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Abstract. We give an extension of the theory of relaxation of variational
integrals in classical Sobolev spaces to the setting of metric Sobolev spaces.
More precisely, we establish a general framework to deal with the problem of
finding an integral representation for “relaxed” variational functionals of vari-
ational integrals of the calculus of variations in the setting of metric measure
spaces. We prove integral representation theorems, both in the convex and
non-convex case, which extend and complete previous results in the setting
of euclidean measure spaces to the setting of metric measure spaces. We also
show that these integral representation theorems can be applied in the setting
of Cheeger-Keith’s differentiable structure.

1. Introduction

Let (X, d, µ) be a metric measure space, where (X, d) is a separable and compact
metric space and µ is a positive Radon measure on X . Let p ∈]1,∞[ be a real
number and let {Lx} be a field of Carathéodory integrands over X (see the be-
gining of §2.2 for more details) assumed to be both p-coercive, see (2.12), and of
p-polynomial growth, see (2.13). Let m ≥ 1 be an integer and let O(X) be the
class of all open subsets of X . In this paper, we are concerned with the prob-
lem of finding an integral representation for the “relaxed” variational functional
E : W 1,p

µ (X ;Rm) ×O(X) → [0,∞] given by

E(u;A) := inf

{
lim
n→∞

∫

A

Lx(∇un(x))dµ(x) : A(X ;Rm) ∋ un → u in Lp
µ(X ;Rm)

}
,

where A(X ;Rm) := [A(X)]m, with A(X) a subalgebra of the algebra of all contin-
uous functions from X to R, which contains the constants and enough cut-off func-
tions (see the begining of §2.1 for more details), and the operator ∇, from A(X ;Rm)
to L∞

µ (X ;RN) with N ≥ 1 an integer, is a gradient over A(X ;Rm), see (2.4). For
example, A(X) can be the algebra of all restrictions to the closure of a bounded
open subset of RN of C1-functions from R

N to R or, more generally, the algebra
of all Lipschitz functions from X to R (see Remark 2.1). The (µ, p)-Sobolev space
W 1,p

µ (X ;Rm) with respect to the metric measure space (X, d, µ) is defined as the
completion of A(X ;Rm) with respect to the norm ‖u‖Lp

µ(X;Rm)+‖∇µu‖Lp
µ(X;Mm×N ),

where M
m×N is the space of all m×N matrices and ∇µ, called the µ-gradient, is

obtained from ∇ by projection over a suitable “normal space” to µ (see §2.1 for
more details).

Key words and phrases. Relaxation, variational integral, Sobolev spaces with respect to a
metric measure space, integral representation, quasiconvexification with respect to a measure,
differentiable structure for metric measure spaces.
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The present paper is a first attempt to establish a general framework to deal with
the problem of representing E in the setting of metric measure spaces having in
mind applications to hyperelasticity. In fact, the interest of considering a general
measure is that its support can modeled a hyperelastic structure together with
its singularities like for example thin dimensions, corners, junctions, etc. Such
mechanical singular objects naturally lead to develop calculus of variations with
metric Sobolev spaces.
In this paper, we find under which conditions the “relaxed” variational functional
E has an integral representation of the form

(1.1) E(u;A) =

∫

A

Lx(∇µu(x))dµ(x)

for all u ∈ W 1,p
µ (X ;Rm) and all A ∈ O(X) with Lx : Tm

µ (x) → [0,∞], where

Tm
µ (x) is the m-tangent space to µ at x, i.e., M

m×N = Tm
µ (x) ⊕⊥ Nm

µ (x) with
Nm

µ (x) being the m-normal space to µ at x mentioned above. We also find a

representation formula for Lx.
In the setting of euclidean measure spaces, i.e., when X is the closure of a bounded
open subset of RN , such representation problems was studied, in the one hand, in
the convex case in [BBS97, AHM03, CPZ03, AHM04], and, on the other hand, in the
non-convex case in [Man00, Man05] when µ is a “superficial” measure restricted
to a smooth manifold. Note also that the study of the lower semicontinuity of
variational integrals of type (1.1) was treated in [Fra03] (see also [Moc05]). In the
present paper we prove the following two main integral representation results which
extend and complete these previous works to the setting of metric measure spaces
both in the convex and non-convex case.
Firstly, in the convex case, i.e., when the functions L̂x : Tm

µ (x) → [0,∞] given by

L̂x(ξ) := inf
ζ∈Nm

µ (x)
Lx(ξ + ζ)

are convex, we prove that (1.1) holds with Lx = L̂x (see Theorem 2.14). Secondly,

in the non-convex case, i.e., when the functions L̂x are not necessarily convex, we
prove, under suitable conditions on the metric measure space (X, d, µ) and the
(µ, p)-Sobolev space W 1,p

µ (X ;Rm), see (C0), (C1), (C2), (A1), (A2) and (A3) in

§2.2.2, that (1.1) holds with Lx = QµLx, where QµLx : Tm
µ (x) → [0,∞] is given by

QµLx(ξ) := lim
ρ→0

inf

{
−

∫

Qρ(x)

L̂y(ξ + ∇µw(y))dµ(y) : w ∈ W
1,p
µ,0 (Qρ(x);Rm)

}
,

where W
1,p
µ,0 (Qρ(x);Rm) is the closure of A0(Qρ(x);Rm) with respect to the W 1,p

µ -

norm with A0(Qρ(x);Rm) := {u ∈ A(X ;Rm) : u = 0 on X \Qρ(x)} and Qρ(x) is
the open ball centered at x ∈ X with radius ρ > 0 (see Theorem 2.21). According
to the classical theory of relaxation, we can say that this formula plays the role
of the classical Dacorogna’s quasiconvexification formula in the euclidean Lebesgue
setting (see [Dac08] for more details). It is then natural to call {QµLx} the µ-
quasiconvexification (or the quasiconvexification with respect to µ) of {Lx}.

The plan of the paper is as follows. In §2.1, Sobolev spaces with respect to a
metric measure space are introduced by using the notion of “normal and tangent
space” to a measure as developped in [BBS97, §2], [AHM03, §7] and [Man05, §2]
(see also [Zhi96, Zhi00]) in the setting of euclidean measure spaces. In §2.2, we



state the main results of the paper, i.e., Theorem 2.14 in §2.2.1 for the convex
case and Theorems 2.16, 2.19 and 2.21 in §2.2.2 for the non-convex case. These
theorems can be applied in the setting of euclidean measure spaces mentioned
above, but also in that of (non-euclidean) metric measure spaces endowed with
Cheeger-Keith’s differentiable structure (see §2.3, Corollaries 2.27 and 2.29) whose
examples are Carnot groups, glued spaces, Laakso spaces, Bourdon-Pajot spaces
and Gromov-Hausdorff limit spaces (see [Che99, HK00, Gro07] and the references
therein). In Section 3, we recall two results, i.e., an interchange theorem of infimum
and integral, see Theorem 3.5, and De Giorgi-Letta’s lemma, see Lemma 3.6, that
we use in Section 4 to prove the main results of the paper. The interchange theorem
is the principal ingredient in the proof of Proposition 2.11 in §4.1, which is used, in
the one hand, to prove Theorem 2.14 in §4.2, and, in the other hand, to establish,
together with De Giorgi’s slicing method, a more useful “relaxed” formula for the
variational functional E, see Lemma 4.8 (see also Lemma 4.5). De Giorgi-Letta’s
lemma combined with De Giorgi’s slicing method are the essential tools in the
proof of Theorem 2.16 in §4.3. Theorem 2.21 is established in §4.5 by using again
De Giorgi’s slicing method together with Theorem 2.19 whose proof, given in §4.4,
is adapted from [BFM98, Lemmas 3.3 and 3.5] and uses Lemma 4.8 and Theorem
2.16.

Some basic notation. The open and closed balls centered at x ∈ X with radius
ρ > 0 are denoted by:

• Qρ(x) :=
{
y ∈ X : d(x, y) < ρ

}
;

• Qρ(x) :=
{
y ∈ X : d(x, y) ≤ ρ

}
.

For x ∈ X and ρ > 0 we set

∂Qρ(x) := Qρ(x) \Qρ(x) =
{
y ∈ X : d(x, y) = ρ

}
.

For A ⊂ X and ε > 0 we set:

• A−(ε) :=
{
x ∈ X : dist(x,A) ≤ ε

}
;

• A+(ε) :=
{
x ∈ X : dist(x,A) ≥ ε

}
,

where dist(x,A) := inf
a∈A

d(x, a). The symbol −

∫
stands for the mean-value integral

−

∫

B

fdµ =
1

µ(B)

∫

B

fdµ.

2. Main results

2.1. Sobolev spaces with respect to a metric measure space. Let (X, d) be
a separable and compact metric space and let µ be a positive Radon measure on
X . Let C(X) be the algebra of all continuous functions from X to R and let A(X)
be a subalgebra of C(X) such that 1 ∈ A(X). We assume that A(X) satisfies the
Uryshon property, i.e., for every K ⊂ V ⊂ X with K compact and V open, there
exists ϕ ∈ A(X) such that ϕ(x) ∈ [0, 1] for all x ∈ X, ϕ(x) = 0 for all x ∈ X \ V
and ϕ(x) = 1 for all x ∈ K. Such a function ϕ ∈ A(X) is called a Uryshon function
for the pair (X \ V,K).



Remark 2.1. For (X, d) ≡ (Ω, | · − · |) where Ω is a bounded open subset of R
N

and | · | is the norm in R
N , the set C1(Ω) (of all restrictions to Ω of C1-functions

from R
N to R with compact support) is a subalgebra of C(Ω) which contains 1

and satisfies the Uryshon property. More generally, the set Lip(X) of all Lipschitz
functions from X to R is a subalgebra of C(X) containing 1 and verifying the
Uryshon property.

Denote the class of all subsets K of X such that either K = Ai(ε), with A an
open subset of X , ε > 0 and i ∈ {−,+}, or K = Qρ(x), with x ∈ X , ρ > 0 and

µ(∂Qρ(x)) = 0, by K(X). Let N ≥ 1 be an integer and let D : A(X) → L∞
µ (X ;RN)

be a linear operator such that:

D(fg) = fDg + gDf for all f, g ∈ A(X);(2.1)

for every f ∈ A(X), every K ∈ K(X) and every c ∈ R,(2.2)

if f(x) = c for all x ∈ K then Df(x) = 0 for µ-a.a. x ∈ K.

