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Abstract The Poisson distribution is extended over the set of all integers.

The motivation comes from the many reflected versions of the gamma dis-

tribution, the continuous analog of the Poisson distribution, defined over the

entire real line. Various mathematical properties of the extended Poisson dis-

tribution are derived. Estimation procedures by the methods of moments and

maximum likelihood are also derived with their performance assessed by sim-

ulation. Finally, a real data application is illustrated.
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1 Introduction

It is well known that the Poisson distribution is the discrete analog of the

gamma distribution. The gamma distribution is a popular model for continu-

ous data. Many extensions of the gamma distribution have been proposed in

the literature for improved modeling, see Johnson et al. (1994, 1995). These

extensions include reflected versions of the gamma distribution defined over
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the entire real line. The first reflected gamma distribution was proposed by

Borghi (1965). This distribution was defined by taking a mirror image of the

probability density function of the gamma distribution along the y axis. Several

other reflected gamma distributions have been proposed since Borghi (1965):

Ali and Woo (2006) defined the skew reflected gamma distribution; Ali et al.

(2008) defined skewed reflected distributions generated by a reflected gamma

kernel; Ali et al. (2009) defined skewed reflected gamma distributions gener-

ated by a Laplace kernel; Ali et al. (2010) defined skewed inverse reflected

gamma distributions. One should also mention that the Laplace distribution

is the reflected version of the exponential distribution.

Each of the reflected gamma distributions including the Laplace distribu-

tion has received many real data applications. But data are never continuous.

Data are discrete by nature. So, it would be useful to have reflected versions

of the Poisson distribution. We are not aware of any reflected version of the

Poisson distribution proposed in the literature. Another motivation is that the

distribution is under-dispersed, equi-dispersed and over-dispersed, see Section

2.5.

The aim of this paper is to propose the first reflected version of the Poisson

distribution, referred to as the extended Poisson (E-Po) distribution. We say

that a random variable X ∼ E-Po(p, λ) with parameters λ > 0 and 0 ≤ p ≤ 1

if its probability mass function is defined as

P(X = k) =





e−λ, if k = 0,

pe−λλ
k

k!
, if k = 1, 2, . . .,

(1− p)e−λλ
|k|

|k|! , if k = . . . ,−2,−1.

(1)

In other words, for all x ∈ Z, we have

P (X = x) = pP (Y = x)1{x≥0} + (1− p)P (Y = |x|)1{x≤0}, (2)

where Y is a Poisson random variable with parameter λ > 0. Note that

– If p = 1, then X has the same distribution than that of Y ;

– If p = 0, then X has the same distribution than that of −Y .

Note also that if X ∼ E-Po(p, λ) then −X ∼ E-Po(1 − p, λ) and |X| is a

Poisson random variable with parameter λ.

The contents of this paper are organized as follows. Various mathematical

properties of the E-Po distribution are derived in Section 2. These include
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the cumulative distribution function (Section 2.1), the quantile function (Sec-

tion 2.2), the survival function (Section 2.3), the failure rate function (Section

2.3), the reverse failure rate function (Section 2.3), the conditional moments

(Section 2.4), the probability generating function (Section 2.5), the moments

(Section 2.5), the Shannon entropy (Section 2.6), the mean deviation about the

mean (Section 2.7), the mean deviation about the median (Section 2.7), the

distribution of sums and differences (Section 2.8). Estimation procedures by

the method of moments (Section 3.1) and the method of maximum likelihood

(Section 3.2) as well as a simulation study (Section 3.3) to assess their perfor-

mance are given in Section 3. Finally, Section 4 illustrates practical usefulness

of the E-Po distribution.

2 Mathematical properties

2.1 Cumulative distribution function

Let FX(x) = P(X ≤ x) denote the cumulative distribution function and ⌊·⌋
the floor function. Furthermore, for all x ≥ 0 recall that

e−λ

⌊x⌋∑

k=0

λk

k!
=

Γ (⌊x+ 1⌋, λ)
⌊x⌋! ,

where Γ (·, ·) denotes the incomplete gamma function. Suppose now that x < 0.

Then, we have

FX(x) =

⌊x⌋∑

k=−∞

P(X = k) = (1− p)e−λ

⌊x⌋∑

k=−∞

λ|k|

|k|!

= (1− p)e−λ
∞∑

k=−⌊x⌋

λk

k!

= (1− p)

[
1− Γ (−⌊x⌋, λ)

(−⌊x⌋ − 1)!

]
.

