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Abstract

Questions: The high competitiveness of exotic invasive species has often been

demonstrated, but usually with respect to native species known to have low

competitive ability. Considering five exotic and five native riparian species with

close characteristics regarding competitive ability, habitat and growth form, we

addressed the following questions: (i) do the selected invasive plants produce

more biomass than the selected native dominants under competitive pressure;

and (ii) are the selected invasive species better competitors than the selected

native dominants?

Location: Common garden experiment at the Henri Gaussen Botanical Garden,

Toulouse, France.

Methods: We selected five native dominant species and five exotic invasive

species co-occurring along a riparian successional gradient of the middle

Garonne River (SW France). Young plants of each species were planted in pots

in ten intra- and 17 inter-specific combinations in conditions of high water and

nutrient availability. To simulate the effects of hydrological disturbance during

earlier growth stages, a partial cutting of plants was applied 6 weeks after plant-

ing. We measured above-ground and below-ground biomass of individuals of

each species after 6 mo of growth.

Results: There were large disparities among species performances, regardless of

whether the species were exotic or native. The exotic species produced more

above-ground and below-ground biomass than the natives species for 73% of

the selected species pairs. The exotic species had higher competitive ability than

the native species, mainly related to the high competitive effect of I. glandulifera.

The two species with the highest biomass production and competitive ability

were invasive exotics, whereas the two species with the lowest were dominant

natives.

Conclusions: Our results predict that competition among young individuals

could play a major role for the invasion success of the studied exotic species in

European riparian areas.

Introduction

Plants represent the majority of known introduced organ-

isms (Pimentel et al. 2007; DAISIE 2010). More than

30 000 plant species have been introduced worldwide

(Pimentel et al. 2007), and regional data show that they

can represent up to 50% of the flora in islands and 30% in

continental areas (Myers & Bazely 2003). More than 6000

terrestrial plants have been introduced into Europe, with

at least several tens becoming invasive (DAISIE 2010) and

about 16 new species introduced every year (Py�sek et al.

2009). The invasive success of some introduced plants and

their ecological impacts on both native communities and

ecosystem functioning depend on plant biological traits,

environmental characteristics of the receptive area and

biological interactions with native organisms (see Catford

et al. 2008; Ehrenfeld 2010 for a review). Moreover, a syn-

thesis of pair-wise competition experiments showed that



exotic invasive species have generally stronger competition

effects on native species than vice versa (Vil�a & Weiner

2004).

Surprisingly, studies comparing competitive abilities of

exotic and native plants have mainly focused on native

species that are intrinsically sensitive to competition (e.g.

Gerry & Wilson 1995; Callaway & Aschehoug 2000), or

rare or endemic species potentially threatened by the inva-

sion (Aplet & Laven 1993; Huenneke & Thompson 1994).

In contrast, exotic species in such studies were selected as

invasive from biological traits that promote potential com-

petitive success and invasiveness, e.g. high vegetative mul-

tiplication, high nutrient use efficiency and high growth

rate (Py�sek & Richardson 2007). Thus, most previous stud-

ies compared the competitive abilities of dominant vs non-

dominant species instead of native vs introduced species,

and evidence that introduced invasive species are better

competitors than dominant natives remains scarce (but see

Hovick et al. 2011). Houlahan & Findlay (2004) showed

that wetland exotic species were no more likely to domi-

nate than wetland native species. Besides, comparisons of

biological traits between dominant natives and invasive

exotics show that they both share similar biological traits

(Thompson et al. 1995; Smith & Knapp 2001). Recently a

meta-analysis (Van Kleunen et al. 2010) highlighted that

exotic invasive species do not have distinguishable fitness,

size, growth rate, shoot allocation, leaf area allocation or

physiology to native species that are known to be invasive

elsewhere. Thus, native dominant species could have as

high competitive ability as introduced invasives and there-

foremight resist invasion pressure.

Riparian areas are intensively colonized by exotic spe-

cies, some of them becoming invasive (Hood & Naiman

2000). In riparian areas plant competitive interactions are

constrained by hydrological disturbances and stress (floods

and drought), the intensity and frequency of which

decrease along the river–floodplain gradient (Malanson

1993; Biswas &Mallik 2010). Thus plant development and

competition pressure remain limited in highly disturbed

habitats. Such hydrological constraints usually induce the

selection of stress-tolerant or ruderal species characterizing

an early successional stage (Naiman & D�ecamps 1997).