Let m ≥ 1 be an integer, let M
m×N be the space of all real m × N matrices,

let A(X ;Rm) := [A(X)]m and let ∇ : A(X ;Rm) → L∞
µ (X ;Mm×N) be the linear

operator given by

(2.3) ∇u :=




Du1

...
Dum


 with u = (u1, · · · , um).

Taking (2.1) into account it is easy to see that

∇(fu) = f∇u + Df ⊗ u for all u ∈ A(X ;Rm) and all f ∈ A(X).(2.4)

(Note that ∇ ≡ D when m = 1.) For each u ∈ A(X ;Rm), set

(2.5) Am
u :=

{
v ∈ A(X ;Rm) : v(x) = u(x) for all x ∈ supp(µ)

}
,

where supp(µ) denotes the support of the measure µ, i.e., supp(µ) is the smallest
closed set F ⊂ X such that µ(X \ F ) = 0, and consider Hm

u defined by

Hm
u :=

{
w ∈ L∞

µ (X ;Mm×N ) : w(x) = ∇v(x) for µ-a.a. x ∈ X with v ∈ Am
u

}
.

(Note that Am
u ≡ [A1

u]m and Hm
u ≡ [H1

u]m.) Noticing that Hm
0 (which corresponds

to Hm
u with u = 0) is a linear subspace of L∞

µ (X ;Mm×N ), for µ-a.e. x ∈ X , we

introduce Nm
µ (x) ⊂ M

m×N given by

Nm
µ (x) :=

{
w(x) : w ∈ Hm

0

}
.

Remark 2.2. In fact, Nm
µ (x) = {∇v(x) : v ∈ Am

0 } for µ-a.a. x ∈ A, where
Am

0 corresponds to Am
u with u = 0. The sets Hm

u will be useful in the proof of
Proposition 2.11 in §4.1.

Then, for µ-a.e. x ∈ X , Nm
µ (x) is a linear subspace of M

m×N that we call the

m-normal space to µ at x. For µ-a.e. x ∈ X , the linear subspace Tm
µ (x) of Mm×N

given by M
m×N = Tm

µ (x) ⊕⊥ Nm
µ (x) is called the m-tangent space to µ at x and

the orthogonal projection on Tm
µ (x) is denoted by Pm

µ (x) : Mm×N → Tm
µ (x). (Note

that Nm
µ (x) ≡ [N1

µ(x)]m and Tm
µ (x) ≡ [T 1

µ(x)]m.)



Taking (2.4) and (2.2) into account we see that the linear operator ∇µ : A(X ;Rm) →
L∞
µ (X ;Mm×N ) defined, for µ-a.e. x ∈ X , by

(2.6) ∇µu(x) := Pm
µ (x)(∇u(x)) =




P 1
µ(x)(Du1(x))

...
P 1
µ(x)(Dum(x))


with u = (u1, · · · , um)

satisfies the following properties:

∇µ(fu) = f∇µu + Dµf ⊗ u for all u ∈ A(X ;Rm) and all f ∈ A(X);(2.7)

for every f ∈ A(X), every K ∈ K(X) and every c ∈ R,(2.8)

if f(x) = c for all x ∈ K then Dµf(x) = 0 for µ-a.a. x ∈ K,

where Dµf corresponds to ∇µf with m = 1. Moreover, we have

Lemma 2.3. The linear operator ∇µ is compatible with the equality µ-a.e., i.e.,

(2.9) if u ∈ A(X ;Rm) and if v ∈ Am
u then ∇µu(x) = ∇µv(x) for µ-a.a. x ∈ X.

Proof. If u ∈ A(X ;Rm) and if v ∈ Am
u then, for µ-a.e. x ∈ X , ∇(u − v)(x) ∈

Nm
µ (x) and so Pm

µ (x)(∇(u−v)(x)) = 0. Noticing that ∇u = ∇v+∇(u−v) it follows
that Pm

µ (x)(∇u(x)) = Pm
µ (x)(∇v(x)) for µ-a.a. x ∈ X , i.e., ∇µu(x) = ∇µv(x) for

µ-a.a. x ∈ X . �

Let 1 ≤ p ≤ ∞ be a real number. The (µ, p)-Sobolev space W 1,p
µ (X ;Rm) with

respect to the metric measure space X = (X, d, µ) is defined as the completion of
A(X ;Rm) with respect to the norm

(2.10) ‖u‖W 1,p
µ (X;Rm) := ‖u‖Lp

µ(X;Rm) + ‖∇µu‖Lp
µ(X;Mm×N ).

Since ‖∇µu‖Lp
µ(X;Mm×N ) ≤ ‖u‖W 1,p

µ (X;Rm) for all u ∈ A(X ;Rm) the linear map ∇µ

from A(X ;Rm) to Lp
µ(X ;Mm×N) has a unique extension to W 1,p

µ (X ;Rm) which
will still be denoted by ∇µ and will be called the µ-gradient.

Remark 2.4. When X is the closure of a bounded open subset Ω of RN and µ is the
Lebesgue measure on Ω, we retreive the (classical) Sobolev spaces W 1,p(Ω;Rm). If
X is a compact manifold M and if µ is the superficial measure on M , we obtain
the (classical) Sobolev spaces W 1,p(M ;Rm) on the compact manifold M . For more
details on the various possible extensions of the classical theory of the Sobolev
spaces to the setting of metric measure spaces, we refer to [Hei07, §10-14] (see also
[Che99, GT01, Haj03]).

Remark 2.5. As A(X) is an algebra we have fu ∈ A(X ;Rm) for all f ∈ A(X) and
all A(X ;Rm), and so fu ∈ W 1,p

µ (X ;Rm) for all f ∈ A(X) and all W 1,p
µ (X ;Rm)

because A(X) is a subclass of the algebra of all continuous functions from X to R

and X is a compact metric space. On the other hand, from (2.7) we see that

(2.11) ∇µ(fu) = f∇µu + Dµf ⊗ u for all u ∈ W 1,p
µ (X ;Rm) and all f ∈ A(X).

Remark 2.6 (generalization of Lemma 2.3). Given A ∈ O(X) set:

• Am
0 (A) :=

{
v ∈ A(X ;Rm) : v(x) = 0 for all x ∈ supp(µ) ∩ A

}
;

• Nm
µ (x,A) :=

{
∇v(x) : v ∈ Am

0 (A)
}

for µ-a.a. x ∈ A.

The following makes clear the link between Nm
µ (x) and Nm

µ (x,A).



Lemma 2.7. Nm
µ (x,A) = Nm

µ (x) for µ-a.a. x ∈ A.

Proof. As Hm
0 ⊂ Hm

0 (A) we have Nµ(x) ⊂ Nµ(x,A) for µ-a.a. x ∈ A. On the
other hand, let ξ ∈ Nm

µ (x,A). Then ξ = ∇v(x) with v ∈ Am
0 (A). As A is open

we have Qρ(x) ⊂ A for some ρ > 0. As A(X) satisfies the Uryshon property, there

exists a Uryshon function ϕ ∈ A(X) for the pair (X \A,Qρ(x)). Set v := ϕv. Then
v ∈ Am

0 because ϕ(y) = 0 for all y ∈ X \A and v(y) = 0 for all y ∈ supp(µ)∩A. On
the other hand, using (2.4) we see that ∇v = Dϕ⊗v+ϕ∇v, and so ∇v(x) = ∇v(x)
since ϕ(x) = 1 and v(x) = 0. It follows that ξ ∈ Nm

µ (x). �

The following lemma, which generalizes Lemma 2.3, is a consequence of Lemma
2.7.

Lemma 2.8. If v ∈ A(X ;Rm) is such that v(x) = 0 for all x ∈ supp(µ) ∩ A, then
∇µv(x) = 0 for µ-a.a. x ∈ A.

Proof. If v ∈ A(X ;Rm) is such that v(x) = 0 for all x ∈ supp(µ) ∩ A, then
v ∈ Am

0 (A), and so, for µ-a.e. x ∈ A, ∇v(x) ∈ Nm
µ (x,A). But, by Lemma 2.7,

Nm
µ (x,A) = Nm

µ (x) for µ-a.a. x ∈ A, which means that ∇v(x) ∈ Nm
µ (x) for µ-a.a.

x ∈ A. It follows that Pm
µ (∇v(x)) = 0 for µ-a.a. x ∈ A, i.e., ∇µv(x) = 0 for µ-a.a.

x ∈ A. �

2.2. Integral representation theorems. Let p ∈]1,∞[ be a real number and
let {Lx} be a field of Carathéodory integrands over X , i.e., to µ-a.e. x ∈ X

there corresponds a continuous function Lx : Mm×N → [0,∞] so that the function
x 7→ Lx(ξ) is µ-measurable for all ξ ∈ M

m×N . We assume that {Lx} is p-coercive,
i.e., there exists C > 0 such that

(2.12) Lx(ξ) ≥ C|ξ|p for all ξ ∈ M
m×N and µ-a.a. x ∈ X,

and of p-polynomial growth, i.e., there exists c > 0 such that

(2.13) Lx(ξ) ≤ c(1 + |ξ|p) for all ξ ∈ M
m×N and µ-a.a. x ∈ X.

Let O(X) be the class of all open subsets of X , let E : A(X ;Rm)×O(X) → [0,∞]
be the variational integral defined by

E(u;A) :=

∫

A

Lx(∇u(x))dµ(x)

and let E : W 1,p
µ (X ;Rm) ×O(X) → [0,∞] be the “relaxed” variational functional

of the variational integral E with respect to the strong convergence in Lp
µ(X ;Rm),

i.e.,

E(u;A) := inf

{
lim
n→∞

E(un;A) : A(X ;Rm) ∋ un → u in Lp
µ(X ;Rm)

}
.

Note that the variational integral E is in general not “local”, i.e., u(x) = v(x) for
µ-a.a. x ∈ X does not imply E(u;A) = E(v;A) for all A ∈ O(X). However, as it
is stated in the following proposition, the variational functional E can be rewritten
as the “relaxed” variational functional of a “local” variational integral depending

on the µ-gradient. Let Ê : A(X ;Rm) ×O(X) → [0,∞] be defined by

Ê(u;A) :=

∫

A

L̂x(∇µu(x))dµ(x)



where, for µ-a.e. x ∈ X , L̂x : Tm
µ (x) → [0,∞] is given by

L̂x(ξ) := inf
ζ∈Nm

µ (x)
Lx(ξ + ζ).

Remark 2.9. It is easy to see that, in the one hand, if {Lx} is p-coercive then also

is {L̂x}, i.e.,

L̂x(ξ) ≥ C|ξ|p for all ξ ∈ Tm
µ (x) and µ-a.a. x ∈ X

with C > 0 given by (2.12), and, on the other hand, if {Lx} is of p-polynomial

growth then also is {L̂x}, i.e.,

L̂x(ξ) ≤ c(1 + |ξ|p) for all ξ ∈ Tm
µ (x) and µ-a.a. x ∈ X

with c > 0 given by (2.13).

