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Simulations of a cylinder undergoing externally controlled sinusoidal oscillations in
the free stream direction have been performed. The frequency of oscillation was kept
equal to the vortex shedding frequency from a fixed cylinder, while the amplitude of
oscillation was varied, and the response of the flow measured. With varying amplitude,
a rich series of dynamic responses was recorded. With increasing amplitude, these
states included wakes similar to the Kármán vortex street, quasiperiodic oscillations
interleaved with regions of synchronized periodicity (periodic on multiple oscillation
cycles), a period-doubled state and chaotic oscillations. It is hypothesized that, for
low to moderate amplitudes, the wake dynamics are controlled by vortex shedding
at a global frequency, modified by the oscillation. This vortex shedding is frequency
modulated by the driven oscillation and amplitude modulated by vortex interaction.
Data are presented to support this hypothesis.

Key words: pattern formation, vortex shedding, vortex streets

1. Introduction
This paper studies the controlled oscillation of a cylinder in a free stream. The

problem of an oscillating cylinder generates considerable research interest, from both
a fundamental fluid-structure interaction point of view and an applications-based point
of view. With regards to the latter, a driving factor has been to understand the physics
inherent to the problem of vortex-induced vibration (VIV). This focus has led to many
studies of cylinders oscillating transverse to the free stream, as this is the primary
direction of oscillation during VIV.

However, an inline component of motion has been shown to play a major role in
VIV, as the structure responds to the fluctuating drag force. Jauvtis & Williamson
(2005) showed a unique ‘2T’ mode of vortex shedding, consisting of two triplets of
vortices per oscillation cycle, which occurred when inline oscillation was allowed
during VIV experiments, with repercussions for the fluid loading of structures.
Recently, Horowitz & Williamson (2010), in experiments on rising and falling
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cylinders (essentially VIV with no restoring spring force or mechanical damping),
showed that, for such a body to oscillate at all, an equivalent elastically mounted
system requires the natural frequency in the inline direction to be twice the natural
frequency in the transverse direction.

This fact appears naturally, as the drag force typically fluctuates at twice the
frequency of the lift. Because of this, many studies of driven inline oscillations have
concentrated on forcing at frequencies at, or close to, twice the Strouhal frequency,
fSt (see e.g. Tanida, Okajima & Watanabe 1973; Barbi et al. 1986; Karniadakis &
Triantafyllou 1989; Konstantinidis, Balabani & Yianneskis 2005; Konstantinidis &
Balabani 2007), where the Strouhal frequency is the frequency of the vortex shedding
from a stationary cylinder. Forcing at these frequencies leads to synchronization of the
vortex shedding to the oscillation frequency; however, as the frequency is moved away
from 2fSt , the amplitude required to maintain this synchronization increases (Griffin &
Hall 1991).

Aside from the direct practical application to VIV, the problem of a controlled,
sinusoidal, inline oscillation can present a unique viewpoint in terms of wake control
strategies. The impact of cylinder motion on the wake has been extensively studied,
using a range of motions. A plethora of studies on sinusoidal transverse oscillations
exist – see e.g. Bishop & Hassan (1964), Koopman (1967), Staubli (1983), Carberry,
Sheridan & Rockwell (2005) and Leontini et al. (2006) and Morse & Williamson
(2009), and the reviews of Williamson & Govardhan (2004) and Sarpkaya (2004)
and references therein. The studies of Thiria, Goujon-Durand & Wesfreid (2006) and
Thiria & Wesfreid (2007) investigated the behaviour of the two-dimensional wake
of a cylinder performing rotational oscillations. These studies have shown that, if
the oscillation frequency is close to the Strouhal frequency fSt , the wake remains
synchronized to the oscillation frequency.

It should be noted that the symmetry of the forcing introduced by both the
transverse and rotational oscillations is the same as that of the unperturbed wake
(i.e. the spatio-temporal symmetry of reflection about the wake centreline plus
evolution forwards by half a period). Nazarinia et al. (2009) studied the wake of a
cylinder undergoing combined rotational and transverse oscillations. This study found
that the synchronization was a function of the phase between the transverse and
rotational oscillations, and therefore a function of the symmetry of the forcing.

Inline oscillations do not share this symmetry, a fact cited by Ongoren & Rockwell
(1988) as being of importance in the synchronization process. Feng & Wang (2010)
used a synthetic pulsating jet at the rear of the cylinder, thereby providing a forcing of
the same symmetry as inline driving. The results of this study showed that this type of
forcing could have a significant impact on the vortex formation process, and therefore
the synchronization process.