Now if 0 ≤ x < 1, then

FX(x) = P(X = 0) + FX(−1)

= e−λ + (1− p) (1− Γ (1, λ)) = (1− p) + pe−λ.
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Finally, for x ≥ 1, we have

FX(x) =

⌊x⌋∑

k=−∞

P(X = k)

= FX(0) +

⌊x⌋∑

k=1

P(X = k)

= (1− p) + pe−λ + pe−λ

⌊x⌋∑

k=1

λk

k!

= (1− p) + pe−λ

⌊x⌋∑

k=0

λk

k!

= (1− p) + p
Γ (⌊x+ 1⌋, λ)

⌊x⌋! .

2.2 Quantile function

Letting Q(a, x) = Γ (a, x)/Γ (a) denote the regularized incomplete gamma

function, we can rewrite the cdf of X as

FX(x) =





(1− p) [1−Q (−⌊x⌋, λ)] , if x < 0,

(1− p) + pe−λ, if 0 ≤ x < 1,

(1− p) + pQ (⌊x+ 1⌋, λ) , if x ≥ 1.

Hence, the quantile function of X can be expressed as

F−1
X (q) =





−Q−1

(
1− q

1− p
, λ

)
, if q < 1− p [1−Q(0, λ)],

0, if 1− p [1−Q(0, λ)]

≤ q < (1− p) + pe−λ,

Q−1

(
q − 1 + p

p
, λ

)
− 1, if q ≥ (1− p) + pe−λ,

where Q−1(a, λ) denotes the inverse function of Q(a, λ). This quantile function

can be used to simulate variates of the EP distribution. The same simulation

can be performed perhaps more easily by using (2).
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2.3 Failure functions

Let Y denote a Poisson random variable with parameter λ. Let FY , RY , kY ,

and τY denote, respectively, the cumulative distribution function, survival

function, failure rate function, and the reverse failure function of Y . Then,

the survival function, failure rate function, and the reverse failure function of

X can be expressed as

RX(x) = P(X > x) = 1− FX(x)

=





pRY (x), if x ≥ 0,

pRY (−x− 1) + FY (−x− 1), if x ≤ −1,

kX(x) = P(X = x | X ≥ x) =
P(X = x)

RX(x− 1)

=





kY (x), if x ≥ 1,

e−λ

p(1− e−λ) + e−λ
, if x = 0,

(1− p)kY (−x)

p RY (−x)
RY (−x−1) +

FY (−x)
RY (−x−1)

, if x ≤ −1,

and

τX(x) = P(X = x | X ≤ x) =
P(X = x)

FX(x)

=





τY (x)

1 + (1−p)
pFY (x)

, if x ≥ 1,

e−λ

pe−λ + (1− p)
, if x = 0,

kY (−x), if x ≤ −1,

respectively. Figures and show respectively the behaviour of the failure rate

and the reverse failure functions of X, for different values of λ and p
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2.4 Conditional moments

For lifetime models, it is of interest to know the conditional measure E{(X −
x)k|X > x}, k = 1, 2, ..., which is important in prediction and can be used

to measure the reliability of systems. For all x ∈ Z, the kth-order conditional

moment is

ckX(x) = E
(
(X − x)k | X ≥ x

)
=

∞∑

j=x

(j − x)kP(X = j)

RX(x− 1)
.

In particular, for k = 1, 2, we have

c1X(x) =

∞∑

j=x

RX(j)

RX(x− 1)

=





c1Y (x), if x ≥ 1,

p(1− e−λ)

p(1− e−λ) + e−λ

(
c1Y (1) + 1

)
, if x = 0,

∑−1
j=x RX(j) + c1X(0)

(
p+ (1− p)e−λ

)

RX(x− 1)
, if x ≤ −1,

and

c2X(x) =

2

∞∑

j=x

jRX(j)

RX(x− 1)
− (2x− 1)c1X(x)

=





c2Y (x), if x ≥ 1,

p(1− e−λ)

p(1− e−λ) + e−λ

(
c2Y (1) + c1Y (1)

)
+ c1X(0), if x = 0,

Q(x)− (2x− 1)c1X(x), if x ≤ −1,

where

Q(x) =

p
[
C1

Y (1) + C2
Y (1)

]
RY (0) + 2

−1∑

j=x

jRX(j)

RX(x− 1)
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and ckY (x) be the kth-order conditional moment of Y . Note that c1X is called

the mean residual life function of X, and the variance residual life function of

X is

βX(x) = V (X − x | X ≥ x) = c2X(x)−
(
c1X(x)

)2
.

