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Geodesic network method for flows between two rough surfaces in contact

F. Plouraboué, F. Flukiger, M. Prat, and P. Crispel
Institut de Mécanique des Fluides de Toulouse, UMR CNRS-INPT/UPS No. 5502 Avenue du Professeur Camille Soula,

31400 Toulouse, France

A discrete network method based on previous asymptotic analysis for computing fluid flows between con-

fined rough surfaces is proposed. This random heterogeneous geodesic network method could be either applied

to surfaces described by a continuous random field or finely discretized on a regular grid. This method tackles

the difficult problem of fluid transport between rough surfaces in close contact. We describe the principle of the

method as well as detail its numerical implementation and performances. Macroscopic conductances are

computed and analyzed far from the geometrical percolation threshold. Numerical results are successfully

compared with the effective medium approximation, the application of which is also studied analytically.

I. INTRODUCTION

When two parallel solid surfaces are brought into close
contact, it is generally impossible to achieve perfect contact.
Surface roughness is generally the cause of this contact mis-
match. The void between those solid surfaces permits the
passage of some fluid �gas or liquid�. Such an apparently
insignificant phenomenon can have dramatic consequences

in many practical applications. An important event which

attracted the attention of a larger audience to tightness issues

was the space shuttle Challenger accident in 1986. A scien-

tific commission was set up by the U.S. president with the

aim of elucidating the origin of this catastrophic event. The

presidential commission headed by Richard Feynman �1�
concluded that a leakage in a seal joint was responsible for

the explosion. The space shuttle joints are generally not com-

posed of the usual polymeric material because of their very

high operating temperatures and pressure. Instead, metallic

solid surfaces are mutually compressed to prevent leakage

�2�. This is nevertheless a difficult technological problem

since a very large number of such seal gaskets with different

mechanical properties are used. Similar sealings problems

arise in other technical contexts such as nuclear plants, ther-

mal exchange systems, and seal process technology in spatial

satellites.

Mechanical engineering and hydrogeology are other con-

texts where fluid flows in between solid surfaces in contact.

In the former, the metal-forming process generally involves

lubricated close contacts between two solid surfaces. The

cold-rolling process is an example where the fluid flow

though “plateaus” necessitates knowledge of the microhy-

drodynamics between two surfaces near the geometrical per-

colation threshold �3�.
In hydrogeology, flows though fractures play important

roles in many rocks of low permeability �4,5�—e.g., in deep

fractured reservoirs where the influence of normal con-

straints affects the permeability of fractures. In many cases,

bulk normal constraints lead to a large number of contact

regions between the solid surfaces, so that the fracture effec-

tive permeability depends drastically on the contact area.

As complicated as the problem appears, it can neverthe-

less be quite simplified if we recall that, in those contexts,

the fluid transport is only coupled with the solid’s mechani-

cal deformation through the aperture field deformations of

the solid surfaces. Usually no back-coupling of the flow

pressure on the solid deformation has to be considered when

the solid surfaces are rocks �except in the case of hydrofrac-

turing processes� or metal surfaces. The latter can thus be

used as input for studying the fluid flow inside the joint as in

�6�. The computation of the fluid flow in such a highly com-

plicated geometry is nevertheless a challenging problem. Di-

rect numerical simulations of three-dimensional Navier-

Stokes equations in complicated random geometries are very

limited �7,8�. In fact, the closer to the geometrical percola-

tion threshold we work, the finer the mesh must be �5�.
Hence, a direct numerical simulation of the flow on a large

percolating random field is definitively out of reach of any

present or even future computer, as will be more precisely

discussed in Sec. II B. The method we put forward tackles

this problem by using previous results �9�. This previous

analysis has permitted a mapping between the transport

problems between continuous random surfaces and a discrete

network built by linking maxima of the aperture field. These

maxima are “pores” through which the flow tries to find a

path. The only possible path between the pores is across

constrictions associated with saddle points of the aperture

field. Similar discrete methods have a long-standing history

in the porous media literature �10–13�. It should nevertheless

be noted that the method proposed in this paper is not a

model but the application of a rigorous asymptotic approxi-

mation of the complete continuous hydrodynamical problem.

Other studies such as �14,15� have also considered related

potential models to tackle continuum percolation problems

mapped onto discrete networks. Weinrib �14� was the first to

propose that a mapping should be associated with the con-

tinuum potential critical points. His study was related to op-

tical problems. It is important to note that such an approxi-

mate description should nevertheless be carefully adapted to

the problem at hand when deciding which mapping is to be

applied at the discrete network level. In this paper different

transport problems such as electrical, thermal, or fluid flows

confined between solid surfaces in close contact are consid-

ered and discussed.
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The paper is organized as follows. Section II introduces

the context and the key steps in the discrete mapping

method. The precise algorithmic implementation of the net-

work geometrical construction is discussed in detail in Sec.

III. Then, macroscopic conductance coefficients are com-

puted and compared with the effective medium approxima-

tion �EMA� in Sec. IV.

II. FROM CONTINUOUS TO DISCRETE GEOMETRY

This section describes how a discrete mapping on a dis-

crete network can be obtained from an asymptotic analysis of

the continuous problem.

A. Short correlated slowly varying surfaces

In the following, we consider sufficiently regular random

surfaces which are at least C
2. This class of random surfaces

may appear restrictive. Nevertheless, it should be borne in

mind that physical multiscaled surface roughness is always

limited within a finite range of scales. Hence, below the

lower cutoff of a multiscale distribution, there should always

be a scale for which the regularity property of the surface

derivative is meaningful. Here, we will furthermore restrict

our point of view to surfaces having finite correlation length.

It should be stressed that although simple, this class of sur-

face can already involve multiscaled structures when perco-

lation transport problems are considered. As will be dis-

cussed in Sec. II B, the long-range correlation of the

percolation cluster increasingly dominates the effective sur-

face for transport as the percolation threshold gets closer.