Focusing on studies of inline driving of a cylinder, Griffin & Ramberg (1976)
performed experiments investigating the range of frequencies of oscillation for which
the flow synchronized to the driving frequency. They found a lock-in region at
frequencies centred around twice the Strouhal frequency. Interestingly, they found
two modes of vortex shedding in this synchronization regime: one where a pair of
opposite-sign vortices was shed per period (regime I in the notation of Griffin &
Ramberg 1976); and one where a single vortex was shed per period of oscillation,
and another vortex of opposite sign was shed in the following period (regime II in
the notation of Griffin & Ramberg 1976). These two modes could be thought of as a
primary and subharmonic synchronization, respectively. Both modes appeared to retain
the staggered arrangement of vortices in a typical bluff-body wake.
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Ongoren & Rockwell (1988) performed an extensive set of experiments for
A∗ = A/D = 0.13, for frequency ratios 0.5 6 fd/fSt 6 4.0, where A is the amplitude
of oscillation, D is the cylinder diameter, fd is the frequency of driven oscillation
and fSt is the Strouhal frequency. In these experiments, multiple synchronization
regions were found. The first was again where fd/fSt ' 2; however, synchronization
also occurred for fd/fSt > 3, but to a symmetric mode of vortex shedding, which
consisted of two vortices per oscillation period of opposite sign, symmetrically
opposed about the wake centreline. They observed mode competition between these
symmetric and anti-symmetric modes in between these synchronization regions. This
mode competition has also been observed by Konstantinidis & Balabani (2007).

Cetiner & Rockwell (2001) performed similar experiments, taking detailed force
measurements for a series of amplitudes over a frequency range 0.37 6 fd/fSt 6 3.0.
At higher amplitudes of oscillation (approaching A∗ = 1 in some cases), a further
synchronization region was observed in the vicinity of fd/fSt = 1. Similar to the
result of Griffin & Ramberg (1976) around fd/fSt = 2, their force traces indicate that
this synchronization could occur through a primary or subharmonic synchronization,
but appear to show subharmonic synchronization for A∗ > 0.3. Synchronization to
a subharmonic mode at high amplitudes when fd/fSt = 1 was also reported in the
experiments of Barbi et al. (1986) for Reynolds numbers as high as 40 000.

Al-Mdallal, Lawrence & Kocabiyik (2007) reported a quasiperiodic state for
oscillations at fd/fSt = 1 when A∗ = 0.1. Experiments from Kim & Williams (2006)
using very small amplitudes of oscillation and a frequency ratio fd/fSt = 0.77 reported
a decrease in the primary frequency of vortex shedding from the cylinder. The power
spectrum of the lift force generated showed a series of frequencies present, all
of which were related to the primary vortex shedding frequency fs or the driving
frequency fd. The series they found contained frequencies fs, and then fs ± nfd,
where n is a positive integer. Konstantinidis & Bouris (2009) did computations of
a pulsated flow past a cylinder (a dynamically equivalent problem to the inline
driven cylinder) where the waveform of the pulsation was varied from the classical
sinusoidal oscillation by adding other frequency components. Changing the extra
frequency components was shown to have a major impact on the vortex shedding
process and the wake modes present.

Perdikaris, Kaitsis & Triantafyllou (2009) presented data from two-dimensional
simulations for a Reynolds number of 400 for a range of amplitudes for a fixed
frequency, where fd/fSt = 1. For low amplitudes, they observed an apparent primary
synchronization to the classic anti-symmetric mode. At high amplitudes, they observed
a subharmonic synchronized wake, again with an anti-symmetric staggering of vortices.
At intermediate amplitudes, they reported observing either quasiperiodicity or chaos in
the wake. The chaotic state was attributed to mode competition.

These results showing a range of possible states depending on A∗, particularly
at fd/fSt = 1, show that the synchronization phenomenon, and the state selection
process, contain many transitions. These results suggest that the qualitative picture of a
simple synchronization region focused around fd/fSt = 1 that has only a single critical
amplitude for synchronization, as presented by Karniadakis & Triantafyllou (1989) and
in the review paper of Griffin & Hall (1991), may not be fully representative.

The current paper seeks to further investigate these synchronization and state
selection phenomena. Keeping the driving frequency fd constant so that fd/fSt = 1,
a series of simulations have been conducted at fine increments of amplitude. It is
shown that, at intermediate amplitudes, the flow is not chaotic, but is, in general,
quasiperiodic, with two incommensurate frequencies driving the dynamics. Interleaved
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in this quasiperiodic region are bands of PN periodic response, where PN denotes a
response that has a period of N cycles of oscillation.

These bands of resonance to PN states are shown to occur when the primary
frequency of vortex shedding makes an integer ratio with the driving frequency. As
this primary frequency of vortex shedding is shown to be a function of the amplitude
of oscillation, this is interpreted in terms of a dispersion relation. The frequency
content of the response is explained by considering the cylinder as a wave generator,
coupled with the frequency modulation of these waves by the oscillatory driving, and
the amplitude modulation due to vortex interaction in the wake.

