy
of the volume penalization method at the wall. Hence small permeability parameters
are necessary and fine grids near boundaries have to be used. Furthermore it was
shown that the finite difference computations with classical boundary conditions con-
verge towards the pseudo-spectral computations of Clercx et al. For Reynolds 1000
it was found that the grid resolution of J = 11 in each direction yields to reasonable
results for energy, however some difference, 12% in enstrophy and in particular 20%
for palinstrophy are still present. It is anticipated that for grid resolutions of J = 12
in each direction these differences will become much smaller, but the computational
time with out parallel processing is currently too prohibitive. Extension of the volume
penalization method to a high order (e.g., second order) immersed boundary method
(IBM) will be another forward step. One interesting perspective is the identification
and the tracking of the vortex cores in the flow field to study more quantitatively
the details of the vortex dynamics. Extending the program to include a dynamic and
distributed memory option for parallel computations with message passing interface
(MPI) will be another step of the future investigation by using either hash tables or
tree data structures. For helpful discussions in this area see [51] and [53].

71



Bibliography

[1] A. Thom, The flow past circular cylinders at low speeds. Proceedings of the
Royal Society, London, Section A, 141, 651-669, 1933.

[2] A. J. Chorin, A numerical method for solving incompressible viscous flow prob-
lems. Journal of Computational Physics, Vol. 2, 12-26, 1967.

[3] A. J. Chorin, Numerical solution of Navier-Stokes equations. Mathematics of
Computation, Vol. 22 (104), 745-62, 1968.

[4] W. R. Briley, A numerical study of laminar separation bubbles using the Navier-
Stokes equations. Journal of Fluid Mechanics, Vol. 47, 713-736, 1971.

[5] J. D. A. Walker, The boundary layer due to a rectilinear vortex. Proceedings of
the Royal Society, Series A, 359, 167, 1978.

[6] R. H. Kraichnan and D. Montgomery, Two-dimensional turbulence. Reports on
Progress in Physics, Vol. 43, 1980.

[7] E. Arquis et J.P. Caltagirone, Sur les conditions hydrodynamiques au voisinage
d’une interface milieu fluid - milieux poreux: application à la convection na-
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