Hence, we will consider in the following evolving surfaces

for which some short-range correlation random structure is

already present far from the percolation threshold. Let us

define the Cartesian coordinates in three dimensions by

�x1 ,x2 ,x3�.
Let us now consider a stationary random field h�x1 ,x2� for

which the two-point correlation function defined from the

probabilistic averaged �¯�,

C�x1,x2� = ��h�x1�,x2�� − h�x1� − x1,x2� − x2��2� , �1�

depends only on the relative position �x1 ,x2� of the two

points considered. Among stationary random fields, Markov-

ian fields are those for which C�x1 ,x2�→0 at some distance

��x1 ,x2�� greater than some given finite correlation length �,

��x1 ,x2����. The method we present in this paper is suited

to such two-dimensional continuous random fields. Such ob-

jects can be encountered in different problems where the

continuous field h�x1 ,x2� is the local aperture between two

surfaces: first, in a fracture defined as the void space between

two faces of a crack. Even if the cracks have been identified

as long-range correlated surfaces �see, for example, �16��, a

typical correlation length can be found in fractures because

of the relative displacement between the two faces of the

crack �17� or other physicochemical mechanisms �5�. An-

other example of an application where rough surfaces play

an important role, already mentioned in the Introduction, is

the static gasket for preventing leakage in mechanical engi-

neering. In this domain again, many man-made rough sur-

faces have been found to be multiscaled �see, for example,

�18,19�� but with nevertheless well-defined upper and lower

cutoffs. The upper cutoff of such multiscaled roughness de-

fines the characteristic correlation length scale of the surface.

The impact of the multiscale roughness distribution below

this characteristic scale is expected to be small because the

dominant length scale controls the aperture and thus the

transport properties associated with flow between the two

surfaces �see, for example, �17,20��. In the following, a

single, typical length scale associated with a well-defined

correlation length will be considered. Such random surfaces

can be obtained from prescribing a specific Fourier spectrum

�h̃�k1 ,k2��2 of the aperture field h�x1 ,x2�. In the following, we

compute the transport properties of a short-correlated surface

with isotropic Gaussian correlation, for which the power

spectrum is also Gaussian:

�h̃�k1,k2��2 = Ae−�
2�k1

2
+k2

2�. �2�

The amplitude parameter A is directly related to the surface

rms roughness. Let us now discuss some remarkable geo-

metrical properties of slowly varying surfaces.

B. Flow transport in between slowly varying random surfaces

The purpose of this section is to discuss the interest of

critical points of a slowly varying random surface in flow

transport problems. As mentioned in the Introduction, this

paper is concerned with transport properties of flows through

rough surfaces. In this context, the interesting geometrical

random field to consider is the local distance between two

rough surfaces. Let us describe the upper and lower rough

surfaces through their respective surface heights zu�x1 ,x2�
and zl�x1 ,x2�. For simplicity, zl�x1 ,x2� and zu�x1 ,x2� are cen-

tered so that their spatial average is zero—i.e., �zu�= �zl�=0.

We will consider random surfaces with the same statistical

properties as those previously discussed in Sec. II A. As in

several previous works �5,21�, the local aperture field

ha�x1 ,x2� is then simply defined by

h�x1,x2� = zu�x1,x2� − zl�x1,x2� + H ,

ha�x1,x2� = Y�h�x1,x2��h�x1,x2� , �3�

where Y is the Heaviside function and H is a level-set crite-

rion that controls the relative mating of the two surfaces.

Relation �3� is a crude geometrical model for surface defor-

mations due to normal stress compression. Equation �3� de-

scribes a purely plastic deformation and stands as a “first-

order” geometrical approximation of surface confinement.

Once in contact, the upper and lower surfaces do not inter-

penetrate and do not deform. As mentioned in the Introduc-

tion, surface deformations are decoupled from transport

properties. This is because we consider a complete decou-

pling between the hydrodynamic and elastic constraints in

the solid surfaces. This hypothesis is consistent with a large

number of applications, particularly for tightness problems.

Hence the methodological aspects developed in this paper

for computing transport properties are independent of the

deformation model and should remain relevant when elastic



deformation is included as studied in �6�. H could be con-
tinuously varied when compressing one surface onto the
other until the geometrical percolation threshold is reached.
Hence, the closer to the percolation threshold, the more sin-

gular is the aperture field ha.

It should be noted that the spatial variations ha�x1 ,x2�
drastically control the flow path between two confined solid

surfaces. Now it is easy to understand why we only consider

the network of aperture maxima.

The only possible path between maxima crosses constric-

tions associated with saddle points. Hence the geodesic net-

work presented in the previous section is the topological

skeleton of continuous paths linking the pore network. This

skeleton is illustrated in Figs. 1 and 2. Let us first qualita-

tively describe the evolution of the network structure when

the surfaces are forced into close contact. To that purpose let

us first define as “active” links �black lines in Fig. 1�b�� those

associated with nonzero local aperture. Nonactive links are

associated with contact regions where the local aperture is

equal to zero �dotted lines in Fig. 1�a��. Given the total num-

ber of links, Ltot, in the absence of any contact, there is a

smaller number of active links, L�Lc, in the network due to

the contact region forced by nonzero values of the level set

criterion H in Eq. �3�.
For a given critical Hc, the number of active links reaches

a critical value Lc associated with the geometrical percola-

tion threshold from boundary x2=0 to x2=2�. Below this

critical value, there will be no percolating path from x2=0 to

x2=2� on the graph network. Then, the usual parameter to

consider in order to quantify the distance to percolation

threshold is pL= �L−Lc� /Ltot. This parameter is the order pa-

rameter of the percolation transition. When pL=0, the perco-

lation threshold is reached. So the larger the values of pL, the

farther the geometrical percolation threshold. This could be

observed in the network structure represented in Fig. 2. For

values of pL as “large” as 0.25 the network structure looks

reasonably homogeneous, while for values smaller than 0.1

large holes can be observed associated with increasing cor-

relation length of the percolation cluster of the contact re-

gions. It is interesting to note that the contact and noncontact

regions are dual in two dimensions, so that the percolation

threshold for noncontact regions is the same as the one for

contact regions. An increasing correlation between contact

regions thus has a direct impact on the induced increasing

correlation of the active link network, which progressively

smears out the preexisting finite correlation length �. This

geometrical transition from a homogeneous to highly hetero-

geneous network has a direct impact on the transport prop-

erties. This paper further investigates the transition between

the percolation regime and the breakdown of the mean-field

approximation for transport coefficients in Sec. IV.