2. System definition and methodology
The system studied was that of a circular cylinder immersed in a free stream,

undergoing sinusoidal oscillations parallel to the flow direction. These oscillations
were of the form

xcyl

D
= A∗ sin(2πfdτ), (2.1)

where xcyl is the cylinder’s relative displacement from its neutral position, and
τ = tU/D is the non-dimensional time, where t is time, and U is the free stream
velocity. Note that the frequency of oscillation was set to the Strouhal frequency of
the fixed cylinder, fSt , so that fd/fSt = 1. The Reynolds number, Re = UD/ν, where ν
is the kinematic viscosity, was set to Re = 175, below, but close to, the critical value
of Re ' 190 for the transition to a three-dimensional flow in the fixed cylinder case
(Williamson 1988). Using a value so close to the threshold may mean that the flow
is actually three-dimensional (it cannot be known a priori if the oscillation will be
destabilizing on the wake). Results from a simulation at Re= 100 are provided in § 3.5
that show a flow with the same characteristics as the flows at Re= 175. This provides
a high level of confidence that the results gained should generalize to other values of
Re where the flow is two-dimensional.

Therefore, two-dimensional direct numerical simulations were performed, solving
the incompressible Navier–Stokes equations using a highly accurate spectral-element
method (Thompson, Hourigan & Sheridan 1996). Seventh-order tensor-product
Lagrange polynomials, associated with Gauss–Legendre–Lobatto quadrature points,
were used as shape functions. A three-way time splitting scheme was used for
time integration, which formed a Poisson equation that was solved for the pressure
field (Karniadakis, Israeli & Orszag 1991). A third-order Adams–Bashforth method
was used to solve the resulting equation for the advection term, and a second-order
Crank–Nicholson method was employed for the diffusion term.

To account for the cylinder motion, the Navier–Stokes equations were solved in
the frame of reference attached to the cylinder. As this frame is non-inertial, an
extra term for the frame acceleration was added to the equations. This approach
requires no mesh deformation, maintaining the speed and accuracy of the method over
the entire simulation time. This code has been employed and extensively verified in
previous similar studies, including three-dimensional cylinder simulations (Thompson
et al. 1996), transversely oscillating cylinder studies (Leontini et al. 2006; Leontini,
Thompson & Hourigan 2007) and rotationally oscillating cylinder studies (Lo Jacono
et al. 2010).

Dirichlet boundary conditions were applied at the cylinder surface (ux = uy = 0), and
at the inlet and side boundaries (ux = 1, uy = 0, or free stream conditions). Here,
ux and uy are the velocity in the streamwise and cross-stream directions, respectively.
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Polynomial order fSt (fixed) ClMAX (fixed) ClMAX (A∗ = 0.5)

5 0.193 33 0.616 26 2.023 67
6 0.193 34 0.615 75 2.022 20
7 0.193 30 0.614 54 2.020 67
8 0.193 32 0.615 19 2.028 41

TABLE 1. Results of a resolution test on a fixed cylinder, and the inline oscillating cylinder,
for A∗ = 0.5. The frequency of shedding varies by less than 0.1 % for shape function
polynomial orders 5–8 for the fixed cylinder, and the peak lift coefficient for the converged
periodic solution for both the fixed and oscillating cylinder varies by less than 1 %. A
polynomial order of 7 has been used for the simulations of the current study.

A zero-normal gradient condition was applied at the domain outlet, as well as fixing
the pressure. This outlet was set at least 50D downstream of the cylinder.

A resolution test was conducted for the macro-element mesh employed by varying
the polynomial order of the shape functions in each element. Simulations of a fixed
cylinder at Re = 175, and simulations of the inline oscillating cylinder, with A∗ = 0.5,
were run. The Strouhal frequency fSt and the maximum lift coefficient of the converged
limit cycle oscillations were compared for the fixed cylinder. As the frequency of
oscillation was set at fs for the driven oscillation simulations, only the maximum
converged lift coefficient was compared. The numbers obtained are provided in table 1.
In both cases, the lift coefficient varied by less than 1 % for polynomial orders from
5 to 8, and fSt varied by less than 0.1 % over the same range. This provides a
high degree of confidence that the results of the current study, using seventh-order
polynomials, are adequately resolved.

3. Results and discussion
3.1. The identification of response regimes

Response regimes were identified with the aid of Poincaré maps. These maps were
produced by sampling the time history of the lift and drag coefficients on the cylinder
at the driving frequency, and plotting the result. Any transient (typically the signal
before τ = 200) was discarded so that the Poincaré maps represented only the long-
time dynamics.

Examples of the maps produced, for four values of A∗, are presented in figure 1.
These examples show a quasiperiodic response, a P6 response, synchronization to
the subharmonic mode (which could equally be labelled a P2 mode) and a chaotic
response. The quasiperiodic response draws a filled curve in the Poincaré map, the
PN modes produce N distinct points, and the chaotic response essentially fills a bound
region with points if a long enough time history is used.