2.5 Probability generating function and Moments

Several interesting characteristics of a distribution can be studied by its prob-

ability generating function and moments, so we get them to the E-Po distri-

bution.

Define

GX,+(s) = pP(X = 0) +
∞∑

k=1

skP(X = k) = pGY (s),

and

GX,−(s) = (1− p)P(X = 0) +

−1∑

k=−∞

s|k|P(X = k) = (1− p)GY (1/s),

where GY (s) = e−λ(1−s) is the pgf of Y , a Poisson random variable with

parameter λ. Then, the pgf of X is

GX(s) = e−λ
[
pesλ + (1− p)e

λ

s

]
. (3)

Fors = −∞, the pgf (3) is given by GX(−∞) = (1 − p)e−λ. This quantity

is known as the survival fraction and it plays an important role in long-term

survival analysis. For more details, see Rodrigues et al. (2008).

The characteristic function of X follows from (3) as

ϕX(t) = E
(
eitX

)
= pe−λ(1−eit) + (1− p)e−λ(1−e−it),

where i =
√
−1.

For any r ∈ N \ {0}, the rth-order descending factorial moment is

µX(r) = E [X(X − 1) . . . (X − (r − 1))]

= pG
(r)
Y (1) + (−1)r(1− p)G

(r)

Y ′ (1),
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where GY ′ (s) = sr−1GY (s). For any k ∈ N \ {0}, the kth-order moment of X

is

E
(
Xk
)
=





M
(k)
Y (0), if k even,

(2p− 1)M
(k)
Y (0), if k odd,

where

MY (t) = E
(
etY
)
= GY

(
et
)
= e−λ(1−et).

Thus, the first four moments of X are

E(X) = (2p− 1)λ,E
(
X2
)
= λ(1 + λ),

E
(
X3
)
= (2p− 1)λ

(
1 + 3λ+ λ2

)
,E
(
X4
)
= λ

(
1 + 7λ+ 6λ2 + λ3

)
.

The corresponding variance, coefficient of variation, skewness and kurtosis are

V(X) = λ+ 4p(1− p)λ2,

CV(X) =
σX

λ(2p− 1)
,

Skewness(X) =
E (X − E(X))

3

σ3
X

=
λ3(1− 3(2p− 1) + (2p− 1)3)

σ3
X

+
6λ2(1− p)

σ3
X

+
λ

σ3
X

and

Kurtosis(S) =
E (X − E(X))

4

σ4
X

− 3

=
λ4(1 + 2(2p− 1)2 − 3(2p− 1)4)

σ4
X

+
6λ3(1− (2p− 1)2)

σ4
X

+
λ2(7− 4(2p− 1)2)

σ4
X

+
λ

σ4
X

− 3,

where σX =
√

λ+ 4p(1− p)λ2. The index of dispersion is defined as the ratio

of the variance to the mean, i.e.,

ID =
V(X)

E(X)
=

1 + 4p(1− p)λ

(2p− 1)
.

Note that ID = −1, for p = 0; ID < 0, for 0 < p < 1
2 ; ID = 1, for p = 1 and

ID > 0, for 1
2 < p < 1. So, the E-Po distribution is equi-dispersed if p = 0 or
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p = 1. On the other hand, one can see that ID < 1 ⇔ λ < − 1
2p which is not

possible since λ > 0 and ID > 1 ⇔ λ > − 1
2p which is always real for the same

reason. Similary, we have that ID > −1 ⇔ λ > − 1
2(1−p) which is always real.

Thus, one can deduce that E-Po distribution is over-dispersed if 1
2 < p < 1

and under-dispersed if 0 < p < 1
2 .

2.6 Entropy

Entropy is used to measure the randomness of systems and it is widely used in

various sciences such as physics. In this section, we give the Shannon entropy,

which is the most popular entropy, defined by E[− log p(X)], where p(k) =

P(X = k) denotes the probability mass function. Using ( 1), we obtain

E [− log p(X)] = − log p(0)P(X = 0)−
∞∑

k=1

log p(k)P(X = k)

−
−1∑

k=−∞

log p(k)P(X = k)

= λe−λ + p [λ− log p] e−λ
∞∑

k=1

λk

k!
− pe−λ log λ

∞∑

k=1

λk

(k − 1)!

+pe−λ
∞∑

k=1

log k!
λk

k!