Remark 2.10. If Lx is continuous for µ-a.a. x ∈ X and if (2.12) holds, i.e., Lx is

p-coercive, then L̂x is continuous for µ-a.a. x ∈ X . Indeed, let ξ ∈ Tm
µ (x) and

let {ξi}i ⊂ Tm
µ (x) be such that |ξi − ξ| → 0. As Lx is continuous and, for every

ζ ∈ Nm
µ (x), L̂x(ξi) ≤ Lx(ξi + ζ) for all i ≥ 1 we have limi→∞ L̂x(ξi) ≤ Lx(ξ + ζ)

for all ζ ∈ Nm
µ (x), and so limi→∞ L̂x(ξi) ≤ L̂x(ξ). On the other hand, there is no

loss of generality in assuming that limi→∞ L̂x(ξi) = limi→∞ L̂x(ξi) < ∞. Consider

{ζi}i ⊂ Nm
µ (x) such that L̂x(ξi) ≤ Lx(ξi + ζi) < L̂x(ξi) + 1

i
for all i ≥ 1. As (2.12)

holds we see that the sequence {ζi}i is bounded, and so (up to a subsequence) we
can assert that there exists ζ ∈ Nm

µ (x) such that |ζi − ζ| → 0. From the continuity

of Lx we deduce that limi→∞ L̂x(ξi) = Lx(ξ + ζ) ≥ L̂x(ξ), and the result follows.

Proposition 2.11. If (2.13) holds then

E(u;A) := inf

{
lim
n→∞

Ê(un;A) : A(X ;Rm) ∋ un → u in Lp
µ(X ;Rm)

}

for all u ∈ W 1,p
µ (X ;Rm) and all A ∈ O(X).

Remark 2.12. Taking (2.9) into account it is easy to see that the variational integral

Ê is “local”, i.e., if u(x) = v(x) for µ-a.a. x ∈ X then Ê(u;A) = Ê(v;A) for all

A ∈ O(X). Thus, the variational functional Ê : W 1,p
µ (X ;Rm) × O(X) → [0,∞]

given by

(2.14) Ê(u;A) :=

{
Ê(u;A) if u ∈ A(X ;Rm)
∞ otherwise

is well defined with respect to the equality µ-a.e.. We can then rephrase Proposition
2.11 as follows: the variational functional E is the variational lower semicontinuous

envelope of Ê with respect to the strong convergence in Lp
µ(X ;Rm).

Remark 2.13. The (µ, p)-Sobolev space W 1,p
µ (X ;Rm) is reflexive whenever p ∈

]1,∞[. Indeed, the linear operator Θ : W 1,p
µ (X ;Rm) → Lp

µ(X ;Rm)×Lp
µ(X ;Mm×N )

defined by Θ(u) := (u,∇µu) is an isometry, hence Θ(W 1,p
µ (X ;Rm)) is a closed linear

subspace of Lp
µ(X ;Rm)×Lp

µ(X ;Mm×N ). For p > 1 the product space Lp
µ(X ;Rm)×

Lp
µ(X ;Mm×N) is reflexive, and so is Θ(W 1,p

µ (X ;Rm)).



2.2.1. The convex case. The following theorem gives, under (2.12) and (2.13), an
integral representation of the “relaxed” variational functional E in the reflexive and
convex case.

Theorem 2.14. If (2.12) and (2.13) hold and if L̂x is convex for µ-a.a. x ∈ X,
then

E(u;A) =

∫

A

L̂x(∇µu(x))dµ(x)

for all u ∈ W 1,p
µ (X ;Rm) and all A ∈ O(X).

Remark 2.15. If Lx is convex for µ-a.a. x ∈ X then also is L̂x for µ-a.a. x ∈ X .

Indeed, let α ∈]0, 1[ and let ξ, ξ̂ ∈ Tm
µ (x) and consider {ζi}i, {ζ̂i}i ⊂ Nm

µ (x) such

that L̂x(ξ) = limi→∞ Lx(ξ + ζi) and L̂x(ξ̂) = limi→∞ Lx(ξ̂ + ζ̂i). Fix any i ≥ 1.

As αζi + (1 − α)ζ̂i ∈ Nm
µ (x) we have L̂x(αξ + (1 − α)ξ̂) ≤ Lx(αξ + (1 − α)ξ̂ +

αζi + (1 − α)ζ̂i) = Lx(α(ξ + ζi) + (1 − α)(ξ̂ + ζ̂i)). Hence L̂x(αξ + (1 − α)ξ̂) ≤

αLx(ξ + ζi) + (1 − α)Lx(ξ̂ + ζ̂i) for all i ≥ 1 because Lx is convex, and the result
follows by letting i → ∞.
However, the converse implication is not true. Indeed, if for µ-a.e. x ∈ X , Lx :
M

m×N → [0,∞] is of the form

Lx(ξ) = L1

(
Pm
µ (x)(ξ)

)
+ L2

(
ξ − Pm

µ (x)(ξ)
)
,

with L1, L2 : Mm×N → [0,∞] such that L1 is convex and L2 is not convex, then

both Lx is not convex and L̂x : Tm
µ (x) → [0,∞] is convex.

2.2.2. The non-convex case. In the non-convex case, i.e., when the functions L̂x are
not necessarily convex, the following theorem asserts that under (2.12) and (2.13)
the variational functional E has always a “general” integral representation.

Theorem 2.16. If (2.12) and (2.13) hold then

E(u;A) =

∫

A

λu(x)dµ(x)

for all u ∈ W 1,p
µ (X ;Rm) and all A ∈ O(X) with λu ∈ L1

µ(X) given by

λu(x) := lim
ρ→0

E(u;Qρ(x))

µ(Qρ(x))
.

To refine the “general” integral representation given by Theorem 2.16, we need the
following four conditions:

(C0) the µ-gradient is closable in W 1,p
µ (X ;Rm), i.e., for every u ∈ W 1,p

µ (X ;Rm)
and every A ∈ O(X), if u(x) = 0 for µ-a.a. x ∈ A then ∇µu(x) = 0 for
µ-a.a. x ∈ A;

(C1) X supports a p-Sobolev inequality, i.e., there exist K > 0 and χ ≥ 1 such
that

(2.15)

(∫

Qρ(x)

|v|χpdµ

) 1
χp

≤ ρK

(∫

Qρ(x)

|∇µv|
pdµ

) 1
p

for all 0 < ρ ≤ ρ0, with ρ0 > 0, and all v ∈ W
1,p
µ,0 (Qρ(x);Rm), where,

for each A ∈ O(X), W 1,p
µ,0 (A;Rm) is the closure of A0(A;Rm) with respect

to W 1,p
µ -norm defined in (2.10) with A0(A;Rm) := {u ∈ A(X ;Rm) : u =

0 on X \A};



(C2) X satisfies the Vitali covering theorem, i.e., for every A ⊂ X and every
family F of closed balls in X, if inf{ρ > 0 : Qρ(x) ∈ F} = 0 for all
x ∈ A then there exists a countable disjointed subfamily G of F such that
µ(A \ ∪Q∈GQ) = 0 (in other words, A ⊂

(
∪Q∈G Q

)
∪N with µ(N) = 0).

Remark 2.17. From Remark 2.6 we see that the µ-gradient is closable in A(X ;Rm).
The assumption (C0) asserts that the closability of the µ-gradient can be extended
from A(X ;Rm) to W 1,p

µ (X ;Rm).

Remark 2.18. As µ is a Radon measure, if X satisfies the Vitali covering theorem,
i.e., (C2) holds, then for every A ∈ O(X) and every ε > 0 there exists a count-
able family {Qρi

(xi)}i∈I of disjoint open balls of A with xi ∈ A, ρi ∈]0, ε[ and
µ(∂Qρi

(xi)) = 0 such that µ
(
A \ ∪i∈IQρi

(xi)
)

= 0.

Theorem 2.19. Under (2.12) and (2.13), if (C0), (C1) and (C2) hold, then

λu(x) = lim
ρ→0

inf

{
−

∫

Qρ(x)

L̂y(∇µv(y))dµ(y) : v − u ∈ W
1,p
µ,0 (Qρ(x);Rm)

}

= lim
ρ→0

inf

{
−

∫

Qρ(x)

L̂y(∇µu(y) + ∇µw(y))dµ(y) : w ∈ W
1,p
µ,0 (Qρ(x);Rm)

}

for all u ∈ W 1,p
µ (X ;Rm) and µ-a.a. x ∈ X.

In order to “localize in ξ” the density formula given by Theorem 2.19 we need to
consider the three assumptions below.

(A1) For every u ∈ W 1,p
µ (X ;Rm) and µ-a.e. x ∈ X there exists ux ∈ W 1,p

µ (X ;Rm)
such that:

∇µux(y) = ∇µu(x) for µ-a.a. y ∈ X ;(2.16)

lim
ρ→0

1

ρp
−

∫

Qρ(x)

|u(y) − ux(y)|pdµ(y) = 0.(2.17)

(A2) For every x ∈ X , every ρ > 0 and every t ∈]0, 1[ there exists a Uryshon
function ϕ ∈ A(X) for the pair (X \Qρ(x), Qtρ(x)) such that

‖Dµϕ‖L∞

µ (X;RN ) ≤
α

ρ(1 − t)

for some α > 0.
(A3) The measure µ is doubling, i.e., µ(Qρ(x)) ≤ βµ(Q ρ

2
(x)) for some β ≥ 1, all

ρ > 0 and all x ∈ X . (In particular, X satisfies the Vitali covering theorem,
i.e., (C2) holds.) We futhermore assume that for µ-a.e. x ∈ X ,

(2.18) lim
t→1−

lim
ρ→0

µ(Qtρ(x)

µ(Qρ(x))
= 1.

Remark 2.20. If there is θ :]0, 1[→ [1,∞[ with limt→1 θ(t) = 1 such that µ(Qρ(x)) ≤
θ(t)µ(Qtρ(x)) for all ρ > 0, all x ∈ X and all t ∈]0, 1[, then (A3) holds.

Theorem 2.21. Under (2.12) and (2.13), if (C0), (C1), (A1), (A2) and (A3) hold,
then

E(u;A) =

∫

A

QµLx(∇µu(x))dµ(x)



for all u ∈ W 1,p
µ (X ;Rm) and all A ∈ O(X) with QµLx : Tm

µ (x) → [0,∞] given by

QµLx(ξ) := lim
ρ→0

inf

{
−

∫

Qρ(x)

L̂y(ξ + ∇µw(y))dµ(y) : w ∈ W
1,p
µ,0 (Qρ(x);Rm)

}
.