Conversely, competition leads to more constraints to plant

development in later successional stages (Naiman &

D�ecamps 1997). Besides, young plants of any successional

stage usually form dense stands in riparian areas (e.g. Bar-

soum 2002; Taylor 2009) and are likely to be exposed to

disturbance events having strong physical effects. A higher

productivity, a competitive advantage and a higher resil-

ience toward disturbance at these early development

stages can thus be decisive properties for further invasion

success.

The main objective of this paper is to determine the bio-

mass production and competitive ability of young riparian

plants that are either dominant natives or invasive exotics.

We compared five exotic invasive and five native domi-

nant plant species selected along disturbance and succes-

sional gradients in riparian areas of the middle Garonne

River (SW France). A pot experiment was conducted, test-

ing inter-specific competitive abilities of 27 pairs of the

selected species, based on biomass measurement (Keddy

et al. 2002). In order to simulate the effects of hydrological

disturbance on young riparian plants, we applied a physi-

cal disturbance. We addressed the following questions:

(i) do the selected invasive plants produce more biomass

than the selected native dominants under competitive

pressure; and (ii) are the selected invasive species better

competitors than the selected native dominants?

Table 1. Mortality recorded in the experiment. The number of deaths is

accumulated across all replicates. Only species that have a total number of

deaths above zero are represented for the intra-specific combinations.

Grey shading indicates the highest number of deaths. Plant shoot axes

were cut 3 weeks before mortality monitoring in June. Note that in intra-

specific combinations there were four individuals from the same species in

a pot, whereas in inter-specific combinations there were two.

Combinations Species No. of

deaths

in June

No. of

deaths

after June

Total no.

of deaths

Intra-specific

Agrostis stolonifera AGR 0 0 4

Paspalum distichum PAS 4 0 4

Rubus caesius RUB 0 0 0

Fallopia japonica FAL 0 0 0

Populus nigra POP 4 3 7

Buddleja davidii BUD 2 0 2

Urtica dioica URT 0 0 0

Impatiens glandulifera IMP 12 2 14

Salix alba SAL 4 6 10

Acer negundo ACE 2 4 6

Inter-specific

FAL-IMP IMP 9 1 10

URT-IMP IMP 6 0 6

SAL-IMP SAL 3 2 5

IMP-ACE IMP 3 1 4

SAL-IMP IMP 3 1 4

URT-ACE ACE 2 0 2

POP-SAL POP 1 0 1

POP-ACE POP 3 3 6

SAL-ACE SAL 2 2 4

URT-SAL SAL 3 4 7

POP-BUD POP 1 3 4

POP-FAL POP 1 3 4

POP-URT POP 1 2 3

POP-SAL SAL 1 2 3

IMP-ACE ACE 1 1 2

AGR-PAS PAS 0 2 2

SAL-FAL SAL 0 1 1



Methods

Selected species

Among ca. 700 plant species present in riparian areas of the

middle Garonne River (SW France), we selected five exotic

invasive and five native dominant plant species of different

growth forms (herbaceous vs woody) along the succes-

sional gradient (Fig. 1). We chose the exotic and native

species according to their high co-occurrence frequency at

both regional (river stretch) and local (plot) scales (data-

base from Tabacchi & Planty-Tabacchi 2005). Each selected

native species is dominant at and characteristic of a given

successional stage. Species origin was designated as exotic

or native in the context of their status in Europe.

Studied species are presented below, dominant natives

first, and from early to more mature successional stages.

Agrostis stolonifera L. (creeping bentgrass, herbaceous) is a

perennial grass that colonizes highly disturbed river gravel

–sand bars but can also be found in the understorey of

damp pioneer riparian forests. Rubus caesius L. (European

dewberry, woody) is a deciduous bramble of disturbed

riparian habitats and riparian forest margins. Populus nigra

L. (black poplar, woody) is a deciduous riparian tree form-

ing pioneer riparian forests. Urtica dioica L. (stinging nettle,

herbaceous) is a perennial herbaceous species usually

found in the understorey of white willow stands (Salix alba

L., woody), a deciduous tree forming damp and nutrient-

rich pioneer and post-pioneer riparian forests. Invasive

dynamics of populations have been reported in other con-

tinents for A. stolonifera (Gremmen et al. 1998), P. nigra

(USDA 2010), U. dioica (USDA 2010) and S. alba (Mills

et al. 1996).