When considering large-scale transport properties one

needs a large number of correlation lengths along with spa-

tially averaged transport properties. It is then clear that the

numerical representation of such continuous surfaces in-

volves an even larger number of discrete elements. Comput-

ing transport properties over this finely discretized surface

over many correlation lengths rapidly becomes impossible.

A previous analysis �9� has shown that the local aperture

of each saddle point controls the spatial discretization neces-

sary for computing the flow field. The lower the saddle-point

aperture is, the smaller the spatial discretization should be.

Hence tight constrictions associated with a very small

saddle-point local aperture necessitate a challenging number

m of discretization points �as many as m=512 when using a

finite-difference method of resolution for a ratio of aperture

of the order of one-tenth between the saddle point and its

adjacent maxima �9��. These considerations make it clear

that the computational cost makes a direct computation of

the flow unrealistic when the surface considered contains a

large number of correlation lengths. There is nevertheless a

way around this. A previous study �9� estimates the effective

conductance of a continuous bond passing through a saddle-

point between two maxima of the aperture field. This estima-

tion obtained with matched asymptotic expansion provides

an analytical estimate for conductances as a function of the

saddle-point local geometrical properties. This analysis then

permits the mapping of three-dimensional continuous partial

FIG. 1. Schematic representation of the geodesic network. White regions are associated with contacts regions between the two surfaces

where the local aperture is zero, while grey regions are those associated with nonzero aperture regions. Some level sets of the aperture map

are represented with dotted curves in those gray regions. The geodesic network linking maxima is represented with solid black lines, where

the maxima are represented with grey solid circles. The saddle-point position along those geodesic network is represented with triangles. �a�
All the links are represented. Active links are in black, and nonactive links are in grey. �b� Only the active links are represented.



differential problems �i.e., harmonic and Stokes problems�
on a slowly varying spatial aperture field onto the discrete

network of maxima linked with effective conductance bonds.

Here we discuss the scaling of the “discrete mapping”

asymptotic results with the saddle-point geometrical proper-

ties. Let us consider the scalar field �n�x1 ,x2� associated with

flow in between two rough surfaces. The scalar field �n

could be a pressure �n=3�, an electrical potential �n=1�, or a

temperature �n=1�.
The mapping problem then consists in finding the equiva-

lent conductance gn that could account for the local potential

loss ��n between two connected maxima, given the total

flux q that flows between those maxima. More precisely, the

total flux q can be evaluated as the integral of the projection

of the scalar field potential gradient ��n �e.g., the pressure

gradient for n=3� onto the normal to a surface defined at the

saddle point. This surface intersects the saddle point located

at �x1s ,x2s� which connects the two maxima. It is defined by

its normal which is parallel to the eigenvector of the Hessian

matrix whose eigenvalue H+�x1s ,x2s� is positive. Then there

is a linear relation between the flux and potential loss q=

−gn��n /�n, where �n is a physical parameter that depends

on the problem under study; for n=1 it could either be the

inverse of the fluid diffusivity or the inverse of the fluid

electrical conductivity; for n=3 it is the dynamic viscosity of

the fluid. The conductance coefficient gn is then related to the

FIG. 2. Geodesic network for a N2=10242 discrete surface, with N /�=163 for six different values of the level set H of �3�. Associated

values of the parameter pL= �L−Lc� /Ltot are 0.45 in �a�, 0.35 in �b�, 0.25 in �c�, 0.15 in �d�, 0.1 in �e�, and 0 in �f�. The level-set values have

been chosen so that �a� represents the original surface network with all its links, whereas �f� is the extreme case of the network at percolation

threshold. The same conventions as Fig. 1 have been chosen to represent maxima with black circles, while the geodesic network is drawn

with solid black lines.



local geometrical properties of the saddle point by the fol-

lowing relation �the result �56� of Ref. �9� should have been

written in its dimensional formulation�:

gn = cn	 H+�x1s,x2s�

− H−�x1s,x2s�
hn�x1s,x2s� , �4�

where H+�x1s ,x2s� and H−�x1s ,x2s� are the positive and nega-

tive Hessian eigenvalues at the saddle point and cn is a con-

stant coefficient. The eigenvalues H+ and H− are also the

inverse of the positive and negative radii of curvature at the

saddle point from relation �A5�. In the following, all the

surfaces considered are normalized with root-mean-square

�rms� roughness 	 equal to 1. This is equivalent to nondi-

mensionalizing the local conductances gn by 	n. Thus the

results associated with the macroscopic conductances Gn are

also nondimensionalized by 	n. The scaling obtained in re-

lation �4� can be obtained with simple arguments. First, the

dependence on the nth power of the local aperture field hn

can be simply derived from the previously mentioned lubri-

cation results that the local conductance already scales as hn.

The dependence on the square root of the radius of the cur-

vature ratio also derives from this lubrication approximation

property. It is worth noting that the effective conductance

could be expressed as the composition of parallel resistance

integrated along the flow trajectories. In the vicinity of the

saddle point, these trajectories are locally parallel to the Hes-

sian positive eigenvector direction. Let us call this direction

x+. Because the potential drop is mainly controlled by rapid

variations localized in the vicinity of the saddle point, the

total conductance along one trajectory can be approximated

by the composition of conductances in series along x+.