Remark 2.22. According to the classical theory of relaxation, we can say that this
formula plays the role of the classical Dacorogna’s quasiconvexification formula in
the euclidean Lebesgue setting (see [Dac08] for more details). It is then natural to
call {QµLx} the µ-quasiconvexification (or the quasiconvexification with respect to
µ) of {Lx}.

2.3. Application to the setting of Cheeger-Keith’s differentiable struc-
ture. We begin with the concept of upper gradient introduced by Heinonen and
Koskela (see [HK98]).

Definition 2.23. A Borel function g : X → [0,∞] is said to be an upper gradient

for f : X → R if |f(c(1)) − f(c(0))| ≤
∫ 1

0 g(c(s))ds for all continuous rectifiable
curves c : [0, 1] → X .

The concept of upper gradient has been generalized by Cheeger as follows (see
[Che99, Definition 2.8]).

Definition 2.24. A function g ∈ Lp
µ(X), with 1 < p < ∞, is said to be a p-weak

upper gradient for f ∈ Lp
µ(X) if there exist {fn}n ⊂ Lp

µ(X) and {gn}n ⊂ Lp
µ(X)

such that for each n ≥ 1, gn is an upper gradient for fn, fn → f in Lp
µ(X) and

gn → g in Lp
µ(X).

From Cheeger and Keith (see [Che99, Theorem 4.38] and [Kei04, Definition 2.1.1
and Theorem 2.3.1]) we have

Theorem 2.25. Assume that µ is doubling and X supports a weak (1, p)-Poincaré
inequality with 1 < p < ∞, i.e., there exist C > 0 and σ ≥ 1 such that for every
ρ > 0, every f ∈ Lp

µ(X) and every p-weak upper gradient g ∈ Lp
µ(X) for f ,

−

∫

Qρ(x)

∣∣∣∣f −−

∫

Q

fdµ

∣∣∣∣ dµ ≤ ρC

(
−

∫

Qσρ(x)

gpdµ

) 1
p

.

Then, there exists a countable family {(Xα, ξ
α)}α of µ-measurable disjoint subsets

Xα of X with µ(X \∪αXα) = 0 and of functions ξα = (ξα1 , · · · , ξ
α
N(α)) : X → R

N(α)

with ξαi ∈ Lip(X) satisfying the following properties:

(a) there exists an integer N ≥ 1 such that N(α) ∈ {1, · · · , N} for all α;
(b) for every α and every f ∈ Lip(X) there is a unique Dαf ∈ L∞

µ (Xα;RN(α))
such that for µ-a.e. x ∈ Xα,

lim
ρ→0

1

ρ
‖f − fx‖L∞

µ(Qρ(x))
= 0,

where fx ∈ Lip(X) is given by fx(y) := f(x) +Dαf(x) · (ξα(y)− ξα(x)); in
particular Dαfx(y) = Dαf(x) for µ-a.a. y ∈ Xα;

(c) the operator D : Lip(X) → L∞
µ (X ;RN ) given by

Df :=
∑

α

1Xα
Dαf,

where 1Xα
denotes the characteristic function of Xα, is linear and, for each

f, g ∈ Lip(X), D(fg) = fDg + gDf ;



(d) for every f ∈ Lip(X), Df = 0 µ-a.e. on every µ-measurable set where f is
constant.

Let Lip(X ;Rm) := [Lip(X)]m and let ∇ : Lip(X ;Rm) → L∞
µ (X ;Mm×N ) given by

(2.3). From Theorem 2.25(d) we see that ∇µ ≡ ∇, where ∇µ is defined by (2.6).
(In fact, by Theorem 2.25(d), for µ-a.e. x ∈ X , we have Nm

µ (x) ≡ {0} and so

Tm
µ (x) ≡ M

m×N . In particular L̂x ≡ Lx.)

Remark 2.26. In the euclidean setting, i.e., when X ≡ Ω, where Ω is a bounded
open subset of RN , A(X ;Rm) ≡ C1(Ω;Rm) and ∇ is the classical gradient, we have

L̂x 6≡ Lx whenever µ is not absolutely continuous with respect to the Lebesgue
measure.

The (µ, p)-Sobolev space W 1,p
µ (X ;Rm) obtained as the closure of Lip(X ;Rm) with

respect to the W 1,p
µ -norm defined in (2.10) is called the p-Cheeger-Sobolev space.

In this framework, from Theorem 2.14 we obtain

Corollary 2.27. Under the hypotheses of Theorem 2.25, if (2.12) and (2.13) hold
and if Lx is convex for µ-a.a. x ∈ X, then

E(u;A) =

∫

A

Lx(∇µu(x))dµ(x)

for all u ∈ W 1,p
µ (X ;Rm) and all A ∈ O(X).

For the non-convex case, we have

Proposition 2.28. Under the hypotheses of Theorem 2.25, the assumptions (C0),
(C1), (C2), (A1) and (A2) hold. If moreover (X, d) is a length space then (2.18) is
also satisfied, i.e., (A3) holds.

Proof. Firstly, since µ is doubling, X satisfies the Vitali covering theorem, i.e.,
(C2) holds. Secondly, the closability of the µ-gradient in Lip(X ;Rm), given by
Theorem 2.25(d), can be extended from Lip(X ;Rm) to W 1,p

µ (X ;Rm) by using the
closability theorem of Franchi, Haj lasz and Koskela (see [FHK99, Theorem 10]).
Thus, (C0) is satisfied. Thirdly, according to Cheeger (see [Che99, §4, p. 450] and
also [HK95, HK00]), since µ is doubling and X supports a weak (1, p)-Poincaré
inequality, we can assert that X supports a p-Sobolev inequality, i.e., there exist
c > 0 and χ > 1 such that for every 0 < ρ ≤ ρ0, with ρ0 ≥ 0, every v ∈ W

1,p
µ,0 (X ;Rm)

and every p-weak upper gradient g ∈ Lp
µ(X ;Rm) for v,

(2.19)

(∫

Qρ(x)

|v|χpdµ

) 1
χp

≤ ρc

(∫

Qρ(x)

|g|pdµ

) 1
p

.

On the other hand, from Cheeger (see [Che99, Theorems 2.10 and 2.18]), for each
w ∈ W 1,p

µ (X) there exists a unique p-weak upper gradient for w, denoted by gw ∈
Lp
µ(X) and called the minimal p-weak upper gradient for w, such that for every

p-weak upper gradient g ∈ Lp
µ(X) for w, gw(x) ≤ g(x) for µ-a.a. x ∈ X . Moreover

(see [Che99, §4] and also [BB11, §B.2, p. 363], [Bjö00] and [GH13, Remark 2.15]),
there exists α ≥ 1 such that for every w ∈ W 1,p

µ (X) and µ-a.e. x ∈ X ,

1

α
|gw(x)| ≤ |Dµw(x)| ≤ α|gw(x)|,



where Dµ corresponds to ∇µ with m = 1. As for v = (vi)i=1,··· ,m ∈ W 1,p
µ (X ;Rm)

we have ∇µv = (Dµvi)i=1,··· ,m, it follows that

(2.20)
1

α
|gv(x)| ≤ |∇µv(x)| ≤ α|gv(x)|

for µ-a.a. x ∈ X , where gv := (gvi)i=1,··· ,m is naturally called the minimal p-weak
upper gradient for v. Combining (2.19) with (2.20) we obtain (C1). Fourthly, from
Björn (see [Bjö00, Theorem 4.5 and Corollary 4.6] and also [GH13, Theorem 2.12])
we see that for every α, every u ∈ W 1,p

µ (X ;Rm) and µ-a.e. x ∈ Xα,

∇µux(y) = ∇µu(x) for µ-a.a. y ∈ Xα,

where ux ∈ W 1,p
µ (X ;Rm) is given by

ux(y) := u(y) − u(x) −∇µu(x) · (ξα(y) − ξα(x))

and u is Lp
µ-differentiable at x, i.e.,

lim
ρ→0

1

ρ
‖u(y) − ux(y)‖Lp

µ(Qρ(x);Rm) = 0.

Hence (A1) is verified. Fifthly, given ρ > 0, t ∈]0, 1[ and x ∈ X , there exists a
Uryshon function ϕ ∈ Lip(X) for the pair (X \Qρ(x)), Qtρ(x)) such

‖Lipϕ‖L∞

µ (X) ≤
1

ρ(1 − t)
,

where for every y ∈ X ,

Lipϕ(y) := lim
d(y,z)→0

|ϕ(y) − ϕ(z)|

d(y, z)
.

But, since µ is doubling and X supports a weak (1, p)-Poincaré inequality, from
Cheeger (see [Che99, Theorem 6.1]) we have Lipϕ(y) = gϕ(y) for µ-a.a. y ∈ X ,
where gϕ is the minimal p-weak upper gradient for ϕ. Hence

‖Dµϕ‖L∞

µ (X;RN ) ≤
α

ρ(1 − t)

because |Dµϕ(y)| ≤ α|gϕ(y)| for µ-a.a. y ∈ X . Consequently (A2) holds. Finally, if
moreover (X, d) is a length space, from Colding and Minicozzi II (see [CM98] and
[Che99, Proposition 6.12]) we can assert that there exists β > 0 such that for every
x ∈ X , every ρ > 0 and every t ∈]0, 1[,

µ(Qρ(x) \Qtρ(x)) ≤ 2β(1 − t)βµ(Qρ(x)),

which implies (2.18). �

As a consequence of Theorem 2.21 and Proposition 2.28, we have

Corollary 2.29. Under the hypotheses of Theorem 2.25, if moreover (X, d) is a
length space and if (2.12) and (2.13) hold, then

E(u;A) =

∫

A

QµLx(∇µu(x))dµ(x)

for all u ∈ W 1,p
µ (X ;Rm) and all A ∈ O(X), with QµLx : Mm×N → [0,∞] given by

QµLx(ξ) := lim
ρ→0

inf

{
−

∫

Qρ(x)

Ly(ξ + ∇µw(y))dµ(y) : w ∈ W
1,p
µ,0 (Qρ(x);Rm)

}
.



3. Auxiliary results

3.1. Interchange of infimum and integral. Let (A, d) be a locally compact
metric space that is σ-compact, let µ be a positive Radon measure on A and let Y

be a separable Banach space.