All exotics used in the experiment are neophytes and

are recognized as highly invasive in Europe (DAISIE

2010). Paspalum distichum L. (water couch grass, herba-

ceous) is a perennial grass that colonizes highly disturbed

and winter-flooded areas on river gravel–sand bars.

Fallopia japonica (Houtt.) Ronse Decr. (giant knotweed,

herbaceous) is a giant herbaceous perennial of disturbed

riparian or wasteland habitats. Buddleja davidii Franch.

(butterfly bush, woody) is a semi-deciduous shrub

occupying disturbed riparian habitats and the margins of

pioneer riparian forests. Impatiens glandulifera Royle

(Himalayan balsam, herbaceous) is a tall annual species

found in the understorye of damp riparian forests. Acer neg-

undo L. (boxelder, woody) is a deciduous tree forming

damp post-pioneer riparian forests.

Experimental design andmeasures

We estimated biomass production of exotic and native

plant species in intra- and inter- specific interaction, dur-

ing an outdoor experiment conducted in the Henri Gaus-

sen Botanical Garden in Toulouse (SW France), starting

in the middle of April 2008. We studied ten intra-specific

(i.e. monocultures) and 17 inter-specific (i.e. mixtures of

two species) combinations. We considered all the possible

intra-specific combinations, but took into account only

the most probable inters-pecific ones, based on field

co-occurrence data (cf. selected species, Tabacchi & Plan-

ty-Tabacchi 2005). We planted four individuals in 10-L

pots whatever the combination: four individuals from the

same species for intra-specific combinations and two indi-

viduals from each of the two species for inter-specific

combination (15 replicate blocks for a total of 405 pots;

Fig. 1). We filled pots with a mix of 1:1 compost (Proven

substrate NF U44-551, BAS Van Buuren; NO3-N:

42 mg�kg�1; NH4-N: 9 mg�kg�1; PO4-P: 750 mg�kg�1)

and river sand (0–2 mm). Each pot received 2 L of water

per day from a drip system as soon as individuals were

planted and 20 g of slow-release fertilizer (Osmocote

exact high K 5-6M, Scotts; 11% N, 11% P2O5, 18% K2O,

1.5% MgO) at the beginning of June to ensure nutrient

supply until the end of the experiment.

One week before planting, we took individual plants

from a natural riparian area of the Garonne River (stream

order six) located downstream from the confluence with

the Ari�ege River and upstream from the city of Toulouse

(43°31′36.96″N, 1°25′38.24″E, 147 m a.s.l.). Individuals

consisted of: (i) seedlings from the previous year (spring or

autumn 2007) for A. negundo, B. davidii, P. nigra and

S. alba; (ii) rhizomes with three nodes (6–7 cm) for

A. stolonifera, F. japonica, P. distichum, R. caesius and

U. dioica; and (iii) seedlings from the current year for

I. glandulifera. We replaced each dead individual during

Fig. 1. Distribution of exotic (normal) and native (bold) species along the

gradients of hydrological disturbance and successional stage of maturity

in the riparian area. Full species names correspond to coded species name

given Table 1. Flood limit corresponds to 1- to 3-yr frequency of flooding.



the first week following the planting to ensure that mortal-

ity observed during the experiment was not due to trans-

plantation stress.

Six weeks after the beginning of planting (mid-May),

we cut each shoot axis of each individual just above the

third node to simulate biomass destruction of young plants

by hydrological disturbance. We recorded mortality of

individuals at the beginning of each month during the

experiment (May, June July, August, September and

October). As the competitive pressure was modified, we

excluded the related pots from biomass measurements

(Resource S1). We stopped the experiment during the sec-

ond week of October, before the beginning of leaf senes-

cence. We collected the above-ground and below-ground

parts of all of the four individuals in each pot. We treated

together individuals of the same species because of the dif-

ficulty in disentangling their respective below-ground

parts. We gently rinsed the below-ground parts to remove

substrate particles. Above-ground and below-ground parts

were weighed to the nearest 0.01 g after drying at 105°C
until constant weight.