Hence, integrating along all trajectories will introduce an-

other composition of parallel conductances along the x− di-

rection. Hence a formal evaluation of gn without explicitly

considering its prefactor is

gn 
� dx−

1

� dx+

1

hn�x+,x−�

. �5�

Now since, in the vicinity of the saddle point, the aperture

field has a quadratic shape, it can be approximated by

h�x+,x−� � h�x1s,x2s� +
1

2
H+�x1s,x2s�x+

2

+
1

2
H−�x1s,x2s�x−

2 + ¯ . �6�

Rescaling x+ as x+�=x+ /	H+ and x− as x−�=x− /	−H− then, one

easily find from �5� and �6� that gn
	−H+ /H−. Hence each

scaling obtained in Eq. �4� can be found from simple argu-

ments. The computation of the prefactor cn is much more

difficult and necessitates the use of matching asymptotic

techniques. It was found in �9� that c1=2/3 and c3=1/14.

The asymptotic validity of �5� was checked numerically in

�9�. To that purpose, the small parameter which is the ratio

between the saddle-point aperture and the local radius of

curvature at the saddle point was systematically varied.

More precisely defining this small parameter as

	h�x1s ,x2s�H+�x1s ,x2s�, Eq. �4� is the lowest-order estimate

of the conductance in the asymptotic expansion involving

this small parameter.

Surprisingly, it was found in �9� that the validity range of

the proposed asymptotic approximation was quite broad.

Equation �4� gives a reasonable estimate �to within 20%� of

the conductance for values of the small parameter as large 3

in the case n=3. The case n=1 is less favorable; still, the

value of the small parameter could be as large as 1 for a 20%

estimate, as obtained in �9� from numerical computation.

We have now described how the mapping of continuous

transport problems on critical points of the aperture field

could be obtained. Let us now discuss how the discrete map-

ping is related to geometrical properties of slowly varying

random surfaces.

C. Principles of the geodesic network method

To map the continuous transport problem onto a discrete

network, it is first interesting to consider the critical points of

the surfaces. For any of these critical points, one can easily

retrieve maxima, minima, and saddle points. Each of these is

found from the property of the local Hessian matrix Hij

=�ij
2 h at each critical point. The saddle points are those where

the determinant of the Hessian matrix is negative: det H

�0. Maxima are the points where det H
0 and the trace of

the Hessian matrix is negative, Tr H�0, while minima are

those for which det H
0 and Tr H
0. Among these ex-

trema, saddle points play a particular role in the flow trans-

port as discussed in Sec. III B. From the geometrical point of

view, saddle points are interesting for they are points which

connect the shortest paths along the surface linking one

maximum to another. Starting from one extremum to reach

another one, the surface geodesics thus cross one saddle

point. Hence, this property also occurs for the shortest paths

linking minima which are orthogonal to geodesics of the

maxima at each saddle point. We will not consider the mini-

ma’s geodesic in the following, for reasons that will become

obvious in the next section. We will rather concentrate on the

construction of the geodesic network of the maxima. Two

maxima are considered “connected” if a geodesic links them

to the same saddle point. Figure 1 illustrates this connection

between maxima through saddle points on a spatially slowly

varying surface. Geodesics are simpler to compute on slowly

varying surfaces than in the general case for they coincide

with steepest descent or steepest ascent path as shown in the

Appendix. We now briefly discuss the numerical implemen-

tation of this discrete mapping method.

III. NUMERICAL IMPLEMENTATION

This section focuses on the numerical implementation of

the method whose theoretical basis was discussed in the pre-

vious section. Different algorithmic choices are possible. We

tried to find a compromise between computational efficiency,

robustness, and simplicity. The implementation of the

method for the computation of macroscopic transport con-

ductances follows different steps.



First critical points need to be found. From these, the

maximum geodesic network must be computed in order to

find the bounds between maxima. Boundary conditions are

then applied to this biperiodic two-dimensional network. For

that purpose, maxima linked with each boundary should be

identified. Then, for each level set H controlling the aperture

field �3� one needs to extract the percolating connected com-

ponent of the network discrete graph. The part of the graph

which is disconnected from the percolating component does

not contribute to the flow transport. It is thus discarded. We

describe each of these steps in the following. Before giving a

more detailed description of the algorithmic implementation,

let us first add some important remarks. Numerically, one has

to discretize the field h�x1 ,x2� obtained from computing the

inverse Fourier transform of h̃�k1 ,k2� defined in �2� on a

�0,2��� �0,2�� domain. Then we choose a ratio between

the typical correlation length � and the chosen discretization.

The robustness of the following algorithm drastically de-

pends on this discretization and on the precision required to

define saddle points. Some numerical estimates indicate that

a spatial discretization larger than six points per correlation

length in the spectral representation gives a 10−8 relative er-

ror on the critical point positions. This level of discretization

is implicitly considered in the following, while not being

restrictive. Some of the algorithmic parameters have never-

theless to be adapted to this arbitrary discretization. Let us

now discuss the different steps in more detail.

A. Aperture field generation and critical point determination

We use relation �2� to numerically generate surfaces as

described in �22�. The prescription of a suitable Hermitic

discretized complex field h̃�i , j� with i=1,N1, j=1,N2 in

Fourier space imposes a real discretized biperiodic field

h�i , j� in direct space.

Then, the discrete field h�i , j� being defined, it is a classi-

cal and nontrivial algorithmic problem to extract its critical

points. We chose a multigrid algorithm coupled with a clas-

sical Newton-Picard method to identify critical points. First,

fast-Fourier-transform techniques were used to compute the

vector gradient �h�i , j� and Hessian matrix Hi,j fields of the

discrete random field h�i , j� on the Cartesian equispaced grid

�i , j�. When needed on arbitrary points �x1 ,x2� in the plane,

any field can be interpolated with an arbitrary polynomial

precision. We set quadratic interpolation degrees by default.

Higher-order contributions of the polynomial order could be

increased if the Newton method research failed after some

arbitrary number of steps �which is chosen equal to 80�. Af-

ter convergence, the polynomial interpolation could also be

increased during a new search if the required precision is not

reached. Nevertheless, in view of the first discretization

level, the required precision is always obtained with low in-

terpolation order. The total number of extrema, ne, is directly

proportional to the chosen discretization, ne�N1N2, up to a

prefactor that depends on the chosen correlation length �.