3.1.1. The µ-essential supremum of a set of µ-measurable functions. Let Mµ(A;Y )
be the class of all closed-valued µ-measurable multifunctions1 from A to Y and
let M∗

µ(A;Y ) := {Γ ∈ Mµ(A;Y ) : Γ(x) 6= ∅ for µ-a.a. x ∈ A}. The following
proposition is due to Valadier (see [Val71, Proposition 14]).

Proposition 3.1. Let F be a nonempty subclass of M∗
µ(A;Y ). Then, there exists

Γ ∈ M∗
µ(A;Y ) such that:

(i) for every Λ ∈ F , Λ(x) ⊂ Γ(x) for µ-a.a. x ∈ A;
(ii) if Γ′ ∈ Mµ(A;Y ) and if for every Λ ∈ F , Λ(x) ⊂ Γ′(x) for µ-a.a. x ∈ A,

then Γ(x) ⊂ Γ′(x) for µ-a.a. x ∈ A.

Note that Γ given by Proposition 3.1 is unique with respect to the equality µ-a.e.
Valadier called it the µ-essential upper bound of F . Here is the definition of the
µ-essential supremum of a set of µ-measurable functions.

Definition 3.2. Let H be a set of µ-measurable functions from A to Y . By the µ-
essential supremum of H we mean the µ-essential upper bound of {{w} : w ∈ H},
where {w} : A−→

−→Y is defned by {w}(x) := {w(x)}. Thus, if we denote the µ-
essential supremum of H by Γ, we have:

(i) {w(x) : w ∈ H} ⊂ Γ(x) for µ-a.a x ∈ A;
(ii) if Γ′ ∈ Mµ(A;Y ) and if {w(x) : w ∈ H} ⊂ Γ′(x) for µ-a.a x ∈ A, then

Γ(x) ⊂ Γ′(x) for µ-a.a. x ∈ A.

The following lemma gives a (classical) representation of the µ-essential supremum
(see [BV88]).

Lemma 3.3. Let p ≥ 1 be a real number, let H ⊂ Lp
µ(A;Y ) and let Γ be the µ-

essential supremum of H. Then, there exists a countable subset D of H such that
Γ(x) = cl{w(x) : w ∈ D} for µ-a.a. x ∈ A, where cl denotes the closure in Y .

3.1.2. Interchange theorem. In what follows, by a Urysohn function for a pair (F,G)
of disjoint closed subsets F and G of A we mean a continuous function φ : A → R

such that φ(x) ∈ [0, 1] for all x ∈ A, φ(x) = 0 for all x ∈ F and φ(x) = 1 for all
x ∈ G. Let p ≥ 1 be a real number and let H ⊂ Lp

µ(A;Y ). The following definition
was introduced in [AHM03].

Definition 3.4. We say that H is normally decomposable if for every w, ŵ ∈ H
and every K,V ⊂ A with K compact, V open and K ⊂ V , there exists a Urysohn
φ function for the pair (A \ V,K) such that φw + (1 − φ)ŵ ∈ H.

Let {Lx} be a field of Carathéodory integrand over A, i.e., to µ-a.e. x ∈ A there
corresponds a continuous function Lx : Y → [0,∞] so that the function x 7→ Lx(ξ)
is µ-measurable for all ξ ∈ Y . The following theorem is a consequence of [AHM03,
Theorem 1.1].

1A multifunction Γ : A−→
−→Y is said to be closed-valued if Γ(x) is closed for µ-a.a. x ∈ A, and

µ-measurable if for every open set U ⊂ A, {x ∈ A : Γ(x) ∩ U 6= ∅} is µ-measurable.



Theorem 3.5. If H is normally decomposable and if {Lx} is of p-polynomial
growth, i.e., there exists c > 0 such that Lx(ξ) ≤ c(1 + |ξ|p) for all ξ ∈ Y and
all µ-a.a. x ∈ A, then

inf
w∈H

∫

A

Lx(w(x))dµ(x) =

∫

A

inf
ξ∈Γ(x)

Lx(ξ)dµ(x)

with Γ : A−→
−→Y given by the µ-essential supremum of H.

3.2. De Giorgi-Letta’s lemma. Let X = (X, d) be a metric space, let O(X) be
the class of all open subsets of X and let B(X) be the class of all Borel subsets
of X , i.e., the smallest σ-algebra containing the open (or equivalently the closed)
subsets of X . The following result is due to De Giorgi and Letta (see [DGL77] and
also [But89, Lemma 3.3.6 p. 105]).

Lemma 3.6. Let S : O(X) → [0,∞] be an increasing set function, i.e., S(A) ≤
S(B) for all A,B ∈ O(X) such A ⊂ B, satisfying the following three conditions:

(i) S(∅) = 0;
(ii) S is superadditive, i.e., S(A∪B) ≥ S(A) +S(B) for all A,B ∈ O(X) such

that A ∩B = ∅;
(iii) S is subadditive, i.e., S(A ∪B) ≤ S(A) + S(B) for all A,B ∈ O(X);
(iv) there exists a finite Radon measure ν on X such that S(A) ≤ ν(A) for all

A ∈ O(X).

Then, S can be uniquely extended to a finite positive Radon measure on X which
is absolutely continuous with respect to ν.

4. Proof of the main results

4.1. Proof of Proposition 2.11. We divide the proof into four steps.

Step 1. Another formula for E. Let E : W 1,p
µ (X ;Rm) × O(X) → [0,∞] be

defined by

E(u;A) := inf
{
E(v;A) : v ∈ Am

u

}
.

The following lemma makes clear the link between E and E.

Lemma 4.1. For every u ∈ W 1,p
µ (X ;Rm) and every A ∈ O(X),

(4.1) E(u;A) = inf

{
lim
n→∞

E(un;A) : A(X ;Rm) ∋ un → u in Lp
µ(X ;Rm)

}
.

Proof of Lemma 4.1. Fix u ∈ W 1,p
µ (X ;Rm) and A ∈ O(X) and denote the right-

hand side of (4.1) by E(u;A). As E(v;A) ≥ E(v;A) for all v ∈ A(X ;Rm) we have
E(u;A) ≥ E(u;A). Thus, it remains to prove that

(4.2) E(u;A) ≥ E(u;A).

Fix any ε > 0 and consider {un}n ⊂ A(X ;Rm) with un → u in Lp
µ(X ;Rm) such

that E(u;A) + ε
2 ≥ limn→∞ E(un;A). To every n ≥ 1, there corresponds vn ∈ Am

u

such that E(un;A) + ε
2 ≥ E(vn;A). Hence vn → u in Lp

µ(X ;Rm) and E(u;A) + ε ≥

limn→∞ E(vn;A) ≥ E(u;A), and (4.2) follows by letting ε → 0. �



Step 2. Integral representation of the variational functional E. We now
establish an integral representation for the variational function E . First of all, it
easy to see that

E(u;A) = inf
w∈Hm

u (A)

∫

A

Lx(w(x))dµ(x)

for all u ∈ A(X ;Rm) and all A ∈ O(X), where Hm
u (A) is given by

Hm
u (A) :=

{
w ∈ L∞

µ (A;Mm×N ) : w(x) = ∇v(x) for µ-a.a. x ∈ A with v ∈ Am
u

}

with Am
u defined in (2.5). On the other hand, we have

Lemma 4.2. The set Hm
u (A) is normally decomposable for all u ∈ W 1,p

µ (X ;Rm)
and all A ∈ O(X).

Proof of Lemma 4.2. Let u ∈ A(X ;Rm) and A ∈ O(X). Fix K,V ⊂ A with
K compact, V open and K ⊂ V , fix w, ŵ ∈ Hm

u (A) and consider v, v̂ ∈ Am
u such

that for µ-a.e. x ∈ A, w(x) = ∇v(x) and ŵ(x) = ∇v̂(x). As A(X) satisfies the
Uryshon property, there exists a Uryshon function ϕ ∈ A(X) for the pair (X\V,K).
Then φ := ϕ|A is a Uryshon function for the pair (A \ V,K). On the other hand,
using (2.4) we have ∇(ϕv + (1 − ϕ)v̂) = ϕ∇v + (1 − ϕ)∇v̂ + Dϕ ⊗ (v − v̂), and
so ∇(ϕv + (1 − ϕ)v̂)(x) = φ(x)w(x) + (1 − φ(x))ŵ(x) for µ-a.a. x ∈ A. Moreover,
ϕv + (1 − ϕ)v̂ ∈ Am

u and consequently φw + (1 − φ)ŵ ∈ Hm
u (A). �

From now on, fix u ∈ A(X ;Rm) and A ∈ O(X). As {Lx} is of p-polynomial
growth, i.e., (2.13) holds, and Hm

u (A) is normally decomposable by Lemma 4.2,
from Theorem 3.5 we deduce that

(4.3) E(u;A) =

∫

A

inf
ξ∈Γu(x,A)

Lx(ξ)dµ(x)

with Γ(·, A) : A−→
−→M

m×N given by the µ-essential supremum of Hm
u (A).

Step 3. Refining the integral representation of E. Finally, to refine the
integral representation of E in (4.3), we need the following lemma.

Lemma 4.3. Γu(x,A) = Nm
µ (x) + {∇µu(x)} for µ-a.a. x ∈ A.

Proof. From Lemma 3.3 there exists a countable subset Du(A) of Hm
u (A) such

that

(4.4) Γu(x,A) = cl
{
w(x) : w ∈ Du(A)

}
for µ-a.a. x ∈ A.

Fix any w ∈ Du(A). By definition of Hm
u (A), there exists v ∈ Am

u such that for
µ-a.e. x ∈ A, w(x) = ∇v(x). But ∇µv(x) = ∇µu(x) for µ-a.a. x ∈ X by Lemma
2.3, hence w(x) = ∇v(x) − ∇µv(x) + ∇µu(x) for µ-a.a. x ∈ A, where for µ-a.e.
x ∈ A, ∇v(x) − ∇µu(x) ∈ Nm

µ (x), and so w(x) ∈ Nm
µ (x) + {∇µu(x)} for µ-a.a.

x ∈ A. Thus {w(x) : w ∈ Du(A)} ⊂ Nm
µ (x) + {∇µu(x)} for µ-a.a. x ∈ A. Using

(4.4) it follows that

Γu(x,A) ⊂ Nm
µ (x) + {∇µu(x)} for µ-a.a. x ∈ A.