Data analysis

We systematically used individual mean biomass per pot

and per species for the statistical analyses. We assessed the

effect of species identity and species growth form on

above-ground and below-ground biomasses among

monocultures with analyses of variance (ANOVA). We used

replicate blocks as random factors to take variability in

outdoor environmental conditions into account. We spe-

cies identity and species growth form were fixed factors.

We considered species identity as a fixed factor because

the studied species were selected on precise ecological cri-

teria and in a determined geographic area and were not

used as a random sample of a larger population (Doncaster

& Davey 2007). We nested species effect in species growth

form. When ANOVA indicated a significant general effect,

we performed post-hoc Tukey’s pair-wise comparisons. A

similar analysis was made on data from mixture combina-

tions.

For each replicate block, we expressed above-ground

and below-ground biomass of species in mixtures as pro-

portions of the above-ground and below-ground biomass

of each species in monocultures. This competition index,

called relative yield (RY), gives a simple evaluation of the

competitive effect of one species on another (Weigelt &

Jolliffe 2003):

RY ¼ ðbiomass in mixtureÞ=ðbiomass in monocultureÞ

AnRY of 1 indicates similar competitive effects inmono-

culture and mixture, an RY below 1 indicates a higher

competitive effect in the monoculture than in the mixture

and an RY above 1 indicates a higher competitive effect in

the mixture than in the monoculture. To test whether

mean RY differed significantly from 1, we assessed

whether the 95% bootstrap confidence interval of mean

RY did not overlap 1 based on 1000 iterations (Diciccio &

Efron 1996). For the bootstrap confidence intervals of exo-

tic, native, herbaceous and woody species groups, boot-

strap resampling was done among both species and blocks

andwithin each group.

We log-transformed above-ground biomass and below-

ground biomass to approach the normality and homogene-

ity of variance assumptions. Because the sample sizes were

unequal we used the type II sum of squares in the ANOVAs

(Doncaster & Davey 2007). All the analyses were per-

formed with Statistica (v. 6.0; Statsoft, Tulsa, OK, US).

Results

Mortality

No mortality in any of the clonal species, A. stolonifera,

F. japonica, R. caesius and U. dioica, occurred, except P. dis-

tichum (Table 1). The highest mortality was recorded for

the annual I. glandulifera, with more deaths recorded in

June. The highest mortalities recorded after June were for

S. alba and P. nigra.

Biomass production performances

Overall, herbaceous species produced at least 1.4-fold

more above-ground and below-ground biomass than

woody species (Resource S3 and 4; P < 0.001) in monocul-

tures and in mixtures. The biomass differences between

herbaceous and woody species was three-fold larger in

mixture than inmonoculture.

There were strong above-ground and below-ground

biomass production differences among species inmonocul-

tures (Fig. 2a, Resource S3). I. glandulifera and B davidii

produced up to 42- and to 24.5-fold, respectively, higher

above-ground biomass than all the other species (post-hoc

Tukey tests, P < 0.05). Conversely, P. nigra and S. alba

produced lower above-ground biomass than all the other

species (P < 0.05). The highest below-ground biomass was

produced in F. japonica and U. dioica because of rhizome

production, whereas P. nigra and S. alba had, respectively,

31- and 17-fold lower below-ground biomass than the

other species (P < 0.05). These species-specific differences

lead to a higher mean above-ground and below-ground

biomass production for exotic species (exotics: 37.0 � 4.2,

18.9 � 1.7; natives: 16.8 � 1.6, 12.0 � 1.7 for above-

ground and below-ground biomass, respectively). In mix-

tures, inter-specific variation in above-ground and below-

ground biomass production was also high (Fig. 2b,



Resource S4). The same overall species-specific differences

in biomass production were observed in bothmixtures and

monocultures (see above). In addition, Table 2 shows that

in eight of 11 (i.e. 73%) of the native–exotic mixtures, exo-

tic species produced more above-ground and below-

ground biomass than native species.