For amplitudes below that at which the onset of the subharmonic mode was found
(A∗ = 0.38), only quasiperiodic and PN periodic responses were found. This finding is
in conflict with the conclusion that the flow appears chaotic drawn by Perdikaris et al.
(2009), who reported a small band of chaos for amplitudes 0.18 6 A∗ 6 0.23. However,
the Reynolds number in their simulations was also Re = 400, as opposed to the value
of Re= 175 used for the data of figure 1. It is therefore possible that the emergence of
chaos at amplitudes close to A∗ = 0.2 is a function of Re. Perdikaris et al. (2009) did
report that they also observed chaos at these amplitudes for Re < 190; however, those
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FIGURE 1. Poincaré maps for (a) A∗ = 0.17, (b) A∗ = 0.29, (c) A∗ = 0.40 and (d) A∗ = 0.65.
These show the signatures of quasiperiodicity, P6 response, subharmonic synchronization
(or P2 response) and chaotic response, respectively. These plots are of the lift coefficient
Cl versus drag coefficient Cd, both sampled at the driving frequency.

results were not published due to space restrictions, so it is not clear exactly which
values of Re were tested. Further work is required to fully understand this discrepancy.

To summarize the results of these Poincaré maps, the sampled values of Cl in each
have been used to produce a type of bifurcation diagram, as shown in figure 2.

The diagrams presented in figure 2 clearly show the interleaving of regions of
quasiperiodicity with PN periodicity for A∗ < 0.38. In the diagram, quasiperiodicity is
indicated by a filled column of points for a given value of A∗, whereas PN periodicity
is indicated by a column containing exactly N points. (As an aside, a chaotic response
would also appear as a full column, and an inspection of the Poincaré map for each
case is required to distinguish between them.)

Inspection of figure 2(b) shows a clear progression in the appearance of the PN

regimes. With increasing A∗, N is reduced by one at each subsequent PN regime. For
example, a P8 response is indicated at A∗ = 0.24, then a P7 response at A∗ = 0.26,
then a P6 response at 0.28 6 A∗ 6 0.29, etc. This continues until the subharmonic
synchronization (P2) at A∗ = 0.38. Only a P3 response is missing from the progression.
This response may well be possible, as no effort has been made to establish the full
range of extent of each of these modes, or to study the nature of the bifurcation from
one to the other. It is possible that, for some values of A∗, the flow is bistable, and
the response selected by the flow is a function of the initial conditions. All of the
simulations for the current study were started from rest.
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FIGURE 2. (a) Values of the lift coefficient Cl sampled at the driving frequency versus the
driving amplitude A∗. A subharmonic synchronization is shown for A∗>0.38, where only
two values of Cl are recorded. Quasiperiodicity is interleaved with regions of PN periodicity
for A∗ < 0.38. (b) Expanded plot of the area denoted by the grey box in panel (a). The PN
responses are highlighted with a grey box.

It appears that these PN responses are a resonance between a new global frequency
(the frequency of the vortex shedding) and the driving frequency. Further explanation
of this point is given in § 3.6.

For values of A∗ > 0.65, the picture is not as clear. For these higher amplitudes,
the response can be quite complicated, and appears to be truly chaotic (at least for
selected values of A∗). Further work is required to fully characterize this region, and to
gain an understanding of the wake dynamics.

The vortex shedding modes associated with each of the identified PN response
regimes are presented in figure 3. The images of figure 3 show that the number
of vortices is not a simple linear function of N. In these response regimes, the
flow is attempting to lock to a subharmonic of the oscillation frequency (see § 3.6),
and because of this the vortex formation and shedding process can become quite
complicated.

3.2. Frequency content of the lift and drag signal
3.2.1. Fourier analysis of the lift and drag

Further information regarding this system’s response is gained by inspection of the
frequencies present. For each value of A∗, the frequency content of the lift and drag
signals has been obtained from a fast Fourier transform (FFT). Examples of the spectra
produced, along with time series of the lift signal, are presented in figure 4. The cases
presented are the same as those used to produce the Poincaré sections of figure 1.

To build a picture of the variation of the frequencies present with increasing A∗, the
spectra from each value of A∗ have been stacked next to each other. This presents the
energy content as a function of frequency and A∗, as shown in figure 5. In this figure,
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P8 (A       0.24)

P7 (A       0.26)

P6 (A       0.29)

P5 (A       0.31)

P4 (A       0.35)

P2 (A       0.40)

FIGURE 3. Snapshots of vorticity in the wake for all the PN regimes. With increasing A∗, N
decreases. The images show that, while the forces on the cylinder are N periodic, the vortex
shedding process and subsequent wake structures are highly complex, and the number of
vortices shed per cycle is not simply a linear function of N.

the energy content of each frequency is represented by the greyscale contours in the
A∗–fd/fSt plane, for both the lift and the drag force.