+(1− p) [λ− log(1− p)] e−λ
−1∑

k=−∞

λ−k

(−k)!

−(1− p)e−λ log λ

−1∑

k=−∞

(−k)
λ−k

(−k)!

+(1− p)e−λ
−1∑

k=−∞

log(−k)!
λ−k

(−k)!

= λ− [p log p+ (1− p) log(1− p)]
(
1− e−λ

)
− λ log λ

+e−λ
∞∑

k=1

log k!
λk

k!
. (4)

Note that (4) is a closed form expression expect for the single infinite summa-

tion.
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2.7 Mean deviations

The amount of scatter in a population is evidently measured to some extent

by the totality of deviations from the mean and median. These are known as

the mean deviation about the mean and the mean deviation about the median

– defined by

δ1(X) = E [|k − E(X)|] =
∞∑

k=−∞

|k − E(X)|P(X = k) (5)

and

δ2(X) = E [|k −Median(X)|] =
∞∑

k=−∞

|k −Median(X)|P(X = k), (6)

respectively. The measures can be calculated using the general relationship

that

δ(X) = E [|k −m|]

=

∞∑

k=−∞

|k −m|P(X = k)

=

∞∑

k=⌊m⌋+1

(k −m)P(X = k) +

⌊m⌋∑

k=−∞

(m− k)P(X = k)

=

∞∑

k=⌊m⌋+1

kP(X = k)−
⌊m⌋∑

k=−∞

kP(X = k)−m+ 2m

⌊m⌋∑

k=−∞

P(X = k)

= 2
∞∑

k=⌊m⌋+1

kP(X = k)− E(X)−m+ 2mFX(m), (7)
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where E(X) = (2p − 1)λ and FX(·) is given by Section 2.1. Substituting

e−λ
∑⌊x⌋

k=0
λk

k! , the summation term in (7) can be expressed as

∞∑

k=⌊m⌋+1

kP(X = k) = pe−λ
∞∑

k=⌊m⌋+1

λk

(k − 1)!

= pλe−λ
∞∑

k=⌊m⌋

λk

k!

=





pλ+ pλe−λ
−1∑

k=⌊m⌋

λk

k!
, if ⌊m⌋ ≤ −1,

pλ, if ⌊m⌋ = 0,

pλ

{
1− Γ (⌊m⌋, λ)

⌊m− 1⌋!

}
, if ⌊m⌋ ≥ 1.

(8)

Combing (7) and (8), we have an expression for δ(X). Expressions for the

mean deviations in (5) and (6) can be obtained as particular cases.

2.8 Distribution of sums and differences

It is well known that the sum of independent Poisson random variables fol-

lows a Poisson distribution. It is also well known that the difference of two

independent Poisson random variables follows a Skellam distribution (Skel-

lam, 1946). But these properties do not hold for E-Po random variables, see

Section 2.5. Here, we derive the distributions of the sum and the difference of

two independent E-Po random variables and get their moments.

Suppose X1 ∼ E-Po (p1, λ1) and X2 ∼ E-Po (p2, λ2) are independent ran-

dom variables. Since X ∼ E-Po(p, λ) implies −X ∼ E-Po(1 − p, λ), we only
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consider the distribution of the sum X1 +X2 = S say. For k > 0, we have

P(S = k) = P(X = 0)P(Y = k) + P(X = k)P(Y = 0)

+
k−1∑

j=1

P(X = j)P(Y = k − j) +
−1∑

j=−∞

P(X = j)P(Y = k − j)

+

−1∑

j=−∞

P(Y = j)P(X = k − j)

= p2e
−λ1−λ2

λk
2

k!
+ p1e

−λ1−λ2
λk
1

k!
+ p1p2e

−λ1−λ2

k−1∑

j=1

λj
1λ

k−j
2

j!(k − j)!

+ (1− p1) p2e
−λ1−λ2

−1∑

j=−∞

λ−j
1 λk−j

2

(−j)!(k − j)!

+p1 (1− p2) e
−λ1−λ2

−1∑

j=−∞

λk−j
1 λ−j

2

(k − j)!(−j)!

= p2e
−λ1−λ2

λk
2

k!
+ p1e

−λ1−λ2
λk
1

k!

+p1p2e
−λ1−λ2

k−1∑

j=1

λj
1λ

k−j
2

j!(k − j)!