The ratio N1N2 /ne is exactly equal to m2, the gain on dis-

cretization when the network is used instead of the original

surface. This ratio depends on the original discretization

level as well as on the correlation length. For reasonable

discretization levels, it reaches two orders of magnitude. It

will be shown in the following that this is of considerable

importance for the flow computation.

B. Connecting critical points

Critical point characteristics are easily obtained from the

determinant and trace of the Hessian matrix H, as already

mentioned in Sec. II C. The connection between maxima of

the field h is obtained from the computation of geodesics

starting from each saddle point. This computation is

achieved with a steepest ascent method starting from each

saddle point. The convergence criterion to this maximum is

the same as the one used with the Newton search for critical

points. Nevertheless, when the step size becomes too small,

the algorithm switches from the steepest ascent method to

the previous Newton search. This method provides very

good results for linking saddle points to their corresponding

maxima. The maximum-saddle-maximum triplet will be

called a link in the following. Considering the list of all

maxima, the computation of a new link connection will re-

quire a search over the whole list of maxima. The cost of this

search can be greatly reduced by using a bucket sort to struc-

ture the list of maxima into a coarse bucket grid.

C. From continuous to discrete boundary conditions

Once the network is built, one has to map the continuous

problem boundary conditions onto the discrete network. Be-

low, Dirichlet and periodic boundary conditions are consid-

ered. The x1 direction has periodic boundary conditions,

while constant Dirichlet potential boundary conditions are

applied along x2 at x2=0 and x2=2�. The network con-

structed using the previously described method is biperiodic.

It thus necessitates some modifications to take into account

the Dirichlet boundary condition of the potential in the x2

direction. Each periodized link crossing the lines x2=0 and

x2=2� has to be considered. For each of these crossing links,

we need to find the “inside” and “outside” maxima. This is

done by considering that the outside maximum is the one for

which the x2 coordinate needs to be periodized. At this point,

the inside maximum is assigned to the boundary under con-

sideration �i.e., x2=0 or x2=2�� while the outside maximum

is assigned to the other boundary �i.e., x2=2� or x2=0�.
Hence, for each link crossing the boundary, two new links

are created, and the crossing link is suppressed from the link

list.

D. Graph operations on percolating clusters

The subsections above have discussed the network con-

struction. This section gives a detailed presentation of the

operation needed on the discrete graph network to be able to

compute the flow transport onto the topological skeleton of

the aperture network. These procedures are related to the

topology of the graph, while approaching the percolation

threshold.

One first needs to extract the connected component of the

graph network. This is achieved with a deep search algorithm



implemented following classical methods �23�.
The second step of graph operations is related to the iden-

tification of percolating and nonpercolating connected com-

ponents. The geometrical percolation criterion of the topo-

logical skeleton is slightly different from the continuous

aperture field. In the latter, the geometrical percolation is

defined by finding any continuous path from the x2=0 to the

x2=2� boundaries. When a discrete representation h�i , j� of

the aperture field is considered, this percolation criterion is

defined on site percolation along nonzero values of the Car-

tesian grid h�i , j�. Now, transposing the geometrical percola-

tion criterion onto the topological skeleton, one needs to con-

sider bound percolation along the graph links which permits

a path from x2=0 to x2=2� to be found inside the graph.

This procedure is applied for each imposed level-set criterion

H until no path can be found for a threshold value Hc. A

dichotomy iterative procedure on the level-set value H is

used to find the critical Hc. Once again, a deep search algo-

rithm was implemented to achieve this purpose.

Since they do not contribute to the transport properties,

the dead ends of each percolating connected component

could have been suppressed. This task is nevertheless unnec-

essary because dead ends do not represent a large proportion

of the network links; nor do they complicate the flow trans-

port problem. On the contrary, the suppression of dead ends

from the graph is technically involved �see, for example,

�24�� and rather expensive algorithmically.

E. Solving the linear system for the potential computation

In Sec. III D we extracted the connected components of

percolating clusters. The links that are related to boundaries

x2=0 and x2=2� are also known from Sec. III C, as a sub-

class of the percolating components sets. This subclass has

now to be extracted from the link sets so that Dirichlet

boundary conditions can be applied. More precisely the po-

tential �n has to be imposed so that �n�x1 ,0�=0 and

�n�x1 ,2��=1. The corresponding set of boundary links can

then be used to construct the right-hand side of the linear

system for computing the potential. On the left-hand side, the

rigidity matrix is built up from the sets of interior links using

a classical Kirchoff conservation law at each node �25�. The

use of compact storage for the memory allocation of the

sparse rigidity matrix makes for very low memory costs for

solving the linear system. A generalized minimal residual

method preconditioned by a partial LU decomposition was

chosen for the inversion of the linear system. This iterative

method has been compared with a direct method near the

percolation threshold. The comparison is useful, because the

rigidity matrix is extremely ill conditioned, and it might hap-

pen that the convergence accuracy could be poor. It turns out

that we did not find out any difference in the results up to the

computer’s double-precision digits.

These numerical procedures allow the computation of the

hydraulic conductances of joints having a large number N of

correlation lengths in each �x ,y� direction. The computa-

tional cost of the procedure has been drastically reduced so

that many statistical averages can be performed over the ob-

tained results on a monoprocessor PC. The following section

illustrates some of the numerical results obtained and their

analysis, far from the percolation threshold.

IV. ANALYSIS OF TRANSPORT PROPERTIES FAR

FROM THE PERCOLATION THRESHOLD

This section investigates the macroscopic conductances

by the numerical method described in the previous sections.

We first describe the effective medium approximation and its

use for computing macroscopic conductances. We then dis-

cuss the comparison between this approximation and direct

numerical computations. We finally consider an analytical

approximation of the EMA approach for the hydraulic effec-

tive conductance G3.