Let Γu : X−→
−→M

m×N be the µ-essential supremum of Hm
u (which corresponds to

Hm
u (A) with A = X). If w ∈ Hm

u then w|A ∈ Hm
u (A), and so Γu(x) ⊂ Γu(x,A)

for µ-a.a. x ∈ A because, from Lemma 3.3, Γu(x) = cl{w(x) : w ∈ Du} for µ-a.a.



x ∈ A with Du a countable subset of Hm
u . Hence, the proof is completed by showing

that

(4.5) Nm
µ (x) + {∇µu(x)} ⊂ Γu(x) for µ-a.a. x ∈ A.

For µ-a.e. x ∈ A, let ξ ∈ Nm
µ (x) + {∇µu(x)}. Then Pµ(x)(ξ − ∇u(x)) = 0,

hence ξ − ∇u(x) ∈ Nm
µ (x) and so there exists ŵ ∈ Hm

0 (which corresponds to
Hm

u with u = 0) such that ξ − ∇u(x) = ŵ(x). Setting w̄ := ∇u we then have
ξ = (w̄+ ŵ)(x) with w̄+ ŵ ∈ Hm

u . Thus Nm
µ (x)+{∇µu(x)} ⊂ {w(x) : w ∈ Hm

u } for
µ-a.a. x ∈ A, and (4.5) follows because, by definition of the µ-essential supremum,
{w(x) : w ∈ Hm

u } ⊂ Γu(x) for µ-a.a. x ∈ X . �

This completes the proof of Proposition 2.11. �

4.2. Proof of Theorem 2.14. Fix A ∈ O(X) and define the increasing set F :
W 1,p

µ (X ;Rm) → [0,∞] by

(4.6) F(u) :=

∫

A

L̂x(∇µu(x))dµ(x).

(Note that F(u) = Ê(u;A) for all u ∈ A(X ;Rm), where Ê(·;A) : W 1,p
µ (X ;Rm) →

[0,∞] is defined in (2.14).) From Remark 2.9 we see that {L̂x} is both p-coercive
and of p-polynomial growth, i.e.,

(4.7) C|ξ|p ≤ L̂x(ξ) ≤ c(1 + |ξ|p) for all ξ ∈ Tm
µ (x) and µ-a.a. x ∈ X

with C > 0 and c > 0 given respectively by (2.12) and (2.13). Recalling that µ is
finite and using the second inequality in (4.7) and the continuity of Lx (see Remark
2.10), from Vitali’s convergence theorem we deduce that F is continuous with
respect to the strong convergence in W 1,p

µ (X ;Rm). Hence, recalling that A(X ;Rm)

is dense in W 1,p
µ (X ;Rm) with respect to the strong convergence in W 1,p

µ (X ;Rm)

and taking Proposition 2.11 into account, for all u ∈ W 1,p
µ (X ;Rm) there is {un}n ⊂

A(X ;Rm) such that:

• un → u in W 1,p
µ (X ;Rm) and so un → u in Lp

µ(X ;Rm);

• F(u) = limn→∞ F(un) = limn→∞ Ê(un;A) ≥ E(u;A),

which shows that F ≥ E(·;A). Define F
w
,F

s
: W 1,p

µ (X ;Rm) → [0,∞] by:

• F
w

(u) := inf

{
lim
n→∞

F(un) : un ⇀ u in W 1,p
µ (X ;Rm)

}
;

• F
s
(u) := inf

{
lim
n→∞

F(un) : un → u in Lp
µ(X ;Rm)

}
.

Since L̂x is convex for µ-a.a. x ∈ X , the functional F is convex, and so F
w

= F
because F is strongly continuous in W 1,p

µ (X ;Rm). On the other hand, consider

u ∈ W 1,p
µ (X ;Rm) and {un}n ⊂ W 1,p

µ (X ;Rm) such that un → u in Lp
µ(X ;Rm)

and limn→∞ F(un) = limn→∞ F(un) < ∞. Using the first inequality in (4.7) we
deduce that supn ‖un‖W 1,p

µ (X;Rm) < ∞, hence (up to a subsequence) un ⇀ u in

W 1,p
µ (X ;Rm) because W 1,p

µ (X ;Rm) is reflexive (since p ∈]1,∞[, see Remark 2.13),

and so limn→∞ F(un) ≥ F
w

(u). Thus F
s
≥ F

w
and consequently F

s
= F because

F ≥ F
s
. As Ê(·;A) ≥ F we have E(·;A) ≥ F

s
by using Proposition 2.11, and the

proof is complete. �



Remark 4.4. From the proof of Theorem 2.14 we can extract the following lemma
which asserts that for A ∈ O(X) and when (2.13) is satisfied, E(·, A) is the lower
semicontinuous envelope of F defined in (4.6) with respect to the strong convergence
in Lp

µ(X ;Rm).

Lemma 4.5. If (2.13) holds then

(4.8) E(u;A) = inf

{
lim
n→∞

∫

A

L̂x(∇µun(x))dµ(x) : W 1,p
µ (X ;Rm) ∋ un

Lp
µ

→ u

}

for all u ∈ W 1,p
µ (X ;Rm) and all A ∈ O(X).

4.3. Proof of Theorem 2.16. Fix u ∈ W 1,p
µ (X ;Rm) and define Su : O(X) →

[0,∞] by
Su(A) := E(u;A).

Taking Lemma 4.5 into account and using the second inequality in (4.7) we see that

(4.9) Su(A) ≤

∫

A

c(1 + |∇µu(x)|p)dµ(x) for all A ∈ O(X).

Thus, the condition (iv) of Lemma 3.6 is satisfied with ν = c(1 + |∇µu|p)dµ (which
is absolutely continuous with respect to µ). On the other hand, it is easily seen that
the conditions (i) and (ii) of Lemma 3.6 are satisfied. Hence, the proof is completed
by proving the condition (iii) of Lemma 3.6, i.e.,

(4.10) Su(A ∪B) ≤ Su(A) + Su(B) for all A,B ∈ O(X).

Indeed, by Lemma 3.6, the set function Su can be (uniquely) extended to a (fi-
nite) positive Radon measure which is absolutely continuous with respect to µ,
and the theorem follows by using Radon-Nikodym’s theorem and then Lebesgue’s
differentiation theorem. To show (4.10) we need the following lemma.

Lemma 4.6. If U, V, Z, T ∈ O(X) are such that Z ⊂ U and T ⊂ V , then

(4.11) Su(Z ∪ T ) ≤ Su(U) + Su(V ).

Proof of Lemma 4.6. Let {un}n and {vn}n be two sequences in A(X ;Rm) such
that:

un → u in Lp
µ(X ;Rm);(4.12)

vn → u in Lp
µ(X ;Rm);(4.13)

lim
n→∞

∫

U

Lx(∇un(x))dµ(x) = Su(U) < ∞;(4.14)

lim
n→∞

∫

V

Lx(∇vn(x))dµ(x) = Su(V ) < ∞.(4.15)

Fix δ ∈]0, dist(Z, ∂U)[ with ∂U := U \U , fix any n ≥ 1 and any q ≥ 1 and consider
W−

i ,W+
i ⊂ X given by:

• W−
i := Z−

(
δ
3 + (i−1)δ

3q

)
=
{
x ∈ X : dist(x, Z) ≤ δ

3 + (i−1)δ
3q

}
;

• W+
i := Z+

(
δ
3 + iδ

3q

)
=
{
x ∈ X : δ

3 + iδ
3q ≤ dist(x, Z)

}
,

where i ∈ {1, · · · , q}. As A(X) satisfies the Uryshon property, for every i ∈
{1, · · · , q} there exists a Uryshon function ϕi ∈ A(X) for the pair (W+

i ,W−
i ).

Define wi
n ∈ A(X ;Rm) by

wi
n := ϕiun + (1 − ϕi)vn.



Setting Wi := X \ (W−
i ∪W+

i ) and using (2.4) and (2.2) we have

∇wi
n =





∇un in W−
i

Dϕi ⊗ (un − vn) + ϕi∇un + (1 − ϕi)∇vn in Wi

∇vn in W+
i .

Noticing that Z∪T = ((Z∪T )∩W−
i )∪(W ∩Wi)∪(T ∩W+

i ) with (Z∪T )∩W−
i ⊂ U ,

T ∩W+
i ⊂ V and W := T ∩ {x ∈ U : δ

3 < dist(x, Z) < 2δ
3 } we deduce that

∫

Z∪T

Lx(∇wi
n)dµ ≤

∫

U

Lx(∇un)dµ +

∫

V

Lx(∇vn)dµ(4.16)

+

∫

W∩Wi

Lx(∇wi
n)dµ

for all i ∈ {1, · · · , q}. Moreover, from (2.13) we see that for each i ∈ {1, · · · , q},
∫

W∩Wi

Lx(∇wi
n)dµ ≤ α‖Dϕi‖

p

L∞

µ (X;RN )
‖un − vn‖

p

L
p
µ(X;Rm)

(4.17)

+α

∫

W∩Wi

(1 + |∇un|
p + |∇vn|

p)dµ

with α := 22pc. Substituting (4.17) into (4.16) and averaging these inequalities, it
follows that for every n ≥ 1 and every q ≥ 1, there exists in,q ∈ {1, · · · , q} such
that

∫

Z∪T

Lx(∇win,q
n )dµ ≤

∫

U

Lx(∇un)dµ +

∫

V

Lx(∇vn)dµ

+
α

q

q∑

i=1

‖Dϕi‖
p

L∞

µ (X;RN )
‖un − vn‖

p

L
p
µ(X;Rm)

+
α

q

(
µ(X) +

∫

U

|∇un|
pdµ +

∫

V

|∇vn|
pdµ

)
.

On the other hand, by (4.12) and (4.13) we have:

• lim
n→∞

‖un − vn‖
p

L
p
µ(X;Rm)

= 0;

• lim
n→∞

‖win,q
n − u‖p

L
p
µ(X;Rm)

= 0 for all q ≥ 1.

Moreover, using (4.14) and (4.15) together with (2.12) we see that:

• lim
n→∞

∫

U

|∇un(x)|pdµ(x) < ∞;

• lim
n→∞

∫

V

|∇vn(x)|pdµ(x) < ∞.