+ (1− p1) p2e
−λ1−λ2

λk
2

k!
[0F1 (; k + 1;λ1λ2)− 1]

+p1 (1− p2) e
−λ1−λ2

λk
1

k!
[0F1 (; k + 1;λ1λ2)− 1] , (9)

where 0F1(; a;x) denotes a hypergeometric function defined by

0F1 (; a;x) =

∞∑

k=0

1

(a)k

xk

k!
,

where (f)k = f(f + 1) · · · (f + k − 1) denotes the ascending factorial. Similar

calculations for k = 0 show that

P(S = 0) = e−λ1−λ2 + (1− p1) p2e
−λ1−λ2 [0F1 (; 1;λ1λ2)− 1]

+p1 (1− p2) e
−λ1−λ2 [0F1 (; 1;λ1λ2)− 1] . (10)
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For k < 0, we have

P(S = k) = (1− p2) e
−λ1−λ2

λ−k
2

(−k)!
+ (1− p1) e

−λ1−λ2
λ−k
1

(−k)!

+ (1− p1) (1− p2) e
−λ1−λ2

k−1∑

j=1

λ−j
1 λj−k

2

(−j)!(j − k)!

+ (1− p1) (1− p2) e
−λ1−λ2

−1∑

j=−∞

λ−j
1 λj−k

2

(−j)!(j − k)!

+ (1− p1) (1− p2) e
−λ1−λ2

−1∑

j=−∞

λ−j
2 λj−k

1

(−j)!(j − k)!

= (1− p2) e
−λ1−λ2

λ−k
2

(−k)!
+ (1− p1) e

−λ1−λ2
λ−k
1

(−k)!

+ (1− p1) (1− p2) e
−λ1−λ2

k−1∑

j=1

λ−j
1 λj−k

2

(−j)!(j − k)!

+ (1− p1) (1− p2) e
−λ1−λ2

λ−k
2

(−k)!

(
1 +

λ1

λ2

)−k

+(1− p1) (1− p2) e
−λ1−λ2

λ−k
1

(−k)!

(
1 +

λ2

λ1

)−k

= (1− p2) e
−λ1−λ2

λ−k
2

(−k)!
+ (1− p1) e

−λ1−λ2
λ−k
1

(−k)!

+ (1− p1) (1− p2) e
−λ1−λ2

k−1∑

j=1

λ−j
1 λj−k

2

(−j)!(j − k)!

+
2 (1− p1) (1− p2) e

−λ1−λ2

(−k)! (λ1 + λ2)
k

. (11)

To find the distribution of the difference X1 −X2, just replace p2 by 1− p2 in

(9), (10) and (11).

The moments of X1 +X2 and X1 −X2 can be calculated using the facts

that

E

[
(X1 +X2)

k
]
=

k∑

m=0

(
k

m

)
E [Xm

1 ]E
[
Xk−m

2

]

and

E

[
(X1 −X2)

k
]
=

k∑

m=0

(
k

m

)
(−1)k−m

E [Xm
1 ]E

[
Xk−m

2

]
,

respectively.
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3 Estimation and inference with simulation

Let X1, . . . , Xn denote a sample of i.i.d. observations from the EP distribution

with parameters p and λ. Here, we consider estimation of the parameters by

the method of moments and the method of maximum likelihood with inference

of the distribution parameters. Also, simulation results on the behavior of

estimators are presented.

3.1 Method of moments

Since E (|X|) = λ, a method of moments estimator of λ is

λn =
1

n

n∑

i=1

|Xi|. (12)

Since P(X = 0) = e−λ, another method of moments estimator of λ is

λ̃n = − log

(
1

n

n∑

i=1

1{Xi=0}

)
. (13)

The method of moments estimator for p can be obtained using moments of X

given in Section 2.5: the ones corresponding (12) and (13) are

pn =
1

2




n∑

i=1

Xi

nλn

+ 1




(14)

and

p̃n =
1

2




n∑

i=1

Xi

nλ̃n

+ 1




, (15)

respectively. The exact sampling distributions of λn and λ̃n follow by noting

that
n∑

i=1

|Xi| ∼ Poisson(nλ) (16)

and
n∑

i=1

1{Xi=0} ∼ Binomial
(
n, e−λ

)
, (17)

respectively. The exact sampling distributions of pn and p̃n are difficult to find

because the sum of independent E-Po random variables does not have a closed

form distribution function, see Section 2.8.
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3.2 Method of maximum likelihood

Set x = (x1, . . . , xn) and θ = (λ, p). The likelihood function is

L (x, θ) = e−nλλ
∑

n

i=1
|xi|

n∏

i=1

|xi|!

n∏

i=1

[
p1{xi≥0} + (1− p)1{xi≤0}

]
.