3.2.2. Estimation of the dispersion relation from the data
If the amplitude of oscillation is considered as a characteristic wavelength, a

dispersion relation, relating this wavelength to the global frequency of the resulting
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FIGURE 4. Power spectrum and time series of lift for (a) A∗ = 0.17, (b) A∗ = 0.29,
(c) A∗ = 0.40 and (d) A∗ = 0.65. These show the signatures of quasiperiodicity, P6 response,
subharmonic synchronization (or P2 response) and chaotic response, respectively.

vortex shedding, can be obtained from the data. To do this, the primary frequency of
response from the lift force (which is equal to the new vortex shedding frequency,
fs) has been extracted for each A∗ prior to the synchronization to the subharmonic
mode at A∗ = 0.38. Points where the flow is PN periodic have been discarded (as
the synchronization phenomenon leads to a change in the vortex shedding frequency
trend), leaving only the quasiperiodic cases. A power-law curve has then been fitted in
a least-squares sense to these points, leading to the relation

fs = fd(1− 2.21A∗2.02
). (3.1)

Note that the power is very close to 2. Perdikaris et al. (2009) suggested that the
variation of this frequency was with A∗2 for small amplitudes. The data presented here
suggest that variation of fs with A∗2 may hold up to moderate amplitudes.

Equation (3.1) is plotted as the heavy solid line in figure 6. The figure shows that
the curve represents the trend of the data very well, as it closely follows the points
extracted from the data.

3.3. Phase modulation of the vortex shedding by the oscillatory driving
Inspection of figure 5(b), which shows the variation of the frequency content of the
lift force with respect to A∗, shows that the frequency response of the flow can
be very rich. For A∗ 6 0.38 (prior to the synchronization to the subharmonic, or
P2 mode), while the majority of the energy is contained in the component at the
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FIGURE 5. Frequency content of (a) the drag force and (b) the lift force signal as a
function of A∗. The energy in each frequency component is represented by the greyscale
contours. For the lift force, the strongest frequency component is that at the primary vortex
shedding frequency, followed by the sum and difference between the primary vortex shedding
frequency and the driving frequency. For the drag force, the strongest frequency component is
that at the driving frequency, again followed by the sum and difference between the primary
vortex shedding frequency and the driving frequency.

primary shedding frequency fs, a whole series of frequencies is present. This frequency
series appears to vary smoothly with A∗ over this range (with apparently only minor
consideration of whether the flow is quasiperiodic or PN periodic).

It is proposed that this frequency series can be explained by considering the
oscillating cylinder as a wave generator, sending waves down the wake. In fact,
these waves are the vortex shedding. The frequencies present in this series can then be
defined and explained by considering the interaction between the driving frequency, fd,
and the frequency of these generated waves, or vortex shedding, fs.

The first step to this explanation is to identify the frequencies present in the flow
response. Figure 6 presents the six strongest frequencies present in the lift force,
extracted from the data presented in figure 5. These correspond to the six highest
peaks in the spectra for each A∗, such as those presented in figure 4. No filtering or
preferential selection has been applied; simply the frequencies at which the six highest
peaks occur have been selected. These frequencies are represented by the points in
figure 6.

The strongest frequency is always that at the primary vortex shedding frequency, fs.
The variation of this frequency with increasing A∗ is well described by the relation
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FIGURE 6. The six most energetic frequencies of the lift force data, as a function of A∗. The
black points indicate the frequencies extracted from the lift data presented in figure 5. The
heavy solid line represents a curve fitted to the primary frequency of response, fs. The other
solid lines are combinations of the curve fitted to fs with the driving frequency. Note that all
frequencies have been normalized by the driving frequency fd (this has not been included in
the labels on the plot so that the labels do not obstruct the data). The data points generally
follow the lines very closely.

defined in (3.1). This relation is shown as the heavy solid line in figure 6. All the other
lines on the figure have then been generated by combining this relationship, or integer
multiples of it, with integer multiples of the driving frequency fd.

The match between the extracted frequencies and the curves is extremely good,
with almost all the extracted points falling on, or near, the curves. This provides
a certain level of confidence that the frequency response can be described in terms
of frequencies constructed from the sum and difference of integer multiples of the
primary shedding frequency, fs, and the driving frequency, fd. For clarity, these
frequency components have been ranked in terms of strength, and their definitions
stated in table 2.