A. Mean-field EMA

The EMA literature for scalar problems in heterogeneous

media is very rich. We refer to �26� for a good recent over-

view of this topic. Our interest in the present paper is to

apply such a method to the problem of conductances be-

tween two surfaces. As will be seen, this is an original prob-

lem for which new results can be established. The main point

is to find good approximations for the effective macroscopic

conductances, which will be denoted Gn in the following

with n=1 or n=3. These macroscopic effective conductances

are associated with the discrete bound network of aperture

maxima described in the previous section. Along this discrete

bound network, local conductances are defined through �4�.
Hence, one can compute the set of all local conductances


gn�, averaged over different realizations, with the associated

probability density function �PDF� p�gn�. Given the network

mean coordinance number z, the EMA then proposes an in-

tegral equation formulation for the effective macroscopic

conductances Gn:

�
0


 gn − Gn

gn + ZGn

p�gn�dgn = 0, �7�

where the coefficient Z is related to the averaged coordinance

number z by the simple relation Z=z /2−1. This formula is

written in the limit of an infinite aperture field h�x1 ,x2�.
Hence, the value of Z should be evaluated on an infinite

surface. This is obviously not possible in practice because

physical objects have a finite number of correlation lengths.

A good approximation is thus to compute z for a large but

finite number of correlation lengths. Numerical estimates are

given the values in Table I.

TABLE I. Averaged coordinance number z versus the total num-

ber of correlation length along each direction x1 and x2 of the sur-

face. The averaged ratio of total link number at the percolation

threshold Lc over the total number of links Ltot is also given.

N /� 40.7 81.5 163 326

z 3.63 3.80 3.89 3.94

Z=z /2−1 0.82 0.90 0.95 0.97

Lc /Ltot 0.5177 0.5110 0.5046 0.5011



The statistical fluctuations associated with the averaged
results of Table I are lower than the given number of digits.
The PDF p�gn� distribution associated with the local conduc-

tances describes both “active” links �black lines on Fig.

1�b��, for which the local aperture is nonzero, and “nonac-

tive” ones associated with contact regions with zero local

aperture �grey lines in Fig. 1�a��. Given the total number of

links, Ltot, and the total number of active links, L, the PDF

can be decomposed, so that

p�gn� = �1 − Fa���0� + Fapa�gn� , �8�

where Fa=L /Ltot denotes the fraction of active links whose

PDF distribution is pa�gn�. Using Eq. �8� to describe the re-

lation between the macroscopic conductance and the PDF

distribution of active links in Eq. �7� it is easy to find that

�
0


 gn − Gn

gn + ZGn

pa�gn�dgn =
�1 − Fa�

ZFa

. �9�

Far from the percolation threshold, this relation should give a

good approximation of the macroscopic conductance. It is

therefore an interesting approximation to compare with di-

rect numerical computations obtained from the method de-

scribed in the previous section. This method nevertheless

requires knowledge of the active link PDF pa�gn�. This PDF

can be computed numerically over a large number of local

conductances obtained from relation �4�. Let us first discuss

the numerical evaluation of EMA macroscopic conductances.

B. Numerical evaluation of the EMA and comparison

with numerical computations

The results of the numerical computation of the local con-

ductance PDF distribution pa�g1� associated with the case n

=1 is represented in Fig. 3. As the level set H is increased,

the active link number L is decreased and the control param-

eter pL= �L−Lc� /Ltot tends to 0. The smaller pL, the more the

local conductance distribution peaks near zero. This is obvi-

ous since the number of local conductances near the contact

regions is maximal at the percolation threshold. Neverthe-

less, there is no divergence of the PDF as g1→0+. On the

contrary, when the PDF distribution pa�g3� associated with

the case n=3 represented in Fig. 6�a�, is below, considered

the local hydraulic conductance distribution diverges when

approaching zero. A bilogarithmic representation of this PDF

shows that this divergence is algebraic, with a well-defined

exponent over more than four decades. There is apparently a

very weak dependence of this algebraic behavior on the con-

trol parameter pL, while a secondary peak in the distribution

nevertheless appears far from the percolation threshold. This

power law distribution can be understood from relation �4�.
The local conductance is related to the local aperture h to the

power n. The Hessian eigenvalue ratio modifies this conduc-

tance value but should always remains of order 1 �9�. More-

over, the Hessian eigenvalue ratio does not change when

surfaces are brought into contact using model �3�. Hence the

main features of the conductance PDF are due to its hn de-

pendence. We have empirically verified that suppressing the

Hessian eigenvalue ratio term in the computation of the local

conductances affects neither its PDF nor the EMA computa-

tion for the effective conductances. Hence, in the following,

we will rather concentrate on the dependence of the conduc-

tance PDF on the local aperture term. From �4�, the relation

FIG. 3. PDF of the local conductances pa�g1� computed numeri-

cally for different values of the link percolation threshold pL= �L
−Lc� /Ltot.

FIG. 4. PDF of the local conductances pa�g3� computed numerically for different values of the link percolation threshold pL= �L
−Lc� /Ltot. Same conventions as Fig. 3 for different values of pL=0: solid black curve; 0.15, dash-dotted back curve; 0.3, dash-dotted gray

curve; 0.45, solid gray curve �a� usual coordinates, �b� bilogarithmic representation, and �c� bilogarithmic representation of pa�g3�g3
2/3 versus

g3.



between the conductance PDF and the local aperture PDF is

found to be pa�gn�
 ph�h��dh /dgn�, so that

pa�gn� 
 gn
−�n−1�/n

ph�gn
1/n� . �10�

Hence, in the case n=1, there is no singular behavior of the

PDF conductance as g1→0+, while in the case n=3, the local

conductance diverges algebraically such that pa�g3�
g3
−2/3.

This property is closely related to the one examined in �15�,
for which the local conductance has a power law divergence

as gn→0. This scaling is investigated in the PDF histograms

in Fig. 4�c�. Figure 4�c� confirms that the scaling is relevant

for a large range of decades over the smallest values of the

local conductances. Hence a reasonable approximation for

the hydraulic conductance PDF over a wide range of scales

should be written in the simple form

pa�g3� � Cg3
−2/3. �11�

The constant C depends on the control parameter pL—i.e.,

the distance to the percolation threshold. As expected, nu-

merical computations showed a linear relation between C

and pL. The coefficients of these linear relations are slightly

dependent on the system size. In order to further investigate

this observation, the number of correlation lengths in each

direction of the system was varied from N /�=81.5 to N /�

=326 to look for changes in the local distributions as shown

in Figs. 3 and 4 for which N /�=81.5. Very few differences

were noticed. In both n=1 and n=3 cases, each PDF con-

ductance preserved the same generic properties. The impact

of finite-size numerical effects on the numerical computation

only slightly affected the coefficients of the linear relation

C�PL�. In the following we will denote this linear relation by

C�PL� = aPL + b . �12�

The numerical evaluation of those coefficients gives a

=6.32 and b=−9.06.