The log likelihood function is

logL (x, θ) = −nλ+

(
n∑

i=1

|xi|
)
log λ−

n∑

i=1

log |xi|!

+
n∑

i=1

log
[
p1{xi≥0} + (1− p)1{xi≤0}

]
.

The maximum likelihood estimator θ̂n =
(
λ̂n, p̂n

)
is defined as θ̂n = argmaxθ logL (x, θ) .Thus,

the maximum likelihood estimator of λ is

λ̂n =
1

n

n∑

i=1

|xi|. (18)

That of p is

p̂n =

n∑

i=1

1{xi>0}

n∑

i=1

1{xi>0} +

n∑

i=1

1{xi<0}

. (19)

The exact sampling distribution of λ̂n follows from (16). The exact sampling

distribution of p̂n is difficult to obtain. It can be approximated by asymptotic

normality.

An exact 100(1− α) percent confidence interval for λ based on (16) is

1

2n
χ2
2
∑

n

i=1
|xi|,α/2

< λ <
1

2n
χ2
2
∑

n

i=1
|xi|,1−α/2, (20)

where χ2
ν,a is the 100a percentile of a chisquare random variable with ν degrees

of freedom. An exact 100(1 − α) percent confidence interval for λ based on

(17) is

− log I−1
1−α/2

(
1 +

n∑

i=1

1{Xi=0}, n−
n∑

i=1

1{Xi=0}

)
(21)

< λ < − log I−1
α/2

(
n∑

i=1

1{Xi=0}, n+ 1−
n∑

i=1

1{Xi=0}

)
, (22)
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where I−1
x (a, b) is the inverse function of the incomplete beta function ratio

defined by Ix(a, b) =
∫ x

0
ta−1(1− t)b−1dt/B(a, b), where B(a, b) =

∫ 1

0
ta−1(1−

t)b−1dt denotes the beta function.

Approximate confidence intervals can be based on asymptotic normality

of the maximum likelihood estimators. As n → ∞,
√
n
(
λ̂n − λ, p̂n − p

)
ap-

proaches a bivariate normal random vector with zero means and variance-

covariance matrix V say. Standard calculations show that

E

(
−∂2 logL

∂λ2

)
=

1

λ2
E

(
n∑

i=1

|xi|
)

=
n

λ
,

E

(
−∂2 logL

∂λ∂p

)
= 0,E

(
−∂2 logL

∂p2

)
=

n
(
1− e−λ

)

p(1− p)
.

Hence,

V

(
λ̂n

)
≈ λn

n
,Cov

(
λ̂n, p̂n

)
≈ 0, V (p̂n) ≈

p(1− p)

n (1− e−λ)
.

Note that λ̂n and p̂n are asymptotically independent.

So, an approximate 100(1− α) percent confidence interval for λ is

λ̂n − zα/2

√
λ̂n√
n

< λ < λ̂n + zα/2

√
λ̂n√
n

, (23)

where za is the 100a percentile of a standard normal random variable. An

approximate 100(1− α) percent confidence interval for p is

p̂n − zα/2
1√
n

√
p̂n (1− p̂n)

1− e−λ̂n

< p < p̂n + zα/2
1√
n

√
p̂n (1− p̂n)

1− e−λ̂n

. (24)

3.3 A simulation study

Here, we assess the finite sample performance of the point and interval es-

timators in Sections 3.1 and 3.2. The assessment of the performance of the

estimators is based on a simulation study:

1. generate ten thousand samples of size n from the E-Po distribution. The

representation (2) was used to generate samples.

2. compute (13), (14), (15), (18) and ( 19) for the ten thousand samples, say(
λ̃n,i, pn,i, p̃n,i, λ̂n,i, p̂n,i

)
for i = 1, 2, . . . , 10000.
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3. compute the biases and mean squared errors given by

bias1(n) =
1

10000

10000∑

i=1

(
λ̃n,i − λ

)
, bias2(n) =

1

10000

10000∑

i=1

(
pn,i − p

)
,

bias3(n) =
1

10000

10000∑

i=1

(p̃n,i − p) , bias4(n) =
1

10000

10000∑

i=1

(
λ̂n,i − λ

)
,

bias5(n) =
1

10000

10000∑

i=1

(p̂n,i − p) ,MSE1(n) =
1

10000

10000∑

i=1

(
λ̃n,i − λ

)2

MSE2(n) =
1

10000

10000∑

i=1

(
pn,i − p

)2
,MSE3(n) =

1

10000

10000∑

i=1

(p̃n,i − p)
2
,

MSE4(n) =
1

10000

10000∑

i=1

(
λ̂n,i − λ

)2
,MSE5(n) =

1

10000

10000∑

i=1

(p̂n,i − p)
2
.