Letting n → ∞ (and taking (4.14) and (4.15) into account) we deduce that for
every q ≥ 1,

(4.18) Su(Z ∪ T ) ≤ lim
n→∞

∫

Z∪T

Lx(∇win,q
n (x))dµ(x) ≤ Su(U) + Su(V ) +

α̂

q

with α̂ := α(µ(X)+ limn→∞

∫
U
|∇un(x)|pdµ(x)+ limn→∞

∫
V
|∇vn(x)|pdµ(x)), and

(4.11) follows from (4.18) by letting q → ∞. �



We now prove (4.10). Fix A,B ∈ O(X). Fix any ε > 0 and consider C,D ∈ O(X)
such that C ⊂ A, D ⊂ B and

∫

E

c(1 + |∇µu(x)|p)dµ(x) < ε

with E := A ∪ B \ C ∪D. Then Su(E) ≤ ε by (4.9). Let Ĉ, D̂ ∈ O(X) be such

that C ⊂ Ĉ, Ĉ ⊂ A, D ⊂ D̂ and D̂ ⊂ B. Applying Lemma 4.6 with U = Ĉ ∪ D̂,

V = T = E and Z = C ∪D (resp. U = A, V = B, Z = Ĉ and T = D̂) we obtain

Su(A ∪B) ≤ Su(Ĉ ∪ D̂) + ε
(
resp. Su(Ĉ ∪ D̂) ≤ Su(A) + Su(B)

)
,

and (4.10) follows by letting ε → 0. �

Remark 4.7. The method used in the proof of Lemma 4.6 is a variant of the so-called
De Giorgi’s slicing method. Note that the proof of Lemma 4.6 can be rewritten
(exactly in the same way) in considering (4.8) together with (4.7), in using (2.7)
and (2.8) instead of (2.4) and (2.2), and in replacing (in the text of the proof) the

integrand “Lx” by “L̂x”, the space “A(X ;Rm)” by “W 1,p
µ (X ;Rm)”, the operator

“D” by “Dµ” and the operator “∇” by “∇µ”. On the other hand, by De Giorgi’s
slicing method we can also establish the following result.

Lemma 4.8. If (4.7) holds (which is the case when (2.12) and (2.13) are satisfied)
then

(4.19) E(u;A) = inf

{
lim
n→∞

∫

A

L̂x(∇µun(x))dµ(x) : W 1,p
µ,0 (A;Rm) ∋ un − u

Lp
µ

→ 0

}

for all u ∈ W 1,p
µ (X ;Rm).

Proof. Fix u ∈ W 1,p
µ (X ;Rm) and A ∈ O(X) and denote the right-hand side of

(4.19) by E(u;A). Taking Lemma 4.5 into account and noticing that W 1,p
µ,0 (A;Rm) ⊂

W 1,p
µ (X ;Rm) we have E(u;A) ≥ E(u;A). Thus, it remains to prove that

(4.20) E(u;A) ≤ E(u;A).

Let {un}n ⊂ W 1,p
µ (X ;Rm) be such that

un → u in Lp
µ(X ;Rm);(4.21)

lim
n→∞

∫

A

L̂x(∇µun(x))dµ(x) = E(u;A) < ∞.(4.22)

Fix δ > 0 and set Aδ := {x ∈ A : dist(x, ∂A) > δ} with ∂A := A\A. Fix any n ≥ 1
and any q ≥ 1 and consider W−

i ,W+
i ⊂ X given by

• W−
i := A−

δ

(
δ
3 + (i−1)δ

3q

)
=
{
x ∈ X : dist(x,Aδ) ≤ δ

3 + (i−1)δ
3q

}
;

• W+
i := A+

δ

(
δ
3 + iδ

3q

)
=
{
x ∈ X : δ

3 + iδ
3q ≤ dist(x,Aδ)

}
,

where i ∈ {1, · · · , q}. (Note that W−
i ⊂ A.) As A(X) satisfies the Uryshon

property, for every i ∈ {1, · · · , q} there exists a Uryshon function ϕi ∈ A(X) for
the pair (W+

i ,W−
i ). Define wi

n : X → R
m by

wi
n := ϕiun + (1 − ϕi)u.



Then wi
n−u ∈ W

1,p
µ,0 (A;Rm) (see Remark 2.5). Setting Wi := X \ (W−

i ∪W+
i ) ⊂ A

and using (2.11) and (2.8) we have

∇µw
i
n =





∇µun in W−
i

Dµϕi ⊗ (un − u) + ϕi∇µun + (1 − ϕi)∇µu in Wi

∇µu in W+
i .

Noticing that A = W−
i ∪Wi ∪ (A ∩W+

i ) we deduce that for every i ∈ {1, · · · , q},
∫

A

L̂x(∇µw
i
n)dµ ≤

∫

A

L̂x(∇µun)dµ +

∫

A∩W+
i

L̂x(∇µu)dµ(4.23)

+

∫

Wi

L̂x(∇µw
i
n)dµ.

Moreover, from the second inequality in (4.7) we see that for each i ∈ {1, · · · , q},
∫

Wi

L̂x(∇µw
i
n)dµ ≤ α‖Dµϕi‖

p

L∞

µ (X;RN )‖un − u‖p
L

p
µ(X;Rm)

(4.24)

+α

∫

Wi

(1 + |∇µun|
p + |∇µu|

p)dµ

with α := 22pc. Substituting (4.24) into (4.23) and averaging these inequalities, it
follows that for every n ≥ 1 and every q ≥ 1, there exists in,q ∈ {1, · · · , q} such
that ∫

A

L̂x(∇µw
in,q
n )dµ ≤

∫

A

L̂x(∇µun)dµ +
1

q

∫

A

L̂x(∇µu)dµ

+
α

q

q∑

i=1

‖Dµϕi‖
p

L∞

µ (X;RN )‖un − u‖p
L

p
µ(X;Rm)

+
α

q

(
µ(A) +

∫

A

|∇µun|
pdµ +

∫

A

|∇µu|
pdµ

)
.

On the other hand, by (4.21) we have

lim
n→∞

‖win,q
n − u‖p

L
p
µ(X;Rm)

= 0 for all q ≥ 1.

Moreover, using (4.22) together with the first inequality in (4.7) we see that

lim
n→∞

∫

A

|∇µun(x)|pdµ(x) < ∞.

Letting n → ∞ (and taking (4.22) into account) we deduce that for every q ≥ 1,

(4.25) E(u;A) ≤ lim
n→∞

∫

A

L̂x(∇µw
in,q
n )dµ ≤ E(u;A) +

1

q

∫

A

L̂x(∇µu)dµ +
α̂

q

with α̂ := α(µ(A) + limn→∞

∫
A
|∇µun(x)|pdµ(x) +

∫
A
|∇µu(x)|pdµ(x)), and (4.20)

follows from (4.25) by letting q → ∞. �

4.4. Proof of Theorem 2.19. The proof is adapted from [BFM98, Lemmas 3.3
and 3.5] (see also [BB00, §2]). Fix u ∈ W 1,p

µ (X ;Rm) and define the set function
mu : O(X) → [0,∞] by

mu(A) := inf

{∫

A

L̂x(∇µv(x))dµ(x) : v − u ∈ W
1,p
µ,0 (A;Rm)

}
.



For each ε > 0 and each A ∈ O(X), denote the class of all countable family
{Qi := Qρi

(xi)}i∈I of disjoint open balls of A with xi ∈ A, ρi = diam(Qi) ∈]0, ε[
and µ(∂Qi) = 0 such that µ(A\∪i∈IQi) = 0 by Vε(A), consider mε

u : O(X) → [0,∞]
given by

mε
u(A) := inf

{
∑

i∈I

mu(Qi) : {Qi}i∈I ∈ Vε(A)

}

and define m∗
u : O(X) → [0,∞] by

m∗
u(A) := sup

ε>0
mε

u(A) = lim
ε→0

mε
u(A).

(Note that as X satisfies the Vitali covering theorem, see (C2) and Remark 2.18,
we have Vε(A) 6= ∅ for all A ∈ O(X) and all ε > 0.)

Step 1. We prove that m∗

u(A) = E(u;A) for all A ∈ O(X). Taking Lemma

4.8 into account, it is easy to see that mu(A) ≤ E(u;A) and so m∗
u(A) ≤ E(u;A)

(because in the proof of Theorem 2.16 it is established that E(u; ·) can be uniquely
extended to a finite positive Radon measure on X). Hence, it remains to prove that

(4.26) E(u;A) ≤ m∗
u(A)

with m∗
u(A) < ∞. Fix any ε > 0. Given A ∈ O(X), by definition of mε

u(A), there
exists {Qi}i∈I ∈ Vε(A) such that

(4.27)
∑

i∈I

mu(Qi) ≤ mε
u(A) +

ε

2
.

Given any i ∈ I, by definition of mu(Qi), there exists vi ∈ W 1,p
µ (Qi;R

m) such that

vi − u ∈ W
1,p
µ,0 (Qi;R

m) and

(4.28)

∫

Qi

L̂x(∇µvi(x))dµ(x) ≤ mu(Qi) +
εµ(Qi)

2µ(A)
.

Define uε : X → R
m by

uε :=

{
u in X \A
vi in Qi.

Then uε − u ∈ W
1,p
µ,0 (A;Rm). Moreover, because of (C0), ∇µuε(x) = ∇µvi(x) for

µ-a.a. x ∈ Qi. From (4.27) and (4.28) we see that

(4.29)

∫

A

L̂x(∇µuε(x))dµ(x) ≤ mε
u(A) + ε.

On the other hand, we have

‖uε − u‖p
L

χp
µ (X;Rm)

=

(∫

A

|uε − u|χpdµ

) 1
χ

=

(
∑

i∈I

∫

Qi

|vi − u|χpdµ

) 1
χ

≤
∑

i∈I

(∫

Qi

|vi − u|χpdµ

) 1
χ

with χ ≥ 1 given by (C1). As X supports a p-Sobolev inequality, see (C1) and
(2.15), and diam(Qi) ∈]0, ε[ for all i ∈ I, we have

‖uε − u‖p
L

χp
µ (X;Rm)

≤ εpKp
∑

i∈I

∫

Qi

|∇µvi −∇µu|
pdµ



with K > 0, and so

(4.30) ‖uε − u‖p
L

χp
µ (X;Rm)

≤ 2pεpKp
∑

i∈I

(∫

Qi

|∇µvi|
pdµ +

∫

A

|∇µu|
pdµ

)
.

Taking the first inequality in (4.7) and (4.27) into account, from (4.30) we deduce
that

‖uε − u‖p
L

χp
µ (X;Rm)

≤ 2pKpεp
(

1

C
(mε

u(A) + ε) +

∫

A

|∇µu|
pdµ

)

which shows that uε → u in Lχp
µ (X ;Rm) because limε→0 mε

u(A) = m∗
u(A) < ∞.

Hence uε → u in Lp
µ(X ;Rm) since χp ≥ p, and (4.26) follows from (4.29) by letting

ε → 0 (and by noticing that E(u;A) ≤ limε→0

∫
A
L̂x(∇µuε(x))dµ(x)).