The numerical computation of conductances PDF pa�gn�
allowed the macroscopic conductances Gn to be computed by

applying relation �9� for different values of the control pa-

rameter PL. This computation was carried out using a simple

trapezoidal rule for the integration. Different histogram bin-

nings were tested to investigate the impact of the numerical

integration on the result. The relative error obtained was be-

low 1%. These results were compared with direct numerical

computation using the method described in Sec. III. The re-

FIG. 5. Effective conductance G1 computed numerically for different values of the link’s percolation threshold pL= �L−Lc� /Ltot. Finite-

size effects are tested either on direct numerical computation or on EMA computation. Hence, solid lines refer to N /�=40.5 while dot-dashed

lines refer to N /�=81.5, the number of correlation lengths. Triangular symbols refers to the EMA while square symbols are associated with

direct computation. �a� Usual coordinates and �b� bilogarithmic representation,

FIG. 6. �Color online� Effective hydraulic conductance G3 computed numerically for different values of the link percolation threshold

pL= �L−Lc� /Ltot. Finite-size effects are investigated either with direct numerical computation �grey curves� or EMA computation �black

curves�. Solid lines with square symbols refer to N /�=163 and N=1024 while dashed lines with triangular symbols refer to N /�=81.5 and

N=512 and dotted lines with circle symbols to N /�=40.7 and N=256. �a� Usual coordinates, �b� bilogarithmic representation, and �c�
bilogarithmic representation for only N /�=163 and N=1024.



sults of the direct numerical computation were averaged over

a large number of realizations, the number of which never-

theless depends on the system size N �typically from a thou-

sand for N=256 to a few tens for N=2048�. The size of the

points represented in Figs. 5–7 were chosen larger than the

error bars coming from the statistical fluctuations associated

with the average.

The comparison showed a very good agreement between

both computations far from the percolation threshold. In the

case n=1 illustrated in Fig. 5�a�, the comparison indicates

that the EMA gives better than 15% precision in the effective

conductance far from the percolation threshold. It is also

interesting to examine where the breakdown of the EMA

arises in the vicinity of the percolation threshold. It can be

observed in Fig. 5�b� that this breakdown occurs for param-

eter values PL smaller than 0.1 in the case n=1. Finite-size

effects are moreover observed in this case when changing the

number of correlation lengths in each direction from N /�

=40.7 to N /�=81.5. Nevertheless, the impact of finite-size

effects does not affect the good comparison between direct

numerical computation and EMA results far from the perco-

lation threshold. In both cases, it can be seen in Fig. 5�b� that

the breakdown of the EMA occurs for the same value PL

=0.1. This difference between EMA and direct simulations

far from the percolation threshold drops down to 5% in the

case n=3 as illustrated in Fig. 6�a�. Finite-size effects are

nevertheless more important, as illustrated in Figs. 6�a�–6�c�.
Far from percolation threshold, the influence of finite-size

effects is illustrated in Fig. 6�a�. Although the difference be-

tween direct numerical simulation and EMA drops to 5% for

N /�=163 correlation lengths, it can rise to 30% for N /�

=81.5. The impact of finite-size effects on the breakdown

criteria of the EMA can also be observed in Fig. 6�c�, where

the critical value for PL varies from 0.05 to 0.1 when N /�

varies from 81.5 to 163. These results indicate that the EMA

gives a good approximation over quite a large range of area

surface fractions of contact, in the limit of a large number of

correlation lengths in the system.

Let us now find an analytical expression for approximat-

ing the effective conductances.

C. Analytical approximation of the EMA

In this subsection we seek an analytical expression for the

effective hydraulic conductance obtained from the EMA. It

would be interesting to find an analytical estimate in order to

propose a general expression that could be more easily used

on related problems. Such an analytical approximation is not

possible in the n=1 case. In this case, the integral formula-

tion �9� does not admit any asymptotic approximation, since

it is not dominated by the simple behavior of the local con-

ductance PDF p�g1�. More precisely, the integral �9� diverges

logarithmically with its lower bound. An asymptotic expres-

sion of the integral as a function of the lower bound can be

found but the contribution of the upper bound cannot be

neglected. It turns out that no closed form can be found for

G1 as a function of the lower and upper bounds in that case.

In contrast, in the case n=3, the simple behavior of the

local conductance PDF p�g3� expressed in relation �11�
dominates the left-hand-side integral of relation �9�. The

lower and upper integral bounds should nevertheless be

equal to 0 and 1/ �3C�3, so that PDF �11� is normalized on

this interval. Using those integral bounds and �11� in the

left-hand-side integral of relation �9� leads to an implicit and

cumbersome relation that relates the effective conductances

G3 to C ,Z and obviously Fa=L /Ltot:

3X�1/Fa − 1 − Z�

�1 + Z�
=

1

2
ln�1 −

3X

�1 + X�2� − 	3 arctan�2X − 1

	3
�

−
�	3

6
, �13�

where 1/X=3C�ZG3�1/3. This relation can be further simpli-

fied by using the fact that the effective conductance G3 is

always quite small—i.e., G3�1—whatever value of the con-

trol parameter Fa=L /Ltot�1 is. Thus, we seek an asymptotic

expansion of relation �13� as X�1. Keeping with O�1/X2�
and discarding O�1/X4�, the right-hand side of Eq. �13� can

be expanded to give

3X�1/Fa − 1 − Z�

�1 + Z�
=

1

2
�−

3

X
+

3

2X2� − 	3��

2
−

	3

2X
−

	3

4X2�
−

�	3

6
. �14�

From Eq. �14�, it can be seen that the root of the following

cubic equation gives an approximate expression for the ef-

fective conductance:

FIG. 7. Comparison between the hydraulic ef-

fective conductances G3 versus pL= �L−Lc� /Ltot

obtained from EMA numerical computation �dot-

dashed line� and analytical expression �16�
�square symbol linked with the solid line�. �a�
Usual coordinates and �b� bilogarithmic

representation.