As suggested above, these frequencies can be explained by considering the body
as a wave generator. Consider the system in the frame of reference moving with the
cylinder. In this frame, waves are primarily generated at the new vortex shedding
frequency, fs. These waves will travel down the wake at some finite speed, inducing a
phase, φ, between the wave generation at the cylinder and its measurement. Therefore,
the general form of a signal measured in the wake will be

ψ(x)= ζ(x) sin(2πfsτ + φ), (3.2)

where ψ(x) is the measured quantity, ζ(x) is the amplitude of the wave, and x is the
distance downstream of the cylinder in the moving frame of reference. The phase φ is
dependent on the distance downstream where the measurement is taken, and the speed
at which waves are convected downstream. The wave speed comprises two terms: the
first is the convection speed in the frame of reference, c; the second comes from the
fact that the frame of reference is accelerating in the direction of wave propagation
(i.e. inline with the flow) sinusoidally. Therefore, φ is of the form

φ(x)= x

c
+ 2πfdA∗ sin(2πfdτ). (3.3)
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Term Frequency Model coefficient Normalized model coefficient

1 fs ζJ0(α) 1
2 fs + fd ζJ1(α) ξ1 = J1(α)/J0(α)
3 fs − fd ζ(1+ Γ )J1(α) ξ2 = (1+ Γ )J1(α)/J0(α)
4 3fs − 2fd ζΓ J0(α) ξ3 = Γ
5 fs − 2fd ζ(Γ/J0(α)−J2(α)) ξ4 = (Γ − J2(α)/J0(α))
6 3fs − 3fd ζΓ J2(α) ξ5 = Γ J2(α)/J0(α)

TABLE 2. Definitions of the six most prominent frequencies in the lift force, listed in order
of strength, presented in figure 6. Also presented are the coefficients of the frequency and
amplitude modulated model for the lift force for these frequency components presented in
(3.10).

This results in an equation for the measured signal at a given point being

ψ(x)= ζ(x) sin
(

2πfsτ + x

c
+ 2πfdA∗ sin(2πfdτ)

)
, (3.4)

or one sinusoid at the vortex shedding frequency, fs, phase-modulated by a second
sinusoid at the driving frequency, fd. If ψ(x) is considered as the force on the body (at
x= 0), the resulting signal is

ψ = ζ sin(2πfsτ + 2πfdA∗ sin(2πfdτ)). (3.5)

This phase-modulated signal can be decomposed (Chowning 1973) as

ψ = ζ {J0(α) sin(2πfsτ)+ J1(α)[sin(2π(fs + fd)τ )− sin(2π(fs − fd)τ )]
− J2(α)[sin(2π(fs + 2fd)τ )+ sin(2π(fs − 2fd)τ )]
+ J3(α)[sin(2π(fs + 3fd)τ )− sin(2π(fs − 3fd)τ )] + · · ·}, (3.6)

where JN is the Bessel function of the first kind of order N and α = 2πfdA∗.
Essentially, this decomposition indicates that, if the lift force is generated purely

by the vortex shedding at the new vortex shedding frequency fs that is phase (or
equivalently, frequency) modulated by the driving frequency fd, the spectrum should
contain the new global frequency fs, and components at frequencies that are the sum
and difference between fs and integer multiples of the driving frequency fd. The
magnitudes of these components should also scale according to the series of Bessel
functions JN(α).

Inspection of the frequencies presented in table 2 shows that the first three measured
frequencies are the same as the frequencies of the first three terms of (3.6). The
fifth frequency in table 2 is also present as the fifth term of (3.6). However, (3.6)
cannot account for the fourth and sixth frequencies, indicating that this model needs
augmenting to more fully describe the wake dynamics.

3.4. Amplitude modulation in the wake
The extra frequencies present can be accounted for by adding an amplitude modulation
to the frequency-modulated model of (3.6), if it is assumed that this amplitude
modulation occurs at a frequency of 2(fs − fd).

Inspection of the time series of the lift force in figure 4 (focusing on panels (a) and
(b), the examples for which A∗ < 0.4) clearly shows that the lift force is amplitude
modulated. It is proposed that this amplitude modulation is due to the modification
of the location and strength of the shed vortices each oscillation cycle, because the
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shedding occurs at a different phase of the oscillation cycle. This phase cycles from 0
to 2π with a frequency of fs − fd. The strongest vortices will be shed when they are
formed as the body is moving against the free stream, increasing shear and vorticity
production. This stronger vortex will produce a larger force. This means that the vortex
formed on the other side of the wake, approximately half an oscillation cycle later,
will be formed as the body is moving with the free stream, decreasing its strength.
However, this weaker vortex will remain closer to the cylinder for longer (as the body
is moving in the same direction as the flow), therefore having a large impact on the
force on the body.

If this argument holds, it should be invariant as to which side has the stronger
vortex, and which has the weaker, but closer, vortex. Therefore, the modulation it
creates should occur at both positive and negative values of the phase between the
oscillation and the vortex shedding, and therefore repeat twice as the phase cycles
from 0 to 2π, which is what is observed.