Inter-specific competition effects

The RYs for biomass varied according to competitor origin

(Fig. 3a), competitor growth form (Fig. 3b) and competitor

identity (Fig. 3c). Competition between exotic and native

species induced RYs below 1 (Fig. 3a). In particular, com-

petition with exotic species significantly decreased the

native above-ground and below-ground biomass by 24%

on average (both RY = 0.76). Competition with herba-

ceous species induced RYs, below 1, and thus a decrease in

the above-ground and below-ground biomass of both her-

baceous and woody species (Fig. 3b). These effects were

larger for the woody species. In contrast, woody competi-

tors allowed an RY above 1, which equates to an increase

in both the above-ground and below-ground biomass of

herbaceous species.

Competition with I. glandulifera, U. dioica, B. davidii,

A. stolonifera, R. caesius and F. japonica induced RYs below

1 for above-ground and below-ground biomass of species,

indicating a decrease of these biomasses (Fig. 3c). Overall,

the annual I. glandulifera had the strongest competitive

effect and induced a mean decrease of at least 75% of

above-ground (RY = 0.15 � 0.02) and below-ground

(RY = 0.23 � 0.04) biomass of other species. U. dioica and

B. davidii induced a mean decrease of, respectively, 50%

and 30% in above-ground and below-ground biomass of

other species. A. stolonifera and R. caesius induced a

decrease of 50% of only above-ground biomass. Con-

versely, competition with P. distichum, S. alba, A. negundo

and P. nigra induced RYs above 1 and thus an increase of

both above-ground and below-ground biomass of species.

These effects were up to 30% and significant for P. nigra

and A. negundo. According to Fig. 3c, exotic species dis-

played higher competitive ability in four on 11 pairs of spe-

cies, whereas native species displayed higher competitive

ability in two on 11 pairs. For five on 11 species pairs, boot-

strap confidence intervals overlap, at least partially.

Table 2. Mean above-ground (A) and below-ground (B) biomass (�SE)

produced by species in native–exotic mixtures. Grey highlighted rows:

combinations where the exotic species produced more biomass than the

native species.

Combination Biomass of

species 1 (g)

Biomass of

species 2 (g)Species 1 Species 2

(A)

AGR PAS 18.1 � 2.3 11.4 � 1.3

RUB BUD 7.9 � 1.1 27.3 � 3.4

POP ACE 0.5 � 0.1 11.4 � 1.8

POP BUD 1.0 � 0.1 48.8 � 6.2

POP FAL 1.0 � 0.2 24.9 � 2.0

URT ACE 34.2 � 3.9 0.3 � 0.0

URT FAL 25.7 � 2.4 4.5 � 0.6

URT IMP 5.3 � 0.5 54.9 � 5.8

SAL ACE 2.1 � 0.6 10.8 � 2.1

SAL FAL 0.6 � 0.1 14.0 � 2.2

SAL IMP 0.6 � 0.1 49.1 � 5.5

(B)

AGR PAS 7.7 � 1.3 4.5 � 0.5

RUB BUD 4.6 � 0.8 12.2 � 1.9

POP ACE 0.3 � 0.1 5.9 � 1.0

POP BUD 0.5 � 0.1 13.1 � 2.0

POP FAL 0.7 � 0.1 54.1 � 3.5

URT ACE 38.9 � 4.8 0.2 � 0.0

URT FAL 31.4 � 3.5 12.2 � 2.3

URT IMP 8.0 � 0.8 11.7 � 2.1

SAL ACE 0.7 � 0.2 7.8 � 1.6

SAL FAL 0.5 � 0.1 29.9 � 3.5

SAL IMP 0.4 � 0.1 9.5 � 1.3

(a)

(b)

Fig. 2. Above-ground (above the x-axis) and below-ground (below the y-

axis) biomass (mean + SE) of the ten selected species in monocultures

(a) and mixtures (b). Identical letters denote no statistical differences

(post-hoc Tukey tests, P < 0.05).



Discussion

Disparities among species

While the selected herbaceous species overall produced

higher biomass than the selected woody species, the two

species with the highest above-ground biomass production

in both intra- and inter-specific competition were the

annual invasive I. glandulifera and the woody invasive

B. davidii. The best competitor in our studywas also I. glan-

dulifera. This should be viewed in the context of an experi-

mental design using young plants. It is possible that

perennial herbaceous species (including U. dioica) will

become better competitors after several growing seasons.