X3
3�1/Fa − 1 − Z�

1 + Z
+ X2

2�

	3
−

3

2
= 0. �15�

An explicit solution for X and thus for G3 can be obtained by

computing the smallest positive root of this cubic equation.

This leads to the following explicit analytical expression:

G3 = −
81	3�1/Fa − 1 − Z�3

8�3C3�1 + Z�3Z�1 + cos��/3� + sin��/3��3
,

G3 = −
81	3�1/�PL + Lc/Ltot� − 1 − Z�3

8�3C3�1 + Z�3Z�1 + cos��/3� + sin��/3��3
, �16�

where �=arccos��2187	3/8z2�3��1/Fa−1−Z�2−1�. More-

over, the constant Lc /Ltot reaches an asymptotic value of 1 /2

�see Table I� for a system of infinite size and the constant C

is given in Eq. �12�. The comparison of this analytical ex-

pression with the numerical evaluation of the EMA obtained

in the previous section is displayed in Fig. 7 with respect to

the control parameter PL. The maximal relative error found

by varying the control parameter PL from 10−1 to 0.45 is

smaller than 2%. Hence, Eq. �16� is a useful expression to

consider for approximating the EMA results.

V. CONCLUSION

This paper has proposed a method for computing fluid

flows in between random rough surfaces in contact. The

method is based on mapping the continuous transport equa-

tions onto the discrete network of the aperture’s maxima pre-

viously proposed in �9�. This mapping allows the local dis-

crete conductances between maxima to be computed as a

function of the saddle-point geometrical properties. A nu-

merical implementation of this method has been proposed.

The computation gain for computing the effective macro-

scopic conductances turns out to be of major importance.

The efficiency of this random heterogeneous geodesic net-

work method has allowed the computation of the averaged

macroscopic conductances associated with thermal, electrical

n=1, or fluid n=3 transport. In every case, the macroscopic

results have been compared with the mean-field EMA

method. Far from the percolation threshold, the comparison

turns out to be very good, leading to a 15% difference for

n=1 to as low as 5% for n=3. This method thus enables a

thoughtful analysis of the transport properties of tightly

mated surfaces. It would be useful to analyze the transport

properties near the geometrical percolation threshold.
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APPENDIX: GEODESIC NETWORK OF CRITICAL

POINTS ON SLOWLY VARYING ROUGH SURFACES

This appendix shows how the curvature tensor defined on

every point of a smooth C
2 surface can be approximated by

the Hessian matrix. From this approximation, it is shown

how to construct the geodesic network linking all critical

points by following steepest descent path along the surface.

Smooth short-correlated surfaces have well-defined criti-

cal points where the surface height gradient vanishes. More

precisely let us first briefly discuss the properties of surfaces

having slow variations in the �x1 ,x2� horizontal directions

associated with a small parameter �. Any point defined by its

vector position x= �x1 ,x2 ,x3� in three dimensions and located

on a slowly varying surface S defined as x3=h��x1 ,�x2� has

coordinates x= �x1 ,x2 ,h�. Critical points are those for which

� �h

�x1

,
�h

�x2

� = �0,0� . �A1�

It is now interesting to introduce slowly varying coordinates

�X1=�x1, X2=�x2� so that the surface variations are now ex-

pressed directly by x3=h�X1 ,X2�. Let us denote the partial

derivative � /�Xi with respect to the slow Cartesian coordi-

nate Xi, �i, with i=1,2, and let us define �h= ��1h ,�2h�.
Condition �A1� can now be expressed by

�h = ��1h,�2h� =
1

�
� �h

�x1

,
�h

�x2

� = �0,0� . �A2�

It is easy to see that, for a slowly varying surface, the local

curvature tensor coincides with the surface Hessian. Let us

define the tangent vector to the surface by ��1x�x1

= �1,0 ,��1h�, �2x�x2= �0,1 ,��2h��. The outward-oriented

normal n to the surface then reads

n =
x1 � x2

�x1 � x2�
=

1

	1 + �2
� h2

���1h,��2h,1� ,

n = ���1h,��2h,1� + O��2� , �A3�

where � denotes the vector product between two vectors in

three dimensions. The curvature tensor b is then defined in

its two-covariant form as �see, for example, �27��

bij = − xi · n j with i = �1,2�, j = �1,2� , �A4�

where · denotes the scalar product between two vectors in

three dimensions and n j is �n /�X j, j=1,2. Using �A3� the

curvature tensor given in �A4� can easily be computed up to

O��2� terms as

bij = − ��ij
2
h = − �Hij . �A5�

Hence, in this case, the principal curvature directions associ-

ated with the eigenvectors of the curvature tensor are always

locally tangent to the Hessian eigenvectors. It is now easy to

realise that, self-consistently, the steepest ascent path from

one saddle point to its adjacent maximum will follow a geo-

desic of the smooth surface. The trajectory of any point

along the surface is parametrized by time t. The steepest



ascent path along the surface is defined for any surface points

by the local variation d�x1 ,x2� /dt=��h. The parameter t can

be prescribed to be equal to the third coordinate x3 along the

surface. Steepest ascent trajectories thus satisfy dx /dt

= ���h ,1� in three dimensions, which from �A3�,
leads to dx /dt=n neglecting O��2� terms. Hence the

tangent kinematic vector along the steepest ascent

trajectory is always parallel to the surface normal. This is

precisely the definition of a geodesic. Hence, steepest ascent

trajectories are surface geodesics on slowly varying smooth

surfaces. This property is used in Sec. III B to compute the

geodesic network linking all maxima of the surface.
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