Applying this amplitude modulation to the frequency modulation model of (3.6)
leads to a model for the lift force of

ψ = {1+ Γ [sin(2π(fs − fd)τ )]} + ζ {J0(α) sin(2πfsτ)

+ J1(α)[sin(2π(fs + fd)τ )− sin(2π(fs − fd)τ )]
− J2(α)[sin(2π(fs + 2fd)τ )+ sin(2π(fs − 2fd)τ )] + · · ·}, (3.7)

where Γ controls the magnitude of the amplitude modulation. Rewriting the product of
sinusoids using the identity

sin(A) sin(B)= sin(A+ B)+ sin(A− B), (3.8)

(3.7) can be written as

ψ = ζ {J0(α) sin(2πfsτ)+ J1(α)[sin(2π(fs + fd)τ )− sin(2π(fs − fd)τ )]
− J2(α)[sin(2π(fs + 2fd)τ )+ sin(2π(fs − 2fd)τ )] + · · ·}
+Γ ζJ0(α)[sin(2π(3fs − 2fd)τ )+ sin(2π(fs − 2fd)τ )]
−Γ ζJ1(α)[sin(2π(3fs − 3fd)τ )+ sin(2π(fs − fd)τ )]
+Γ ζJ1(α)[sin(2π(3fs − fd)τ )+ sin(2π(fs − 3fd)τ )] + · · ·}, (3.9)

where the products of sinusoids have been expanded for the first three terms.
Collecting like terms results in the model being expressed as

ψ = ζJ0(α)

{
sin(2πfsτ)+ J1(α)

J0(α)
sin(2π(fs + fd)τ )

− (1+ Γ )J1(α)

J0(α)
sin(2π(fs − fd)τ )+ Γ sin(2π(3fs − 2fd)τ )

+
(
Γ − J2(α)

J0(α)

)
sin(2π(fs − 2fd)τ )+ Γ J2(α)

J0(α)
sin(2π(3fs − 3fd)τ )+ · · ·

}
,

(3.10)

where only the six terms with the largest coefficients for the range of A∗ tested
have been retained. These six terms are the same as those presented in table 2.
The coefficients of these six terms are also presented in the table, as well as the
coefficients normalized by the coefficient of the first term.

It can be concluded that the model for the lift force as presented in (3.10)
adequately accounts for all the frequencies of interest measured in the lift force data.
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FIGURE 7. Strength of second to sixth strongest frequencies, normalized by the strength of
the strongest frequency (points), compared to the second to sixth largest coefficients (ξ1–ξ5),
normalized by the largest coefficient of (3.10) (lines). The definitions of ξ1–ξ5 are presented
in table 2 (note that ξ1 and ξ2 are very similar, and are essentially overlaid on the plot). It is
shown that the energy extracted from the data and the theoretical coefficients are of the same
scale.

To recap, this model consists of the body generating waves at the new vortex shedding
frequency fs, which are then frequency modulated by the driving frequency fd, which is
then amplitude modulated by vortex interaction downstream.

The model of equation (3.10) can be further quantitatively tested by comparing
the magnitudes of the coefficients to the energy content of each of the frequency
components measured from the data. The absolute magnitudes of these terms cannot
be gained without knowledge of the amplitude term ζ ; however, if Γ is known, the
ratio of the energy content of a given frequency to the energy content of the primary
component at fs can be calculated. As shown in (3.10) and table 2, Γ appears alone
as the coefficient of the fourth term once the ratio with the primary term is taken.
Therefore, Γ can be scaled by fitting to the data, allowing all of the other terms to be
calculated.

Figure 7 compares the magnitude of the coefficients of each term in (3.10) to
the energy of the six largest frequencies extracted from the data, over the range
0.05 6 A∗ 6 0.40. For the model, the coefficients have been normalized by the
coefficient of the first term in (3.10), as presented in the fourth column of table 2;
similarly for the data, the energy of each component has been normalized by the
energy of the leading component.

While the coefficients of the model do not track the energy content of the
components from the frequency spectra of the lift exactly, they are ranked in the
same order, vary in the correct direction (i.e. generally increase with increasing A∗)
and appear to be of the correct magnitude. This level of agreement indicates that the
model captures the essential physics of the problem.

3.5. Confirmation of the model at different values of Re

To confirm the generality of the model presented in §§ 3.3 and 3.4, a simulation
was conducted at Re = 100, to obtain a force time history for 1000 time units
(approximately 160 shedding cycles). The amplitude of oscillation was set to
A∗ = 0.20. The driving frequency fd was adjusted to again match the frequency of
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FIGURE 8. Results from a simulation at Re= 100, A∗ = 0.20. (a) Poincaré sections of the lift
coefficient against the drag coefficient, indicating that the flow is quasiperiodic. (b) Frequency
spectrum of the lift force. The solid vertical line marks the Strouhal frequency for the
unperturbed cylinder at Re = 100; the dashed vertical lines mark the frequencies outlined
in table 2. The match between these frequencies and the prominent spikes of the spectrum
shows that the results can be generalized to other values of Re. (c) The time history of the lift
force, showing the modulated nature of the flow.

shedding from a fixed cylinder. A simulation of a fixed cylinder at Re = 100 was first
conducted to deduce this frequency, which was found to be fd = 0.1679.