However, this result points to a rare case of annual herba-

ceous species able to outcompete perennial herbaceous

species, and especially U. dioica (Tickner et al. 2001). It is

even more surprising as I. glandulifera was also the most

sensitive to disturbance. Not surprisingly, the high compet-

itive ability of I. glandulifera is related to high physiological

performance compared with other exotic invasive or co-

occurring native species: high specific leaf area (SLA)

(Andrews et al. 2009), high leaf nutrient content (Beerling

& Perrins 1993) and high growth rate (Prach 1994).

Despite I. glandulifera having high competitive ability,

modification of the recipient riparian communities seems

to be negligible until I. glandulifera cover reaches 40% (He-

Fig. 3. Mean competition effect (� 95% bootstrap confidence interval) on individual biomass according to origin (exotic vs native; (a), growth form

(herbaceous vs woody; (b) and identity of competitors (c). E, exotic species; N, native species; H, herbaceous species; W, woody species; grey circles,

competition effect of exotic species; white circles, competition effect of native species. Competitive effect is expressed as mean relative yield (RY, see

Methods for calculation details). Panel C shows mean RYs for all individuals when in competion with species (for full names of coded species, see Fig. 1).

Competition effects are considered as significant when 95% confidence intervals onmean RYs do not exceed 1.



jda et al. 2009). The habitats highly invaded displayed

lower species richness than the non-invaded habitats (Hul-

me & Bremner 2006). However, seed dispersion through

ballochory induces a small displacement of I. gandulifera

populations over the years and could allow initial commu-

nity recovery from the seed bank. Finally, the sensitivity of

the species to physical disturbance is indicated by its high

mortality just after cutting in the experiment, and suggests

that its population could be easily regulated.

The high production of B. davidii is also related to high

physiological performance compared with other exotic

invasive or co-occurring native species: high specific leaf

area (SLA) (Cornelissen 1996), high photosynthetic nitro-

gen use efficiency (Feng et al. 2007) and high leaf nutrient

content (Feng et al. 2007). In agreement with this, the

competitive ability of B. davidii were high and its effects

were particularly strong on P. nigra (data not shown). This

confirms the results obtained by Smale (1990), who

showed that B. davidii development on gravel bars quickly

displaced pioneer herbaceous andwoody species.

In contrast to I. glandulifera and B. davidii, P. nigra and

S. alba had the lowest biomass produced, and yet these

two keystone riparian species are known to be fast-grow-

ing woody pioneers (Brzeziecki & Kienast 1994). We

hoped to provide optimal growth conditions for the spe-

cies, but some abiotic factors are difficult to control, e.g.

insufficient incident light, can reduce the production of

P. nigra and S. alba. Moreover, while we did not note indi-

ces of herbivory on the seedlings, biotic factors, e.g. patho-

gens, could also have reduced P. nigra and S. alba vitality

and could explain their low growth and high mortality.

However, in accordance with our results and despite the

growth potential of these two species, Saccone et al.

(2010) showed that growth of S. alba and P. nigra cuttings

was as much affected by herb layer competition as A. neg-

undo seedlings. Moreover, in our study, S. alba and P. nigra

suffered the highest mortality after June, probably due to

competition. The combination of physical effects of distur-

bance and intra- and inter-specific competition seems thus

having significantly reduced the performance of young

S. alba and P. nigra.

The only exotic species that produced significantly lower

shoot biomass than at least one native species in intra-spe-

cific competition was the perennial herbaceous F. japonica.

This result is surprising since F. japonica is considered the

tallest and most productive herbaceous species in Europe

(Beerling et al. 1994). In addition, the effect of F. japonica

on shoot biomass production of its competitors is not sig-

nificant in our study, whereas this species has been found

to outcompete herbaceous species and trees smaller than

2-m tall in the field (Bimova et al. 2004; Aguilera et al.

2010). Twomain and not exclusive hypotheses can be pro-

posed. First, F. japonica competition could be less effective

on dominant native species than on non-dominant ones.