Step 2. We prove that lim
ρ→0

m∗

u
(Qρ(x))

µ(Qρ(x))
= lim

ρ→0

mu(Qρ(x))

µ(Qρ(x))
for µ-a.a. x ∈ X.

From Step 1 we have m∗
u = E(u; ·), hence m∗

u ≥ mu and so limρ→0
m∗

u(Qρ(x))
µ(Qρ(x))

≥

limρ→0
mu(Qρ(x))
µ(Qρ(x))

for µ-a.a. x ∈ X . Thus, it remains to prove that

(4.31) lim
ρ→0

m∗
u(Qρ(x))

µ(Qρ(x))
≤ lim

ρ→0

mu(Qρ(x))

µ(Qρ(x))
for µ-a.a. x ∈ X.

Fix any t > 0. Denote the class of all open balls Qρ(x), with x ∈ X and ρ > 0,
such that m∗

u(Qρ(x)) > mu(Qρ(x)) + tµ(Qρ(x)) by Gt and define Nt ⊂ X by

Nt :=
{
x ∈ X : ∀δ > 0 ∃ρ ∈]0, δ[ Qρ(x) ∈ Gt

}
.

Fix any ε > 0. Using the definition of Nt, we can assert that for each x ∈ K

there exists {ρx,n}n ⊂]0, ε[ with ρx,n → 0 as n → ∞ such that for every n ≥ 1,
µ(∂Qρx,n

(x)) = 0 and Qρx,n
(x) ∈ Gt. Consider the family F0 of closed balls in X

given by

F0 :=
{
Qρx,n

(x) : x ∈ Nt and n ≥ 1
}
.

Then inf
{
r > 0 : Qr(x) ∈ F0

}
= 0 for all x ∈ Nt. As X satisfies the Vitali covering

theorem, there exists a disjointed countable subfamily {Qi}i∈I0 of closed balls of
F0 (with µ(∂Qi) = 0 and diam(Qi) ∈]0, ε[) such that

Nt ⊂
(

∪
i∈I0

Qi

)
∪
(
Nt \ ∪

i∈I0
Qi

)
with µ

(
Nt \ ∪

i∈I0
Qi

)
= 0.

If µ
(
∪i∈I0 Qi

)
= 0 then (4.31) will follows. Indeed, in this case we have µ(Nt) =

0, i.e., µ(X \ Nt) = µ(X), and given x ∈ X \ Nt there exists δ > 0 such that

m∗
u(Qρ(x)) ≤ mu(Qρ(x)) + tµ(Qρ(x)) for all ρ ∈]0, δ[. Hence limρ→0

m∗

u(Qρ(x))
µ(Qρ(x))

≤

limρ→0
mu(Qρ(x))
µ(Qρ(x))

+ t for all t > 0, and (4.31) follows by letting t → 0.

To establish that µ
(
∪i∈I0 Qi

)
= 0 it is sufficient to prove that for every finite subset

J of I0,

(4.32) µ
(

∪
i∈J

Qi

)
= 0.

As X satisfies the Vitali covering theorem and X \ ∪i∈J Qi is open, there exists a
countable family {Bi}i∈I of disjoint open balls of X \ ∪i∈J Qi, with µ(∂Bi) = 0



and diam(Bi) ∈]0, ε[, such that

(4.33) µ

((
X \ ∪

i∈J
Qi

)
\ ∪

i∈I
Bi

)
= µ

(
X \

(
∪
i∈I

Bi

)
∪
(

∪
i∈J

Qi

))
= 0.

Recalling that m∗
u is the restriction to O(X) of a finite positive Radon measure

which is absolutely continuous with respect to µ, from (4.33) we see that

m∗
u(X) =

∑

i∈I

m∗
u(Bi) +

∑

i∈J

m∗
u(Qi).

Moreover, Qi ∈ Gt for all i ∈ J , i.e., m∗
u(Qi) > mu(Qi) + tµ(Qi) for all i ∈ J , and

m∗
u ≥ mu, hence

m∗
u(X) ≥

∑

i∈I

mu(Bi) +
∑

i∈J

mu(Qi) + tµ

(
∪
i∈J

Qi

)
.

As {Bi}i∈I ∪ {Qi}i∈J ∈ Vε(X) we have
∑

i∈I mu(Bi) +
∑

i∈J mu(Qi) ≥ mε
u(X),

hence m∗
u(X) ≥ mε

u(X) + tµ(∪i∈J Qi), and (4.32) follows by letting ε → 0. �

4.5. Proof of Theorem 2.21. Taking Theorem 2.19 into account it is sufficient
to prove that for every u ∈ W 1,p

µ (X ;Rm) and µ-a.e. x ∈ X , we have:

lim
ρ→0

mu(Qρ(x))

µ(Qρ(x))
≤ lim

ρ→0

mux
(Qρ(x))

µ(Qρ(x))
;(4.34)

lim
ρ→0

mu(Qρ(x))

µ(Qρ(x))
≥ lim

ρ→0

mux
(Qρ(x))

µ(Qρ(x))
,(4.35)

where ux ∈ W 1,p
µ (X ;Rm) is given by (A1) (and satisfies (2.16) and (2.17)) and for

each z ∈ W 1,p
µ (X ;Rm), mz : O(X) → [0,∞] is defined by

mz(A) = inf

{∫

A

L̂y(∇µv(y))dµ(y) : v ∈ W 1,p
µ,z (A;Rm)

}

= inf

{∫

A

L̂y(∇µz(y) + ∇µw(y))dµ(y) : w ∈ W
1,p
µ,0 (A;Rm)

}
.

Remark 4.9. From the proof of Theorem 2.19 we can assert that for every z ∈
W 1,p

µ (X ;Rm), the set function m∗
z : O(X) → [0,∞] given by

m∗
z(A) := sup

ε>0
inf

{
∑

i∈I

mz(Qi) : {Qi}i∈I ∈ Vε(A)

}

(where Vε(A) denotes the class of all countable family {Qi}i∈I of disjoint open balls
of A with diam(Qi) ∈]0, ε[ and µ(∂Qi) = 0 such that µ(A \ ∪i∈IQi) = 0) is the
restriction to O(X) of a Radon measure on X which absolutely continuous with
respect to µ. Moreover, m∗

z ≥ mz and

(4.36) lim
ρ→0

m∗
z(Qρ(x))

µ(Qρ(x))
= lim

ρ→0

mz(Qρ(x))

µ(Qρ(x))
.

We only give the proof of (4.34). As the proof of (4.35) uses the same method, its
detailled verification is left to the reader.



Proof of (4.34). Fix any ε > 0. Fix any t ∈]0, 1[ and any ρ ∈]0, ε[. By definition of
mux

(Qtρ(x)), where there is no loss of generality in assuming that µ(∂Qtρ(x)) = 0,

there exists w ∈ W
1,p
µ,0 (Qtρ(x);Rm) such that

∫

Qtρ(x)

L̂y(∇µu(x) + ∇µw(y))dµ(y) ≤ mux
(Qtρ(x)) + εµ(Qρ(x))(4.37)

≤ m∗
ux

(Qρ(x)) + εµ(Qρ(x)),

where we have used both the fact that mux
≤ m∗

ux
and m∗

ux
is increasing (see

Remark 4.9). From (A2) there exists a Uryshon function ϕ ∈ A(X) for the pair
(X \Qρ(x), Qtρ(x)) such that

(4.38) ‖Dµϕ‖Lp
µ(X;RN ) ≤

α

ρ(1 − t)

for some α > 0 (which does not depend on ρ). Define v ∈ W 1,p
µ (Qρ(x);Rm) by

v := ϕux + (1 − ϕ)u.

Then v − u ∈ W
1,p
µ,0 (Qρ(x);Rm). Using (2.7) and (2.8) we have

∇µv =

{
∇µu(x) in Qtρ(x)

Dµϕ⊗ (ux − u) + ϕ∇µu(x) + (1 − ϕ)∇µu in Qρ(x) \Qtρ(x).

As w ∈ W
1,p
µ,0 (Qtρ(x);Rm) we have v + w − u ∈ W

1,p
µ,0 (Qρ(x);Rm). Noticing that

µ(∂Qtρ(x)) = 0 and, because of (C0), ∇µw(y) = 0 for µ-a.a. y ∈ Qρ(x) \ Qtρ(x)
and taking (4.37), the second inequality in (4.7) and (4.38) into account we deduce
that

mu(Qρ(x))

µ(Qρ(x))
≤ −

∫

Qρ(x)

L̂y(∇µv + ∇µw)dµ(4.39)

=
1

µ(Qρ(x))

∫

Qtρ(x)

L̂y(∇µu(x) + ∇µw)dµ

+
1

µ(Qρ(x))

∫

Qρ(x)\Qtρ(x)

L̂y(∇µv)dµ

≤
m∗

ux
(Qρ(x))

µ(Qρ(x))
+ ε

+22pc

(
αp

(1 − t)p
1

ρp
−

∫

Qρ(x)

|u− ux|
pdµ +

Aρ,t

µ(Qρ(x))

)

with

Aρ,t := µ(Qρ(x) \Qtρ(x))|∇µu(x)|p +

∫

Qρ(x)\Qtρ(x)

|∇µu|
pdµ.

As µ is a doubling measure, see (A3), we can assert that

lim
r→0

−

∫

Qr(x)

∣∣|∇µu(y)|p − |∇µu(x)|p
∣∣dµ(y) = 0.

But

Aρ,t

µ(Qρ(x))
≤ 2

(
1 −

µ(Qtρ(x)

µ(Qρ(x))

)
|∇µu(x)|p

+−

∫

Qρ(x)

∣∣|∇µu(y)|p − |∇µu(x)|p
∣∣dµ(y)



and so

(4.40) lim
ρ→0

Aρ,t

µ(Qρ(x))
≤ 2

(
1 − lim

ρ→0

µ(Qtρ(x))

µ(Qρ(x))

)
|∇µu(x)|p.

Letting ρ → 0 in (4.39) and using (2.17) and (4.40) we see that

lim
ρ→0

mu(Qρ(x))

µ(Qρ(x))
≤ lim

ρ→0

m∗
ux

(Qρ(x))

µ(Qρ(x))
+ ε + 2

(
1 − lim

ρ→0

µ(Qtρ(x))

µ(Qρ(x))

)
|∇µu(x)|p.

Letting t → 1 and using (2.18) we conclude that

lim
ρ→0

mu(Qρ(x))

µ(Qρ(x))
≤ lim

ρ→0

m∗
ux

(Qρ(x))

µ(Qρ(x))
+ ε

and (taking (4.36) into account) (4.34) follows by letting ε → 0. �
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