The results of this simulation are shown in figure 8. Figure 8(a) shows the Poincaré
sections of the lift coefficient against the drag coefficient. It appears that, as τ →∞,
the series of points on this plot will trace out a closed curve, indicating that the flow is
quasiperiodic.

Figure 8(b) shows the frequency spectrum of the lift force on the body. A
solid vertical line marks the driving frequency, and dashed vertical lines mark the
frequencies defined in table 2. As for the flows at Re = 175, this series of frequencies
represents the five leading frequencies presented in the lift force signal. Careful
inspection shows that the sixth strongest frequency in the spectrum of figure 8 is
not 3fs − 3fd, as predicted by the model; however, 3fs − 3fd is the seventh strongest,
and is of the same order as the sixth strongest frequency (which is four orders of
magnitude smaller than the leading component). This level of agreement suggests that
the amplitude- and frequency-modulated model proposed, based on data at Re = 175,
is certainly valid at other values of Re, where the flow is two-dimensional.

Figure 8 shows the time history of the lift coefficient. This figure clearly shows the
modulated nature of the flow, and confirms the conclusion drawn from the Poincaré
section of figure 8(a) that the flow is quasiperiodic.

3.6. Synchronization to PN periodic states due to resonance between the vortex shedding
and the driving

The periodic states interleaved with quasiperiodicity, identified in figure 2, arise due
to a synchronization between a subharmonic of the oscillatory driving and the new
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FIGURE 9. The ratio of the driving frequency to the difference between the driving frequency
fd and the new shedding frequency fs, normalized by the driving frequency, 1/(1 − fs/fd), as
a function of A∗. The solid line shows this ratio using the dispersion relation of (3.1) for
fs; the points show this ratio using the peak frequency measured from the data. Plateaus in
the relationship between this ratio and A∗ in the measured data occur when the flow settles
to a PN periodic state, indicating synchronization between the new global vortex shedding
frequency and the driving. When the flow settles to a PN periodic state, this ratio is equal to N.

global vortex shedding frequency. There is more to this than just a simple fortuitous
commensuration of the vortex shedding frequency fs and the driving frequency fd.
The primary response frequency, fs, is shifted from its ‘natural’ value stemming from
the dispersion relation (see § 3.2.2), for a range of A∗ around the value where this
commensuration would occur. This results in small plateaus being formed in the
relationship between fs and A∗. This is illustrated in figure 9, which shows the ratio of
the driving frequency to the difference between the driving frequency and the vortex
shedding frequency. This ratio is then normalized by the driving frequency, to arrive at
1/(1− fs/fd).

The figure shows that, when this normalized ratio is an integer value N, the flow is
synchronized to a PN periodic state. The solid line in figure 9 comes from substituting
the relationship for fs defined in (3.1) into the ratio. The points come from extracting fs

from the data. The figure shows that the points ‘step off’ the curve, so that the ratio
1/(1 − fs/fd) remains an integer value, at values of A∗ where the flow is PN periodic
(this can be verified by referring to figure 2b).

In this paper, PN periodic states for N 6 8 have been identified. The data presented
in figure 9 suggest that an essentially infinite series of states exist, with higher values
of N as A∗ is decreased. It appears that these states will have ever smaller bands of A∗

over which they exist with increasing N, and therefore will be difficult to identify;
their clear description remains an outstanding question.

4. Conclusions
For a cylinder performing inline oscillations at the frequency of vortex shedding

from a stationary cylinder, a new vortex shedding frequency, fs, is generated. This
new vortex shedding process can be interpreted as the result of a wave generator. The
generated waves at fs are phase modulated by the oscillatory driving at the driving
frequency fd. Consideration of this phase-modulated signal can account for the first
three frequencies present in the measured lift force data. The first six frequencies
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can be accounted for by considering this phase-modulated signal also to be amplitude
modulated. It is proposed that this amplitude modulation is due to the modification
of the strength and position of the vortices shed from the body. This frequency-
and amplitude-modulated model not only generates the correct frequencies, but also
provides a measure of their relative strengths that compares well with the measured
data. This model appears to account for the wake dynamics until the subharmonic
mode loses stability at A∗ ' 0.65. The success of this simplified model suggests that it
is applicable at other values of Re, as long as the flow remains two-dimensional.

When the new vortex shedding frequency makes an integer ratio with the driving
frequency, the flow selects a PN periodic state, where N = 1/(1− fs/fd). For amplitudes
close to those where the dispersion relation predicts fs will make this integer ratio, the
flow can synchronize to a PN periodic state. States for N 6 8 have been positively
identified. The wake structure in these PN periodic states can be highly complex, with
large groups of vortices interacting over each repeating cycle.
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