Second, our results could also be related to the choice of

young individuals for the experiment. As the modification

of native communities by Fallopia sp. competition ismainly

light-driven (Siemens & Blossey 2007), the competition

effect could be effective only after several years of growth,

when rhizomes are able to accumulate reserves and

increase above-ground biomass production. Despite its low

production, F. japonica appears to be insensitive to physical

disturbance in this experiment.

The best native competitors are A. stolonifera, U. dioica

and R. caesius. Among them, only U. dioica induced signifi-

cantly less biomass of both above-ground and below-

ground parts for the species that competes with. This con-

firms its ruderal ecological status and its strong competitive

strategy (Grime et al. 2007). Such results suggest that this

native species could, at least, persist in invaded stands, as

already observed in the field (Bimova et al. 2004).

Overall species performances

Overall species performances in production and competi-

tion according to species origin are difficult to interpret

because of the large variability among these two species

groups. However, exotic species had higher biomass pro-

duction in 73%of the species pairs and invasive exotic spe-

cies displayed higher competitive ability than dominant

natives, mainly related to the high competitive effect of

I. glandulifera. Higher biomass production and superior

competitive performance for exotic invasive grasses and

tree seedlings compared with natives have been reported

in many species-specific studies (e.g. Nernberg & Dale

1997; Ehrenfeld et al. 2001), and confirmed in the meta-

analyses of Vil�a & Weiner (2004) and Vil�a et al. (2011).

However, such results were mainly supported by compari-

sons with native species known to be excluded by the

invasive species in the field, and thus already identified as

having lower biological performance (Huenneke &

Thompson 1994; Gerry &Wilson 1995; Callaway & Asche-

houg 2000). In this study, among the selected species, exo-

tic invasives seem to have higher performance than native

dominants.

According to the review of Daehler (2003), the result of

competition studies comparing exotic and native species

strongly depends on the environmental conditions main-

tained during the experiments. In many studies, exotic

species appeared to be better competitors only in high-

nutrient conditions (e.g. Herron et al. 2001) or with high

water availability (Smith & Brock 1996). Similarly, David-

son et al. (2011) showed, in a meta-analysis, that native

species recorded a smaller decline in fitness than invasive

exotics when resources are limited or conditions stressful.

Our experimental conditions of high nutrient and water



availability and the application of an early physical distur-

bance were chosen to mimic the overall riparian environ-

mental conditions for young plants.

Implications for the invasion process and riparian

ecosystems

According our results, the observed replacement of P. nigra

by B. davidii (Tallent-Halsell & Watt 2009) and U. dioica by

I. glandulifera (Beerling & Perrins 1993) along some Euro-

pean riparian areas could be explained by the early com-

petitive superiority of the considered exotic invasive

species. In addition, the selected herbaceous species are

more competitive than the selected woody species, espe-

cially tree seedlings. Such competition effects have been

the focus of several studies that highlighted an inhibition

of exotic tree seedling development by native grasses (e.g.

Facelli & Pickett 1991; Gordon & Rice 2000), or the reduc-

tion of native tree regeneration by competition with exotic

grasses (e.g. Miller et al. 2010; Ortega-Pieck et al. 2011).

In our study, both exotic and native grasses had a negative

effect on the biomass production of exotic and native tree

seedlings. While such conclusions from young individuals

do not prejudge the competitive abilities of adults, the

results have strong ecological implications, through the

modulation of resistance to the invasion process in the

context of riparian plant succession.

Dominant plant species, whether native or invasive

exotic, strongly modulate species interactions and com-

munity composition (Hillebrand et al. 2008). Invasive

species are considered more deleterious to communities

than dominant natives, although evidence for this is rare

(but see Hovick et al. 2011). In our study, the higher com-

petitive ability of the selected invasive exotics during ear-

lier stages of development suggest that they could

increase the competitive pressure and decrease the com-

munity diversity when they replace dominant natives. In

turn, the high competitive ability of some dominant

native species also raises the question of the diversity of

their associated community. For example, some studies

mention large and almost monospecific stands of well-

developed U. dioica along riparian corridors (e.g. Taylor

2009), comparable to monospecific stands of invasive exo-

tic species. Even if better competitors, the selected inva-

sive exotics could thus have low effects on species

diversity of communities previously dominated by highly-

competitive natives (e.g. Houlahan & Findlay 2004; Hejda

et al. 2009).
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