4. compute the coverage probabilities and coverage lengths given by

CP1(n) =
1

10000

10000∑

i=1

I {ℓ1,i < λ < u1,i} ,CP2(n) =
1

10000

10000∑

i=1

I {ℓ2,i < λ < u2,i} ,

CP3(n) =
1

10000

10000∑

i=1

I {ℓ3,i < λ < u3,i} ,CP4(n) =
1

10000

10000∑

i=1

I {ℓ4,i < p < u4,i} ,

CL1(n) =
1

10000

10000∑

i=1

(u1,i − ℓ1,i) ,CL2(n) =
1

10000

10000∑

i=1

(u2,i − ℓ2,i) ,

CL3(n) =
1

10000

10000∑

i=1

(u3,i − ℓ3,i) ,CL4(n) =
1

10000

10000∑

i=1

(u4,i − ℓ4,i) ,

where I{·} denotes the indicator function, (ℓ1,i, u1,i) are the confidence

limits of (20) for the i th simulated sample, (ℓ2,i, u2,i) are the confidence

limits of (21) for the ith simulated sample, (ℓ3,i, u3,i) are the confidence

limits of (23) for the i th simulated sample and (ℓ4,i, u4,i) are the confidence

limits of (24) for the ith simulated sample.

We repeated these steps for n = 10, 11, . . . , 100 with λ = 1 and p = 1/2,

so computing the five biases, the five mean squared errors, the four coverage

probabilities and the four coverage lengths for n = 10, 11, . . . , 100.

Figure 3 shows how the five biases vary with respect to n. Figure 4 shows

how the five mean squared errors vary with respect to n. Figure 5 shows how

the four coverage probabilities vary with respect to n. Figure 6 shows how

the four coverage lengths vary with respect to n. The broken line in Figure 3

corresponds to the biases being zero. The broken line in Figure 5 corresponds

to the nominal coverage probability of 0.95.
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The following observations can be drawn from the Figures (3, 4, 5, and 6):

the biases appear largest for the estimators, (13) and (18); the biases appear

smallest for the estimators, (14) and (15); the biases for each estimator either

decrease or increase to zero as n → ∞; the mean squared errors appear largest

for the estimator, (13); the mean squared errors appear smallest for the esti-

mators, (19) and (14); the mean squared errors for each estimator decrease to

zero as n → ∞; the coverage probabilities for the confidence intervals, (20),

(21) and (23), appear reasonably close to the nominal level for all n; the cov-

erage probabilities for the confidence interval ( 24) approach the nominal level

with increasing n and they appear reasonably close to the nominal level for all

n ≥ 50; the coverage lengths appear largest for the confidence interval, (21);

the coverage lengths appear smallest for the confidence interval, (24); the cov-

erage lengths for each confidence interval decrease to zero as n → ∞. These

observations are for only one choice for (λ, p), namely that (λ, p) = (1, 1/2).

But the results were similar for other choices.

4 An application to real data

The students number of a specific (test) group from the Bachelor program

(first year) at IDRAC International Management school (Lyon, France) who

followed 60 sessions of courses in marketing covering the period, from 1/9/2012

to 1/4/2013 are time dependent. But after taking difference of every 2 con-

secutive sessions the resulting data set is a random sample of size 59. Thus,

this data set represents the change in number of students between two sessions

of course. Figure 7 illustrate the plots of the students number of the specific

group and the difference of every two consecutive sessions, respectively. De-

scriptive statistics for the original data and the difference are presented in

following table.
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Number of students and the difference

Variable Sample size Mean Median Standard deviation Minimum Maximum

No of students 60 25.35 26 5.80 8 37

Difference 59 0.3898 0 2.97 -5 7

The runs test was applied to both the original data set and the differenced

one. The results of the test show that the number of students of the specific

group is not a random sample (p-value ≃ 0), while after differencing the re-

sulting data set is a random sample (p-value = 0.7077). Now, in order to fit the

data, we propose our extended Poisson distribution. First, we estimated the

distribution parameters by using (18) and (19). It follows that λ̂n = 2.457627

and p̂n = 0.509434. The Pearson Chi-square test is performed to test the fit-

ting. The null hypothesis is that the sample comes from the extended Poisson

distribution and the alternative hypothesis is that sample does not come from

extended Poisson distribution. The results of Pearson Chi-square test are given

in the following table.

Pearson chi-square test for extended Poisson distribution

Modalities Observed Expected (O − E)2/E

≤ −4 5 6.245263 0.24829698

−3 3 6.132144 1.59981959

−2 11 7.485444 1.65014952

−1 7 6.091603 0.13546275

0 6 5.678383 0.01821597

1 6 6.325895 0.01678936

2 4 7.773346 1.83166164

3 8 6.367995 0.41825400

≥ 4 8 6.899926 0.63918202

Total 59 59 6.557832
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∑ (O − E)2

E
= 6.557832 < χ2

6,0.95 = 12.5916 indicating that the extended

Poisson distribution fits the data well. Moreover, in order to assess the good-

ness of fit we followed also a computational approach. Explicitly, we seek to

compare the quality adjustment for the observed data of Skellam (S) distri-

bution (Skellam, 1946), Extended Poisson (E-Po), Extended Binomial (EB)

distribution (Alzaid and Omair, 2012), and discrete analogue of the Laplace

(DAL) distribution (Inusah and Kozubowski, 2006). Indeed, using the data,

we estimate parameter values associated to each distiribution, we simulated

1000 series of length 59 from each distribution and we kept the expected rel-

ative frequencies for each series. The reported frequencies are the mean over

the 1000 series. Results are represented in the following table (see also Figure

7)

Relative frequency of students number and fitted distributions.

Modalities Observed frequency E-Po frequency S frequency DAL frequency EB frequency

≤ −4 8.60 8.54 6.78 6.68 1.77

−3 5.05 4.96 6.22 8.42 5

−2 18.50 18.44 17.94 20.33 16.9

−1 11.80 11.76 10.56 10.75 17.86

0 10.15 10.16 11.3 9.45 12.4

1 10.15 10.16 11.24 10.50 11.16

2 6.80 6.77 8.4 5.68 5.34

3 13.60 13.95 13.56 12 14.41

≥ 4 15.35 15.26 14 16.19 15.16

Total 100 100 100 100 100

One can see that the extended Poisson distribution is the more appropriate

to fit the data, compared to the other distributions.
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Fig. 1 The behaviour of the failure rate function with different value of λ and p.



22 Hassan Bakouch et al.

−4 −2 0 2 4

0
.1

0
.2

0
.3

0
.4

The behaviour of the reverse failure, with lambda = 3.4 and p = 0.43

x

T
h

e
 r

e
v
e

rs
e

 f
a

il
u

re
 f
u

n
c
ti
o

n

−4 −2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

The behaviour of the reverse failure, with lambda = 1.2 and p = 0.23

x

T
h

e
 r

e
v
e

rs
e

 f
a

il
u

re
 f
u

n
c
ti
o

n

−4 −2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

The behaviour of the reverse failure, with lambda = 0.9 and p = 0.87

x

T
h

e
 r

e
v
e

rs
e

 f
a

il
u

re
 f
u

n
c
ti
o

n

−4 −2 0 2 4

0
.0

0
.2

0
.4

0
.6

The behaviour of the reverse failure, with lambda = 2.33 and p = 0.08

x

T
h

e
 r

e
v
e

rs
e

 f
a

il
u

re
 f
u

n
c
ti
o

n

Fig. 2 The behaviour of the reverse failure rate function with different value of λ and p.
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Fig. 3 From top to bottom and from left to right : Biases of (18), (19), (13), (16) and (17)

versus n = 10, 11, . . . , 100.
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Fig. 4 From top to bottom and from left to right : Mean squared errors of (18), (19), (13),

(16) and (17) versus n = 10, 11, . . . , 100.
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Fig. 5 From top to bottom and from left to right : Coverage probabilities of (20), (22),

(23) and (24) versus n = 10, 11, . . . , 100.
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Fig. 6 From top to bottom and from left to right : Coverage lengths of (20), (22), (23) and

(24) versus n = 10, 11, . . . , 100.
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Fig. 7 From top to bottom and from left to right : Number of students of a specific (test)

group from the Bachelor program (first year) at IDRAC International Management school

(Lyon, France) who followed 60 sessions of courses in marketing from 1/9/2012 to 1/4/2013

; Difference of number of Number of students of a specific group ; Relative frequency of

students number and fitted distributions.
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